Time and synchronization

("There's never enough time...")

Today's outline

- Time in distributed systems
 - A baseball example
- Synchronizing real clocks
 - Cristian's algorithm
 - The Berkeley Algorithm
 - Network Time Protocol (NTP)
- Logical time
- Lamport logical clocks

Distributed time

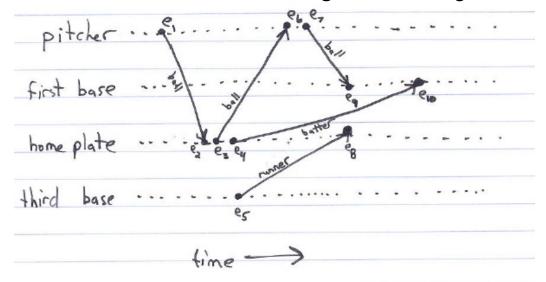
- The notion of time is well-defined (and measurable) at each single location
 - But the relationship between time at different locations is unclear
 - -e.g., packet-sending from HW 1 #6:

A baseball example

- Four locations: pitcher's mound, first base, home plate, and third base
- Ten events:
 - e_1 : pitcher throws ball to home
 - e₂: ball arrives at home
 - e₃: batter hits ball to pitcher
 - e_4 : batter runs to first base
 - e_5 : runner runs to home
 - e₆: ball arrives at pitcher
 - e₇: pitcher throws ball to first base
 - e₈: runner arrives at home
 - e₉: ball arrives at first base
 - e₁₀: batter arrives at first base

A baseball example

- Pitcher knows e₁ happens before e₆, which happens before e₇
- Home plate umpire knows e_2 is before e_3 , which is before e_4 , which is before e_8 , ...
- Relationship between e_8 and e_9 is unclear

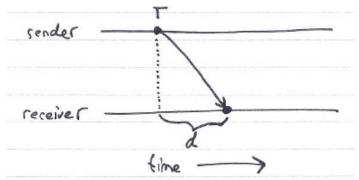


Ways to synchronize

- Send message from first base to home?
 Or to a central timekeeper
 - How long does this message take to arrive?
- Synchronize clocks before the game?
 Clocks drift
 - million to one => 1 second in 11 days
- Synchronize continuously during the game?
 - GPS, pulsars, etc

Perfect networks

 Messages always arrive, with propagation delay exactly d

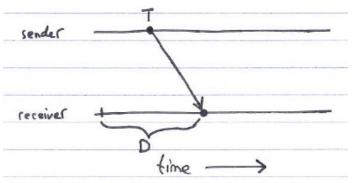


- Sender sends time *T* in a message
- Receiver sets clock to *T*+*d*

- Synchronization is exact

Synchronous networks

 Messages always arrive, with propagation delay at most D



- Sender sends time *T* in a message
- Receiver sets clock to T + D/2

– Synchronization error is at most D/2

Synchronization in the real world

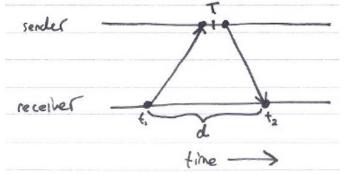
- Real networks are asynchronous
 Propagation delays are arbitrary
- Real networks are unreliable

- Messages don't always arrive

Cristian's algorithm

• Request time, get reply

– Measure actual round-trip time d



- Sender's time was T between t_1 and t_2
- Receiver sets time to T + d/2
 Synchronization error is at most d/2
- Can retry until we get a relatively small d

The Berkeley algorithm

- Master uses Cristian's algorithm to get time from many clients
 - Computes average time
 - Can discard outliers
- Sends time adjustments back to all clients

The Network Time Protocol (NTP)

- Uses a hierarchy of time servers
 - Class 1 servers have highly-accurate clocks
 - connected directly to atomic clocks, etc.
 - Class 2 servers get time from only Class 1 and Class 2 servers
 - Class 3 servers get time from any server
- Synchronization similar to Cristian's alg.
 - Modified to use multiple one-way messages instead of immediate round-trip

Real synchronization is imperfect

- Clocks never exactly synchronized
- Often inadequate for distributed systems

 might need totally-ordered events
 - might need millionth-of-a-second precision

Logical time

- Capture just the "happens before" relationship between events
 - Discard the infinitesimal granularity of time
 - Corresponds roughly to causality
- Time at each process is well-defined
 - Definition (\rightarrow_i) : We say $e \rightarrow_i e'$ if e happens before e' at process i

Global logical time

- Definition (→): We define e → e' using the following rules:
 - Local ordering: $e \rightarrow e'$ if $e \rightarrow_i e'$ for any process *i*
 - Messages: $send(m) \rightarrow receive(m)$ for any message m
 - Transitivity: $e \rightarrow e''$ if $e \rightarrow e'$ and $e' \rightarrow e''$
- We say e "happens before" e' if $e \rightarrow e'$

Concurrency

- → is only a partial-order
 Some events are unrelated
- Definition (concurrency): We say e is concurrent with e' (written e || e') if neither e → e' nor e' → e

The baseball example revisited

- $e_1 \rightarrow e_2$ - by the message rule
- $e_1 \rightarrow e_{10}$, because
 - $-e_1 \rightarrow e_2$, by the message rule
 - $-e_2 \rightarrow e_4$, by local ordering at home plate
 - $-e_4 \rightarrow e_{10}$, by the message rule
 - Repeated transitivity of the above relations
- $e_8 \| e_9$, because
 - No application of the \rightarrow rules yields either $e_8 \rightarrow e_9$ or $e_9 \rightarrow e_8$

Lamport logical clocks

- Lamport clock *L* orders events consistent with logical "happens before" ordering
 If e → e', then *L(e) < L(e')*
- But not the converse
 - -L(e) < L(e') does not imply $e \rightarrow e'$
- Similar rules for concurrency
 - -L(e) = L(e') implies $e \parallel e'$ (for distinct e, e')

 $-e \| e' \text{ does not imply } L(e) = L(e')$

 i.e., Lamport clocks arbitrarily order some concurrent events

Lamport's algorithm

- Each process *i* keeps a local clock, L_i
- Three rules:
 - 1. At process *i*, increment L_i before each event
 - 2. To send a message *m* at process *i*, apply rule 1 and then include the current local time in the message: i.e., *send(m,L_i)*
 - 3. To receive a message (m,t) at process j, set $L_j = max(L_j,t)$ and then apply rule 1 before time-stamping the receive event
- The global time L(e) of an event e is just its local time
 - For an event *e* at process *i*, $L(e) = L_i(e)$

Lamport on the baseball example

- Initializing each local clock to 0, we get
 - $L(e_1) = 1$ (pitcher throws ball to home)
 - $L(e_2) = 2$ (ball arrives at home)
 - $L(e_3) = 3$ (batter hits ball to pitcher)
 - $L(e_4) = 4$ (batter runs to first base)
 - $L(e_5) = 1$ (runner runs to home)
 - $L(e_6) = 4$ (ball arrives at pitcher)
 - $L(e_7) = 5$ (pitcher throws ball to first base)
 - $L(e_8) = 5$ (runner arrives at home)
 - $L(e_9) = 6$ (ball arrives at first base)
 - $L(e_{10}) = 7$ (batter arrives at first base)
- For our example, Lamport's algorithm says that the run scores!

Total-order Lamport clocks

- Many systems require a total-ordering of events, not a partial-ordering
- Use Lamport's algorithm, but break ties using the process ID

$$-L(e) = \langle L_i(e), i \rangle$$

•
$$< \text{ if either}$$

- $L_i(e) < L_j(e'), \text{ or}$
- $L_i(e) = L_j(e') \text{ and } i < j$