
Parallel Cluster 
Programming

CMU 15-440:  Distributed Systems

Last Time

• Questions about Paxos / distributed 
consensus?

• If you haven’t picked up your exam yet, it’s 
with my admin (see web page)

Parallelism ubiquitous

• Even your laptop, if your parents bought 
you something decent :), has 2 or more 
cores in it.

• Each of those cores is actually internally 
parallel, but that’s not this course.

• The question of the decade in computing 
(not exaggerating):  How to exploit 
parallelism.

Q1:  What’s the 
workload??

• Before we try to solve it, let’s look briefly at the map of 
problems and solutions...

• “Trivially parallel” -- e.g., password cracking.  Requires 
little communication, memory, etc.

• Compute-intensive -- e.g., physical mesh simulations in 
HPC.  Often very memory intensive, need low-latency, 
high-bw communication

• Data-intesive -- e.g., computing an index of the web, data-
mining, etc.  Often disk intensive, bandwidth intensive, but 
not as latency sensitive.



Q2:  The challenges

• First:  Algorithmic.  How do you solve problem X in parallel?

• Sometimes this is very hard;  sometimes it’s straightforward.  
For our purposes, let’s assume the answer is known.  
Otherwise, take Guy Blelloch’s course.

• Second:  Systems.  How do you practically solve problem X 
using reasonable amounts of programmer time, efficiently use 
the parallel resources, etc.?

Helping Programmers 
Use Clusters

• As systems people, our job is to make stuff work.  “Tools to make tools.”  What tools 
can we provide to ease the pain of parallel computing?

• Step 0:  We can make it easy to execute code on lots of machines... and to share those 
machines between “jobs” (cf Condor)

• Step 0a:  We can provide you with a shared distributed filesystem, or copy your 
programs onto these machines automatically

• Step 1:  We can give you easy to use mechanisms for communication between 
processes (RPC, or, in the high-performance domain, MPI.)

• Step 1a: MPI slightly higher level:  library knows which other computers are involved in 
the processing, handles process spawning (step 0), provides message sending, broadcast, 
many-to-1, get(), put() abstraction for shared memory regions, synchronization, etc.)

• Observations:

• These tools are very general - you can use them to solve any parallel problem

• These tools are very low-level - they don’t deal with a lot of very hard questions in 
parallel programming!

Some hard questions

• Psst - you saw a lot of these in lab 1!

• Dealing with failures (it’s tough - even your professor puts 
bugs into complex algorithms when explaining them!)

• Dealing with load balance - efficiently keeping all of the 
machines busy, splitting up the work into chunks, etc.

• Parallelizing the algorithm, etc.

More helping 
programmers

• Provide libraries of parallel algorithms they can just use (matrix multiply, etc.)

• Provide generic failure recovery:  checkpoint & restore.

• Basic idea:  Take a “snapshot” of the state of all programs on the cluster, save it to disk.  
If you fail, restart everyone from this checkpoint.

• Very general, very expensive.

• Remember back to the start of the class, I mentioned that you could try to provide a 
generic shared memory abstraction across a cluster, but that people had mostly given up 
(too expensive)?  Too much generality here hurts, too.

• Are there salient features of a large class of parallel applications we can exploit to make life easier?

• Yes, for the class of data-intensive applications.

• Wha wha?  Imagine:  Count how many times dga searched for “free distributed systems 
lectures” on Google, from all of Google’s logfiles.

• You might imagine that Google’s logfiles are very, very large.



Helping helping
• An observation:  If you can express a problem either parallel 

functionally (no side effects, defining per-element operations), or 
sometimes declaratively, it’s often easier to do them in parallel

• Example:  SQL

• SELECT * from profs where id=‘dga’;

• I could do this by, in parallel, checking every record in the database 
against id ‘dga’ and then returning a list of the matching ones

• Example:  ML

• let timestwo a = (a + a);;

• List.map timestwo [1; 2; 3;];;    ----> int list [2; 4; 6;]

Let’s look at that map 
more closely

• In what order do we have to apply the function to the elements?

• A:  Any one we want, even in parallel.  The function has no side 
effects - the applications are independent

• What happens if we apply the function to the same element twice?

• A:  Nothing, it’s safe to re-do it and recompute the value - no side 
effects! :)

• Suggests a nice basis for both parallelization and fault tolerance...

• But programmer does not live by map() alone.

Google’s MapReduce

• A model, and the name of Google’s 
implementation.

• Unlike the reduce (or fold, in ml) you’re 
used to, theirs is partitioned by key.

• That’s pretty much the only difference.

• Open source implementation of the model:  
Hadoop (affiliated with Yahoo!)

• map transforms a set of key, value pairs to a 
different set of key, value pairs, operating on each 
input pair indepdendently:

• map f [ (k1, v1), (k2, v2), (k3, v3), ... ] ->
    [ (kx, vx), (ky, vy), (kz, vz), (ka, vb), ...]

• f (k, v) -> [(k’, v’), ... )

• map function can output zero or more key, value 
pairs for every input item

• reduce (k, [v1, v2, ...]) ->  [vN, vM, ...]

• Usually, reduce outputs one value for each key



Example:  Word count

// key = document name, value = document contents

map(String key, String value):

for each word w in value:

EmitIntermediate(w, “1”)

reduce(String key, list values):

int count = 0

for each v in values:

count += parseInteger(v)

Emit(string(count))

Things to note

• The system automatically groups the 
results by the key used in the reduce, so 
the output of that would be:

• (frog, 5),  (dog, 100), (systems, 1000), 
(15-213, 5)

• A “reduce task” runs on a machine.  It may handle multiple keys for 
reducing.

• (k, v) pairs are allocated to reduce tasks based on the key (“partitioning”), so 
that one reduce task handles all (k, v) pairs with the same key

• Keys are passed to the task in sorted order (but things may be scattered 
among multiple reducers depending on how you partition)

• Why?  1:  Friendly to humans, predictable/deterministic output;  2:  many 
apps need sorted output for later stages (searching);  3:  Have to do 
grouping by key anyway, and sorting is a convenient way to do that.  
Especially given good external sort algorithms.

• Cool trick:  distributed sort using MapReduce?  map(k, v) -> (k, v)
reduce(k, list<v>) -> list<v>
partition() by range

figure from Jeff Dean OSDI talk slides

master



• Okay, that makes sense.

• But how do you do it?

• Where is data stored?  Where do you 
execute map and reduce tasks?  How 
many?  Failures?  Load balancing?  How to 
get (k, v) from one stage to the next?

Data Storage
• Data stored in ... a cluster distributed filesystem (GFS, HDFS)

• Each node has both storage and computation

• Data is replicated ~3 times to deal with failures, help 
performance

• We’ll talk about the filesystem next time.  For now:

• Data stored on machine X can be accessed faster by machine 
X than by other machines (locality helps), but

• Any machine can access any data item if it wants

• Input comes from this FS,  final output goes to it

Work flow

When a user program starts, it starts up MapReduce. One of the most important early steps is for MapReduce to carve up the 
input file(s) into chunks, known as splits. Each split is of the same size, which is user configurable anywhere from a dozen to 
several dozen megabytes.

MapReduce then initializes a whole bunch of instances across many nodes. One of these instances is the Master that is responsible for 
coordination. The other instances are Workers that will each perform Map and/or Reduce operations. The Master will assign idle workers 
Map or Reduce tasks.

But, it does not assign more than one task per worker. If there is more work to be done than workers available, the Master will hold onto 
it until some Worker becomes idle and can immediately accept it. By keeping the de facto work queue at the Master, rather than on the 
Workers, the Master is able to improve load balancing. This is because Workers will likely finish at unpredictible and different times, 
making it hard to optimally allocate all work initially.

The Map Worker does its thing and churns out the results -- the intermediate key-value pairs. These results are buffered in memory for a 
while, but periodically written to disk. As they are written to disk, the key-value pairs are hashed into Regions, based on their key. The 
data is divided into Regions to provide chunks that can be processed in parallel by Reduce workers. By dividing the output using a hash 
function, the buckets associated with each worker will be approximately the same size.

As each Region is written, the Master is informed. This allows the Master to assign the work to a Reduce Worker, which will read the 
data from the intermediate file using an remote read, such as by RPC call.

Allocation to map tasks 
and reduce tasks

• Assume that more nodes is better (for big tasks).  

• Depends on ratio of computation time between maps & reduces (and the 
“hidden” sorting stage before invoking reduce)

• More map tasks means more input parallelism (good), but want input chunk 
size to be large enough for efficient reading (16--64MB is common)

• For load balance, want more reduce tasks than processors (a few times 
more)

• But more reduce tasks means more output files, which you may have to 
aggregate later

• goog example:  200,000 maps, 5000 reduces, on 2000 machines



Locating maps & 
reduces

• Locality helps when reading from the dist. FS

• So assign map tasks to data stored locally on that node, 
when reasonable.  Alternately, you might allocate to nodes 
on same rack as reducers if there’s more bandwidth 
between nodes in the same rack than across racks

• Reducers probably take input from lots of maps, so locality 
less important.

Optimization:  Intermediate 
aggregation

• Often reasonable to do an intermediate “reduce” phase before 
shipping across network.  For word count example, can actually 
reuse the reduce function - aggregate (“hi”, 1), (“hi”, 1) into (“hi”, 
2) before sending across network to reducer

• These “combiners” must be commutative and associative 
(another restriction on the problem that lets you do more 
powerful things)

• Lots of fun researchy questions about how to best do this.  
Bumps into database literature, too.

Worker Failure

• Master periodically pings workers.

• If you can’t talk to a mapper for a while, just re-execute its 
jobs somewhere else.

• Handling reducer failure:  Have its final output commit be 
atomic (it’s either all there or all gone).

• Usual trick:  output to temp file, close it, and then 
atomically rename it

• Slow nodes:  Just have someone else re-do the work, let 
them race to finish.  Good for load balancing. (“end-game”)

Master failure

• Google’s first answer:  meh, don’t worry 
about it, just re-execute the entire job.

• Google’s new answer:  replicate the master 
using Paxos. :)

• Yahoo!/Hadoop’s first answer:  don’t worry 
about it.

• Hadoop’s new answer:  ... paxos ...



Doing Complex Things

• Many computations can’t be expressed as a single Map
+Reduce phase

• End up building multiple stage pipelines

• Google engineer’s perspective:  Often, you start out 
thinking “i can do this better than using mapreduce”, but 
almost always fall back to using MR because it handles so 
much ugly stuff for you that you’d otherwise have to 
reinvent

Going further

• GOOG & YHOO both have higher-level 
languages to make simple data analysis using MR 
easier-- Google’s “Sawzall” and Yahoo’s “Pig”

• MSFT generalized to “Dryad”, which lets you set 
up pipelines more flexibly instead of just doing 
maps & reduces (but maintains same 
commutativity, side effect freedom, etc)


