Concurrency Control

Transactions and Distributed
Transactions

Announcements

1) Exam Thursday

2) Exam review session

3) Homework 1 back

4) dga,vrv out until Thursday

Last time: RAID

* Trade capacity for reliability
* Throughput growing...delay not

Today: Concurrency control

* Local concurrency control
— Transactions
— Two-phase locking

 Distributed concurrency control
— Two-phase commit

Transactions

* Fundamental abstraction to group
operations into a single unit of work
- begin: begins the transaction
— commi t: attempts to complete the transaction
- rollback / abort: aborts the transaction

ACID properties

Atomicity: all or nothing

Consistency:. guarantee basic properties
Isolation: each transaction runs as if alone
Durability: cannot be undone

The classic debit/credit example

bool xfer (Account src, Account dest, long x) {
if (src.getBalance() >= x) {
src.setBalance (src.getBalance() - x);
dest.setBalance (dest.getBalance() + x);
return TRUE;

}
return FALSE;

}
* If not isolated and atomic:
— might overdraw the src account
— might “create” or “destroy” money

The classic debit/credit example

bool xfer (Account src, Account dest, long x) {

Transaction t = begin()

if (src.getBalance() >= x) {
src.setBalance (src.getBalance() - x);
dest.setBalance (dest.getBalance() + x);
return t.commit () ;

}

t.abort () ;

return FALSE;

}
* Note: the system is allowed to unilaterally

abort the transaction itself, when you try to
commit!

Problems to avoid

* Lost updates

— Another transaction overwrites your change
based on a previous value of some data

* |nconsistent retrievals

— You read data that can never occur in a
consistent state
* partial writes by other transactions
 writes by a transaction that later aborts

A poor solution: a global lock

* Only let one transaction run at a time

— Isolated from all other transactions

— make changes permanent on commit or undo
changes on abort, if necessary

bool xfer (Account src, Account dest, long x) {

lock () ;

if (src.getBalance() >= x) {
src.setBalance (src.getBalance() - x);
dest.setBalance (dest.getBalance() + x);
unlock () ;

return TRUE;
}

unlock () ;
return FALSE;

Better: lock objects independently

* E.g., one lock for the src account, one lock
for the dest account
— Other transactions can execute concurrently,

as long as they don’t read or write the src or
dest accounts

— Easy to implement with the tools we have

* e.g., can use a hash table of lockable objects ->
locks

. ocks alone are insufficient

* (You need to use the locks correctly)

bool xfer (Account src, Account dest, long x) {

lock (src) ;

if (src.getBalance() >= x) {
src.setBalance (src.getBalance() - x);
unlock (src) ;
lock (dest) ;
dest.setBalance (dest.getBalance() + x);
unlock (dest) ;
return TRUE;

}

unlock (src) ;

return FALSE; .
Allows other transactions to read

src before we write dest and thus
see our partially-written state

2-phase locking (2PL)

 Phase 1. acquire locks

e Phase 2: release locks

— You may not get any more locks after you
release any locks

— Typically implemented by not allowing explicit
unlock calls
* Locks automatically released on commit/abort

Debit/credit with 2PL

bool xfer (Account src, Account dest, long x) {
Transaction t = begin();
t.lock(sxc) ;
if (src.getBalance() >= x) {
src.setBalance (src.getBalance() - x);
t.lock(dest) ;
dest.setBalance (dest.getBalance() + x);
return t.commit () ; // unlocks src and dest
}
t.abort () ; // unlocks src
return FALSE;

2PL might suffer deadlocks

tl.lock (foo) ; t2.lock (bar) ;
tl.lock (bar); t2.1lock (fo0) ;

« t1 might get the lock for foo, then t2 gets the
lock for bar, then both transactions wait while

trying to get the other lock

Preventing deadlock

« Each transaction can get all its locks at
once

« Each transaction can get all its locks in a
predefined order

— Both of these strategies are impractical:

* Transactions often do not know which locks they
will need in the future

Detecting deadlock

« Construct a “waits-for” graph

— Each vertex in the graph represents a
transaction

—T1 —> T2if T1 is waiting for a lock T2 holds

* There is a deadlock iff the waits-for graph
contains a cycle

“Ignoring” deadlock

« Automatically abort all long-running
transactions

— Not a bad strategy, if you expect transactions
to be short

A long-running “short” transaction is probably
deadlocked

Distributed transactions

 Data stored at distributed locations

* Failure model:
— messages might be delayed or lost

— servers might crash, but can recover saved
persistent storage

The coordinator

* Begins transaction
— Assigns unique transaction ID

* Responsible for commit/abort

 Many systems allow any client to be the
coordinator for its own transactions

The participants

 The servers with the data used in the
distributed transaction

Problems with simple commit

* “One-phase commit”

— Coordinator broadcasts “commit!” to
participants until all reply

* What happens if one participant fails?

— Can the other participants then undo what
they have already committed?

Two-phase commit (2PC)

 The commit-step itself is two phases

* Phase 1: Voting

— Each participant prepares to commit, and
votes on whether or not it can commit

* Phase 2. Committing
— Each participant actually commits or aborts

2PC operations

canCommit? (T) ->yes/no

— Coordinator asks a participant if it can commit
doCommit (T)

— Coordinator tells a participant to actually commit
doAbort (T)

— Coordinator tells a participant to abort
haveCommitted (participant,T)

— Participant tells coordinator it actually committed
getDecision (T) -> yes/no

— Participant can ask coordinator if T should be
committed or aborted

The voting phase

« Coordinator asks each participant:
canCommit? (T)

 Participants must prepare to commit using
permanent storage before answering yes

— Objects are still locked

— Once a participant votes “yes’, it is not allowed to
cause an abort

 Qutcome of T is uncertain until doCommit or
doAbort

— Other participants might still cause an abort

The commit phase

* The coordinator collects all votes
— If unanimous “yes”, causes commit
— If any participant voted “no”, causes abort

* The fate of the transaction is decided atomically
at the coordinator, once all participants vote

— Coordinator records fate using permanent storage

— Then broadcasts doCommit or doAbort to
participants

2PC sequence of events

Coordinator Participant
“prepared” canCommit? “prepared”
(persistently)

A-Y*

“uncertain”
(objects still

“‘committed” doCommit
(persistently) \ locked)
W “‘committed”

“done”

participant not allowed to cause an abort after it replies “yes” to canCommit

2PL with 2-Phase Commit

« Each participant uses 2PL for its objects,
2PC for the commit process

	Concurrency Control
	Announcements
	Last time: RAID
	Today: Concurrency control
	Transactions
	ACID properties
	The classic debit/credit example
	The classic debit/credit example
	Problems to avoid
	A poor solution: a global lock
	Better: lock objects independently
	Locks alone are insufficient
	2-phase locking (2PL)
	Debit/credit with 2PL
	2PL might suffer deadlocks
	Preventing deadlock
	Detecting deadlock
	“Ignoring” deadlock
	Distributed transactions
	The coordinator
	The participants
	Problems with simple commit
	Two-phase commit (2PC)
	2PC operations
	The voting phase
	The commit phase
	2PC sequence of events
	2PL with 2-Phase Commit

