
Time and synchronization

(“There’s never enough time…”)

Today’s outline

•

Time in distributed systems
–

A baseball example

•

Synchronizing real clocks
–

Cristian’s

algorithm

–

The Berkeley Algorithm
–

Network Time Protocol (NTP)

•

Logical time
•

Lamport

logical clocks

Distributed time

•

The notion of time is well-defined (and
measurable) at each single location
–

But the relationship between time at different
locations is unclear

–

e.g., packet-sending from HW 1 #6:

A baseball example
•

Four locations: pitcher’s mound, first base, home plate,
and third base

•

Ten events:
e1

: pitcher throws ball to home
e2

: ball arrives at home
e3

: batter hits ball to pitcher
e4

: batter runs to first base
e5

: runner runs to home
e6

: ball arrives at pitcher
e7

: pitcher throws ball to first base
e8

: runner arrives at home
e9

: ball arrives at first base
e10

: batter arrives at first base

A baseball example

•

Pitcher knows e1

happens before e6

, which
happens before e7

•

Home plate umpire knows e2

is before e3

,
which is before e4

, which is before e8

, …
•

Relationship between e8

and e9

is unclear

Ways to synchronize

•

Send message from first base to home?
–

Or to a central timekeeper

–

How long does this message take to arrive?
•

Synchronize clocks before the game?
–

Clocks drift

•

million to one => 1 second in 11 days

•

Synchronize continuously during the
game?
–

GPS, pulsars, etc

Perfect networks

•

Messages always arrive, with propagation
delay exactly d

•

Sender sends time T

in a message
•

Receiver sets clock to T+d
–

Synchronization is exact

Synchronous networks

•

Messages always arrive, with propagation
delay at most D

•

Sender sends time T

in a message
•

Receiver sets clock to T + D/2
–

Synchronization error is at most D/2

Synchronization in the real world

•

Real networks are asynchronous
–

Propagation delays are arbitrary

•

Real networks are unreliable
–

Messages don’t always arrive

Cristian’s

algorithm

•

Request time, get reply
–

Measure actual round-trip time d

•

Sender’s time was T

between t1

and t2
•

Receiver sets time to T + d/2
–

Synchronization error is at most d/2

•

Can retry until we get a relatively small d

The Berkeley algorithm

•

Master uses Cristian’s

algorithm to get
time from many clients
–

Computes average time

–

Can discard outliers
•

Sends time adjustments back to all clients

The Network Time Protocol (NTP)

•

Uses a hierarchy of time servers
–

Class 1 servers have highly-accurate clocks

•

connected directly to atomic clocks, etc.
–

Class 2 servers get time from only Class 1
and Class 2 servers

–

Class 3 servers get time from any server
•

Synchronization similar to Cristian’s

alg.

–

Modified to use multiple one-way messages
instead of immediate round-trip

Real synchronization is imperfect

•

Clocks never exactly synchronized
•

Often inadequate for distributed systems
–

might need totally-ordered events

–

might need millionth-of-a-second precision

Logical time

•

Capture just the “happens before”
relationship between events
–

Discard the infinitesimal granularity of time

–

Corresponds roughly to causality
•

Time at each process is well-defined
–

Definition (→i

): We say e →i

e’

if e

happens
before e’

at process i

Global logical time

•

Definition (→): We define e → e’ using the
following rules:
–

Local ordering: e

→ e’

if e

→i

e’

for any
process i

–

Messages: send(m) → receive(m) for any
message m

–

Transitivity: e → e’’

if e

→ e’

and e’

→ e’’
•

We say e

“happens before” e’

if e → e’

Concurrency

•

→ is only a partial-order
–

Some events are unrelated

•

Definition (concurrency): We say e

is
concurrent with e’

(written e║e’) if neither

e

→ e’

nor e’

→ e

The baseball example revisited
•

e1

→ e2
–

by the message rule

•

e1

→ e10

, because
–

e1

→ e2

, by the message rule
–

e2

→ e4

, by local ordering at home plate
–

e4

→ e10

, by the message rule
–

Repeated transitivity of the above relations

•

e8

║e9

, because
–

No application of the → rules yields either e8

→ e9

or
e9

→ e8

Lamport

logical clocks
•

Lamport

clock L

orders events consistent with

logical “happens before” ordering
–

If e → e’, then L(e) < L(e’)

•

But not the converse
–

L(e) < L(e’)

does not imply e → e’

•

Similar rules for concurrency
–

L(e) = L(e’)

implies e║e’

(for distinct e,e’)

–

e║e’

does not imply L(e) = L(e’)
•

i.e., Lamport

clocks arbitrarily order some

concurrent events

Lamport’s

algorithm
•

Each process i

keeps a local clock, Li

•

Three rules:

1.

At process i, increment Li

before each event
2.

To send a message m

at process i, apply rule 1 and

then include the current local time in the message:
i.e., send(m,Li

)
3.

To receive a message (m,t)

at process j, set Lj

=
max(Lj

,t)

and then apply rule 1 before time-stamping
the receive event

•

The global time L(e)

of an event e

is just its

local time
–

For an event e

at process i, L(e) = Li

(e)

Lamport

on the baseball example

•

Initializing each local clock to 0, we get
L(e1

) = 1

(pitcher throws ball to home)
L(e2

) = 2

(ball arrives at home)
L(e3

) = 3

(batter hits ball to pitcher)
L(e4

) = 4

(batter runs to first base)
L(e5

) = 1

(runner runs to home)
L(e6

) = 4

(ball arrives at pitcher)
L(e7

) = 5

(pitcher throws ball to first base)
L(e8

) = 5

(runner arrives at home)
L(e9

) = 6

(ball arrives at first base)
L(e10

) = 7

(batter arrives at first base)

•

For our example, Lamport’s

algorithm says that
the run scores!

Total-order Lamport

clocks

•

Many systems require a total-ordering of
events, not a partial-ordering

•

Use Lamport’s

algorithm, but break ties
using the process ID
–

L(e) = <Li

(e),i>
•

<Li

(e),i> < <Lj

(e’),j> if either
–

Li

(e) < Lj

(e’), or
–

Li

(e) = Lj

(e’)

and i < j

	Time and synchronization
	Today’s outline
	Distributed time
	A baseball example
	A baseball example
	Ways to synchronize
	Perfect networks
	Synchronous networks
	Synchronization in the real world
	Cristian’s algorithm
	The Berkeley algorithm
	The Network Time Protocol (NTP)
	Real synchronization is imperfect
	Logical time
	Global logical time
	Concurrency
	The baseball example revisited
	Lamport logical clocks
	Lamport’s algorithm
	Lamport on the baseball example
	Total-order Lamport clocks

