
Time and synchronization

(“There’s never enough time…”)



Today’s outline

•
 

Time in distributed systems
–

 
A baseball example

•
 

Synchronizing real clocks
–

 
Cristian’s

 
algorithm

–
 

The Berkeley Algorithm
–

 
Network Time Protocol (NTP)

•
 

Logical time
•

 
Lamport

 
logical clocks



Distributed time

•
 

The notion of time is well-defined (and 
measurable) at each single location
–

 
But the relationship between time at different 
locations is unclear

–
 

e.g., packet-sending from HW 1 #6:



A baseball example
•

 
Four locations:  pitcher’s mound, first base, home plate, 
and third base

•
 

Ten events:
e1

 

:  pitcher throws ball to home
e2

 

:  ball arrives at home
e3

 

:  batter hits ball to pitcher
e4

 

:  batter runs to first base
e5

 

:  runner runs to home
e6

 

:  ball arrives at pitcher
e7

 

:  pitcher throws ball to first base
e8

 

:  runner arrives at home
e9

 

:  ball arrives at first base
e10

 

:  batter arrives at first base



A baseball example

•
 

Pitcher knows e1

 

happens before e6

 

, which 
happens before e7

•
 

Home plate umpire knows e2

 

is before e3

 

, 
which is before e4

 

, which is before e8

 

, …
•

 
Relationship between e8

 

and e9

 

is unclear



Ways to synchronize

•
 

Send message from first base to home?
–

 
Or to a central timekeeper

–
 

How long does this message take to arrive? 
•

 
Synchronize clocks before the game?
–

 
Clocks drift

•
 

million to one => 1 second in 11 days

•
 

Synchronize continuously during the 
game?
–

 
GPS, pulsars, etc



Perfect networks

•
 

Messages always arrive, with propagation 
delay exactly d

•
 

Sender sends time T
 

in a message
•

 
Receiver sets clock to T+d
–

 
Synchronization is exact



Synchronous networks

•
 

Messages always arrive, with propagation 
delay at most D

•
 

Sender sends time T
 

in a message
•

 
Receiver sets clock to T + D/2
–

 
Synchronization error is at most D/2



Synchronization in the real world

•
 

Real networks are asynchronous
–

 
Propagation delays are arbitrary

•
 

Real networks are unreliable
–

 
Messages don’t always arrive



Cristian’s
 

algorithm

•
 

Request time, get reply
–

 
Measure actual round-trip time d

•
 

Sender’s time was T
 

between t1
 

and t2
•

 
Receiver sets time to T + d/2
–

 
Synchronization error is at most d/2

•
 

Can retry until we get a relatively small d



The Berkeley algorithm

•
 

Master uses Cristian’s
 

algorithm to get 
time from many clients
–

 
Computes average time

–
 

Can discard outliers
•

 
Sends time adjustments back to all clients



The Network Time Protocol (NTP)

•
 

Uses a hierarchy of time servers
–

 
Class 1 servers have highly-accurate clocks

•
 

connected directly to atomic clocks, etc.
–

 
Class 2 servers get time from only Class 1 
and Class 2 servers

–
 

Class 3 servers get time from any server
•

 
Synchronization similar to Cristian’s

 
alg.

–
 

Modified to use multiple one-way messages 
instead of immediate round-trip



Real synchronization is imperfect

•
 

Clocks never exactly synchronized
•

 
Often inadequate for distributed systems
–

 
might need totally-ordered events

–
 

might need millionth-of-a-second precision



Logical time

•
 

Capture just the “happens before” 
relationship between events
–

 
Discard the infinitesimal granularity of time

–
 

Corresponds roughly to causality
•

 
Time at each process is well-defined
–

 
Definition (→i

 

):  We say e →i

 

e’
 

if e
 

happens 
before e’

 
at process i



Global logical time

•
 

Definition (→):  We define e → e’ using the 
following rules:
–

 
Local ordering:  e

 
→ e’

 
if e

 
→i

 

e’
 

for any 
process i

–
 

Messages:  send(m) → receive(m) for any 
message m

–
 

Transitivity:  e → e’’
 

if e
 

→ e’
 

and e’
 

→ e’’
•

 
We say e

 
“happens before” e’

 
if e → e’



Concurrency

•
 

→ is only a partial-order
–

 
Some events are unrelated

•
 

Definition (concurrency):  We say e
 

is 
concurrent with e’

 
(written e║e’) if neither 

e
 

→ e’
 

nor e’
 

→ e



The baseball example revisited
•

 
e1

 

→ e2
–

 
by the message rule

•
 

e1

 

→ e10

 

, because
–

 
e1

 

→ e2

 

, by the message rule
–

 
e2

 

→ e4

 

, by local ordering at home plate
–

 
e4

 

→ e10

 

, by the message rule
–

 
Repeated transitivity of the above relations

•
 

e8

 

║e9

 

, because
–

 
No application of the → rules yields either e8

 

→ e9

 

or 
e9

 

→ e8



Lamport
 

logical clocks
•

 
Lamport

 
clock L

 
orders events consistent with 

logical “happens before” ordering
–

 
If e → e’, then L(e) < L(e’)

•
 

But not the converse
–

 
L(e) < L(e’)

 
does not imply e → e’

•
 

Similar rules for concurrency
–

 
L(e) = L(e’)

 
implies e║e’

 
(for distinct e,e’)

–
 

e║e’
 

does not imply L(e) = L(e’)
•

 
i.e., Lamport

 
clocks arbitrarily order some 

concurrent events



Lamport’s
 

algorithm
•

 
Each process i

 
keeps a local clock, Li

•
 
Three rules:

1.
 

At process i, increment Li

 

before each event
2.

 
To send a message m

 
at process i, apply rule 1 and 

then include the current local time in the message:  
i.e., send(m,Li

 

)
3.

 
To receive a message (m,t)

 
at process j, set Lj

 

= 
max(Lj

 

,t)
 

and then apply rule 1 before time-stamping 
the receive event

•
 
The global time L(e)

 
of an event e

 
is just its 

local time
–

 
For an event e

 
at process i, L(e) = Li

 

(e)



Lamport
 

on the baseball example

•
 

Initializing each local clock to 0, we get
L(e1

 

) = 1

 

(pitcher throws ball to home)
L(e2

 

) = 2

 

(ball arrives at home)
L(e3

 

) = 3

 

(batter hits ball to pitcher)
L(e4

 

) = 4

 

(batter runs to first base)
L(e5

 

) = 1

 

(runner runs to home)
L(e6

 

) = 4

 

(ball arrives at pitcher)
L(e7

 

) = 5

 

(pitcher throws ball to first base)
L(e8

 

) = 5

 

(runner arrives at home)
L(e9

 

) = 6

 

(ball arrives at first base)
L(e10

 

) = 7

 

(batter arrives at first base)

•
 

For our example, Lamport’s
 

algorithm says that 
the run scores!



Total-order Lamport
 

clocks

•
 

Many systems require a total-ordering of 
events, not a partial-ordering

•
 

Use Lamport’s
 

algorithm, but break ties 
using the process ID
–

 
L(e) = <Li

 

(e),i>
•

 
<Li

 

(e),i> < <Lj

 

(e’),j> if either
–

 

Li

 

(e) < Lj

 

(e’), or
–

 

Li

 

(e) = Lj

 

(e’)

 

and i < j
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