
Distributed Mutual Exclusion

Last time…

•

Synchronizing real, distributed clocks
•

Logical time and concurrency

•

Lamport

clocks and total-order Lamport
 clocks

Goals of distributed mutual exclusion

•

Much like regular mutual exclusion
–

Safety: mutual exclusion

–

Liveness: progress
–

Fairness: bounded wait and in-order

•

Secondary goals:
–

reduce message traffic

–

minimize synchronization delay
•

i.e., switch quickly between waiting processes

By logical
time!

Distributed mutex

is different

•

Regular mutual exclusion solved using
shared state, e.g.
–

atomic test-and-set of a shared variable…

–

shared queue…
•

We solve distributed mutual exclusion with
message passing
–

Note: we assume the network is reliable but
asynchronous…but processes might fail!

Solution 1: A central mutex

server

•

To enter critical section:
–

send REQUEST to central server, wait for
permission

•

To leave:
–

send RELEASE to central server

Solution 1: A central mutex

server

•

Advantages:
–

Simple (we like simple!)

–

Only 3 messages required per entry/exit
•

Disadvantages:
–

Central point of failure

–

Central performance bottleneck
–

With an asynchronous network, impossible to
achieve in-order fairness

–

Must elect/select central server

Solution 2: A ring-based algorithm

•

Pass a token around a ring
–

Can enter critical section only if you hold the
token

•

Problems:
–

Not in-order

–

Long synchronization delay
•

Need to wait for up to N-1

messages, for N

 processors
–

Very unreliable

•

Any process failure breaks the ring

2’: A fair ring-based algorithm
•

Token contains the time t

of the earliest known

outstanding request
•

To enter critical section:
–

Stamp your request with the current time Tr

, wait for token
•

When you get token with time t

while waiting with

request from time Tr

, compare Tr

to t:
–

If Tr

= t: hold token, run critical section
–

If Tr

> t: pass token
–

If t

not set or Tr

< t: set token-time to Tr

, pass token, wait for
token

•

To leave critical section:
–

Set token-time to null (i.e., unset it), pass token

Solution 3: A shared priority queue

•

By Lamport, using Lamport

clocks

•

Each process i

locally maintains Qi

, part
of a shared priority queue

•

To run critical section, must have replies
from all other processes AND be at the
front of Qi

–

When you have all replies:
#1: All other processes are aware of your request
#2: You are aware of any earlier requests for the

mutex

Solution 3: A shared priority queue

•

To enter critical section at process i

:
–

Stamp your request with the current time T
–

Add request to Qi
–

Broadcast REQUEST(T) to all processes
–

Wait for all replies and for T

to reach front of Qi

•

To leave:
–

Pop head of Qi

, Broadcast RELEASE to all processes
•

On receipt of REQUEST(T’) from process j:
–

Add T’

to Qi
–

If waiting for REPLY from j

for an earlier request T, wait until j

replies to you

–

Otherwise REPLY
•

On receipt of RELEASE
–

Pop head of Qi

This delay

enforces

property #2

Solution 3: A shared priority queue

Initial state:
t action

42 (start)

t action

11 (start)

t action

14 (start)

1
Q1

:

2

3

Q2

:

Q3

:

Solution 3: A shared priority queue

Process 3 initiates request:
t action

42 (start)

t action

11 (start)

t action

14 (start)

15 request <15,3>

1
Q1

:

2

3

Q2

:

Q3

: <15,3>

Solution 3: A shared priority queue

1 & 2 receive and reply
t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

t action

14 (start)

15 request <15,3>

1
Q1

: <15,3>

2

3

Q2

: <15,3>

Q3

: <15,3>

Solution 3: A shared priority queue

3 gets replies, is on front of
queue, can run crit. section:

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

1
Q1

: <15,3>

2

3

Q2

: <15,3>

Q3

: <15,3>

Solution 3: A shared priority queue

Processes 1 and 2
concurrently initiate

requests:

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

1
Q1

: <15,3>, <45,1>

2

3

Q2

: <15,3>, <18,2>

Q3

: <15,3>

Solution 3: A shared priority queue

Process 3 gets requests
and replies:

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

49 recv

reply 3

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

51 recv

reply 3

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

47 recv

<45,1>

48 reply 3 to <45,1>

49 recv

<18,2>

50 reply 3 to <18,2>

1
Q1

: <15,3>, <45,1>

2

3

Q2

: <15,3>, <18,2>

Q3

: <15,3>, <18,2>,
<45,1>

Solution 3: A shared priority queue

Process 2 gets request
<45,1>, delays reply

because <18,2> is an
earlier request to which

Process 1 has not replied

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

49 recv

reply 3

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

51 recv

reply 3

52 recv

<45,1>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

47 recv

<45,1>

48 reply 3 to <45,1>

49 recv

<18,2>

50 reply 3 to <18,2>

1
Q1

: <15,3>, <45,1>

2

3

Q2

: <15,3>, <18,2>, <45,1>

Q3

: <15,3>, <18,2>,
<45,1>

Solution 3: A shared priority queue

Process 1 gets request
<18,2>, replies

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

49 recv

reply 3

50 recv

<18,2>

51 reply 1 to <18,2>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

51 recv

reply 3

52 recv

<45,1>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

47 recv

<45,1>

48 reply 3 to <45,1>

49 recv

<18,2>

50 reply 3 to <18,2>

1
Q1

: <15,3>, <18,2>,
<45,1>

2

3

Q2

: <15,3>, <18,2>, <45,1>

Q3

: <15,3>, <18,2>,
<45,1>

Solution 3: A shared priority queue

Process 2 gets reply from
process 1, finally replies to

<45,1>

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

49 recv

reply 3

50 recv

<18,2>

51 reply 1 to <18,2>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

51 recv

reply 3

52 recv

<45,1>

53 recv

reply 1

54 reply 2 to <45,1>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

47 recv

<45,1>

48 reply 3 to <45,1>

49 recv

<18,2>

50 reply 3 to <18,2>

1
Q1

: <15,3>, <18,2>,
<45,1>

2

3

Q2

: <15,3>, <18,2>, <45,1>

Q3

: <15,3>, <18,2>,
<45,1>

Solution 3: A shared priority queue

•

Advantages:
–

Fair

–

Short synchronization delay
•

Disadvantages:
–

Very unreliable

•

Any process failure halts progress
–

3(N-1)

messages per entry/exit

Solution 4: Ricart

and Agrawala

•

An improved version of Lamport’s

shared
priority queue
–

Combines function of REPLY and RELEASE
messages

•

Delay REPLY to any requests later than
your own
–

Send all delayed replies after you exit your
critical section

Solution 4: Ricart

and Agrawala
•

To enter critical section at process i

:

–

Same as Lamport’s

algorithm
•

Except you don’t need to reach the front of Qi

to run your
critical section: you just need all replies

•

To leave:
–

Broadcast REPLY to all processes in Qi

–

Empty Qi

•

On receipt of REQUEST(T’):
–

If waiting for (or in) critical section for an earlier
request T, add T’

to Qi

–

Otherwise REPLY immediately

Ricart

and Agrawala

safety

•

Suppose request T1

is earlier than T2

.
Consider how the process for T2

collects
its reply from process for T1

:
–

T1

must have already been time-stamped
when request T2

was received, otherwise the
Lamport

clock would have been advanced

past time T2
–

But then the process must have delayed reply
to T2

until after request T1

exited the critical
section. Therefore T2

will not conflict with T1

.

Solution 4: Ricart

and Agrawala

•

Advantages:
–

Fair

–

Short synchronization delay
–

Better than Lamport’s

algorithm

•

Disadvantages
–

Very unreliable

–

2(N-1)

messages for each entry/exit

Solution 5: Majority rules

•

Instead of collecting REPLYs, collect
VOTEs
–

Each process VOTEs

for which process can

hold the mutex
–

Each process can only VOTE once at any
given time

–

You hold the mutex

if you have a majority of
the VOTEs

•

Only possible for one process to have a majority at
any given time!

Solution 5: Majority rules
•

To enter critical section at process i

:

–

Broadcast REQUEST(T), collect VOTEs
–

Can enter crit. sec. if collect a majority of VOTEs

•

To leave:
–

Broadcast RELEASE-VOTE to all processes who
VOTEd

for you

•

On receipt of REQUEST(T’) from process j:
–

If you have not VOTEd, VOTE for T’

•

Otherwise, add T’

to Qi

•

On receipt of RELEASE-VOTE:
–

If Qi

not empty, VOTE for pop(Qi

)

Solution 5: Majority rules

•

Advantages:
–

Can progress with as many as N/2 –

1

failed

processes
•

Disadvantages:
–

Not fair

–

Deadlock!
•

No guarantee that anyone receives a majority of
votes

Solution 5’: Dealing with deadlock

•

Allow processes to ask for their vote back
–

If already VOTEd

for T’

and get a request for

an earlier request T, RESCIND-VOTE for T’
–

If receive RESCIND-VOTE request and not in
critical section, RELEASE-VOTE and re-

 REQUEST
•

Guarantees that some process will
eventually get a majority of VOTEs

•

Still not fair…

Solution 6: Maekawa

voting

•

Each process i

has an associated voting
set of other processes, Vi

•

To get mutex, need VOTE from all of Vi
–

As long as Vi∩Vj

is non-empty for all i,j, no two
processes will hold mutex

at the same time

•

E.g, arrange processes in a
2-dimensional grid
–

Let Vi

be row and column of i

Solution 6: Maekawa

voting

•

2-dimensional grid requires ~ 2 sqrt(N)
votes, for ~ 6 sqrt(N) messages
–

More complex Maekawa

solutions require only

~ sqrt(N) votes
•

Can deadlock, not fair
–

RESCIND-VOTE solution can fix deadlock…

•

Unreliable
–

Any failure in your voting sets prevents you
from getting the mutex

	Distributed Mutual Exclusion
	Last time…
	Goals of distributed mutual exclusion
	Distributed mutex is different
	Solution 1: A central mutex server
	Solution 1: A central mutex server
	Solution 2: A ring-based algorithm
	2’: A fair ring-based algorithm
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 4: Ricart and Agrawala
	Solution 4: Ricart and Agrawala
	Ricart and Agrawala safety
	Solution 4: Ricart and Agrawala
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5’: Dealing with deadlock
	Solution 6: Maekawa voting
	Solution 6: Maekawa voting

