
Concurrency Control

Transactions and Distributed
Transactions

Announcements

•

1) Exam Thursday
•

2) Exam review session

•

3) Homework 1 back
•

4) dga,vrv

out until Thursday

Last time: RAID

•

Trade capacity for reliability
•

Throughput growing…delay not

Today: Concurrency control

•

Local concurrency control
–

Transactions

–

Two-phase locking
•

Distributed concurrency control
–

Two-phase commit

Transactions

•

Fundamental abstraction to group
operations into a single unit of work
–

begin: begins the transaction

–

commit: attempts to complete the transaction
–

rollback

/ abort: aborts the transaction

ACID properties

•

Atomicity: all or nothing
•

Consistency: guarantee basic properties

•

Isolation: each transaction runs as if alone
•

Durability: cannot be undone

The classic debit/credit example
bool

xfer(Account

src, Account dest, long x) {
if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);
dest.setBalance(dest.getBalance() + x);
return TRUE;

}
return FALSE;

}

•

If not isolated and atomic:
–

might overdraw the src

account

–

might “create” or “destroy” money

The classic debit/credit example
bool

xfer(Account

src, Account dest, long x) {
Transaction t = begin();
if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);
dest.setBalance(dest.getBalance() + x);
return t.commit();

}
t.abort();
return FALSE;

}

•

Note: the system is allowed to unilaterally
abort the transaction itself, when you try to
commit!

Problems to avoid

•

Lost updates
–

Another transaction overwrites your change
based on a previous value of some data

•

Inconsistent retrievals
–

You read data that can never occur in a
consistent state

•

partial writes by other transactions
•

writes by a transaction that later aborts

A poor solution: a global lock

•

Only let one transaction run at a time
–

isolated from all other transactions

–

make changes permanent on commit or undo
changes on abort, if necessary

bool

xfer(Account

src, Account dest, long x) {
lock();
if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);
dest.setBalance(dest.getBalance() + x);
unlock();
return TRUE;

}
unlock();
return FALSE;

}

Better: lock objects independently

•

E.g., one lock for the src

account, one lock
for the dest

account

–

Other transactions can execute concurrently,
as long as they don’t read or write the src

or

dest

accounts
–

Easy to implement with the tools we have

•

e.g., can use a hash table of lockable objects ->
locks

Locks alone are insufficient

•

(You need to use the locks correctly)
bool

xfer(Account

src, Account dest, long x) {
lock(src);
if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);
unlock(src);
lock(dest);
dest.setBalance(dest.getBalance() + x);
unlock(dest);
return TRUE;

}
unlock(src);
return FALSE;

}
Allows other transactions to read

src before we write dest

and thus

see our partially-written state

2-phase locking (2PL)

•

Phase 1: acquire locks
•

Phase 2: release locks
–

You may not get any more locks after you
release any locks

–

Typically implemented by not allowing explicit
unlock

calls

•

Locks automatically released on commit/abort

Debit/credit with 2PL
bool

xfer(Account

src, Account dest, long x) {
Transaction t = begin();
t.lock(src);
if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);
t.lock(dest);
dest.setBalance(dest.getBalance() + x);
return t.commit();

// unlocks src

and dest
}
t.abort(); // unlocks src
return FALSE;

}

2PL might suffer deadlocks
t1.lock(foo); t2.lock(bar);
t1.lock(bar); t2.lock(foo);

•

t1

might get the lock for foo, then t2

gets the
lock for bar, then both transactions wait while
trying to get the other lock

Preventing deadlock

•

Each transaction can get all its locks at
once

•

Each transaction can get all its locks in a
predefined order
–

Both of these strategies are impractical:

•

Transactions often do not know which locks they
will need in the future

Detecting deadlock

•

Construct a “waits-for” graph
–

Each vertex in the graph represents a
transaction

–

T1 → T2 if T1 is waiting for a lock T2 holds
•

There is a deadlock iff

the waits-for graph

contains a cycle

“Ignoring” deadlock

•

Automatically abort all long-running
transactions
–

Not a bad strategy, if you expect transactions
to be short

•

A long-running “short” transaction is probably
deadlocked

Distributed transactions

•

Data stored at distributed locations
•

Failure model:
–

messages might be delayed or lost

–

servers might crash, but can recover saved
persistent storage

The coordinator

•

Begins transaction
–

Assigns unique transaction ID

•

Responsible for commit/abort
•

Many systems allow any client to be the
coordinator for its own transactions

The participants

•

The servers with the data used in the
distributed transaction

Problems with simple commit

•

“One-phase commit”
–

Coordinator broadcasts “commit!” to
participants until all reply

•

What happens if one participant fails?
–

Can the other participants then undo what
they have already committed?

Two-phase commit (2PC)

•

The commit-step itself is two phases
•

Phase 1: Voting
–

Each participant prepares to commit, and
votes on whether or not it can commit

•

Phase 2: Committing
–

Each participant actually commits or aborts

2PC operations
•

canCommit?(T) -> yes/no
–

Coordinator asks a participant if it can commit

•

doCommit(T)
–

Coordinator tells a participant to actually commit

•

doAbort(T)
–

Coordinator tells a participant to abort

•

haveCommitted(participant,T)
–

Participant tells coordinator it actually committed

•

getDecision(T)

-> yes/no
–

Participant can ask coordinator if T should be
committed or aborted

The voting phase

•

Coordinator asks each participant:
canCommit?(T)

•

Participants must prepare to commit using
permanent storage before answering yes
–

Objects are still locked

–

Once a participant votes “yes”, it is not allowed to
cause an abort

•

Outcome of T

is uncertain until doCommit

or
doAbort
–

Other participants might still cause an abort

The commit phase

•

The coordinator collects all votes
–

If unanimous “yes”, causes commit

–

If any participant voted “no”, causes abort
•

The fate of the transaction is decided atomically
at the coordinator, once all participants vote
–

Coordinator records fate using permanent storage

–

Then broadcasts doCommit

or doAbort

to
participants

2PC sequence of events

canCommit?

Yes

doCommit

haveCommitted

Coordinator Participant

participant not allowed to cause an abort after it replies “yes”

to canCommit

“committed”
(persistently)

“prepared”

“done”

“uncertain”
(objects still
locked)

“prepared”
(persistently)

“committed”

2PL with 2-Phase Commit

•

Each participant uses 2PL for its objects,
2PC for the commit process

	Concurrency Control
	Announcements
	Last time: RAID
	Today: Concurrency control
	Transactions
	ACID properties
	The classic debit/credit example
	The classic debit/credit example
	Problems to avoid
	A poor solution: a global lock
	Better: lock objects independently
	Locks alone are insufficient
	2-phase locking (2PL)
	Debit/credit with 2PL
	2PL might suffer deadlocks
	Preventing deadlock
	Detecting deadlock
	“Ignoring” deadlock
	Distributed transactions
	The coordinator
	The participants
	Problems with simple commit
	Two-phase commit (2PC)
	2PC operations
	The voting phase
	The commit phase
	2PC sequence of events
	2PL with 2-Phase Commit

