
Replication

How’d we get here?

• Failures & single systems; fault tolerance techniques
added redundancy (ECC memory, RAID, etc.)

• Conceptually, ECC & RAID both put a “master” in
front of the redundancy to mask it from clients --
ECC handled by memory controller, RAID looks like
a very reliable hard drive behind a (special)
controller

Simpler examples...

• Replicated web sites

• e.g., Yahoo! or Amazon:

• DNS-based load balancing (DNS returns
multiple IP addresses for each name)

• Hardware load balancers put multiple
machines behind each IP address

• (Diagram. :)

Read-only content

• Easy to replicate - just make multiple copies of it.

• Performance boost: Get to use multiple servers to
handle the load;

• Perf boost 2: Locality. We’ll see this later when we
discuss CDNs, can often direct client to a replica
near it

• Availability boost: Can fail-over (done at both DNS
level -- slower, because clients cache DNS answers
-- and at front-end hardware level)

But for read-write
data...

• Must implement write replication, typically
with some degree of consistency

Important ?: What
consistency model?

• Just like in filesystems, want to look at the consistency model you supply

• R/L example: Google mail.

• Sending mail is replicated to ~2 physically separated datacenters (users
hate it when they think they sent mail and it got lost); mail will pause
while doing this replication.

• Q: How long would this take with 2-phase commit? in the wide
area?

• Marking mail read is only replicated in the background - you can mark it
read, the replication can fail, and you’ll have no clue (re-reading a read
email once in a while is no big deal)

• Weaker consistency is cheaper if you can get away with it.

• Strict transactional consistency (you saw before)

• sequentially consistent: if client a executes operations {a1, a2,
a3, ...} , b executes {b1, b2, b3, ...}, then you could create some
serialized version (as if the ops had been performed through a
single server) a1, b1, b2, a2, ... (or whatever) executed by the
clients using a central server

• Note this is not transactional consistency - we didn’t enforce
preserving happens-before. It’s just per-program

Failure model

• We’ll assume for today that failures and
disconnections are relatively rare events - they
may happen pretty often, but, say, any server is up
more than 90% of the time.

• We’ll come back later and look at “disconnected
operation” models. In particular, a CMU system
called Coda, that allowed AFS filesystem clients
to work “offline” and then reconnect later. But
not today. :)

Tools we’ll assume

• Group membership manager

• Allow replica nodes to join/leave

• Failure detector

• e.g., process-pair monitoring, etc.

Goal

• Provide a service

• Survive the failure of up to f replicas

• Provide identical service to a non-replicated version (except
more reliable, and perhaps different performance)

We’ll cover today...

• Primary-backup

• Operations handled by primary, it streams copies to
backup(s)

• quorum consensus

• Designed to have fast response time even under
failures

Primary-Backup

• Clients talk to a primary

• The primary handles requests, atomically and
idempotently, just like your lock server would

• Executes them

• Sends the request to the backups

• Backups reply, “OK”

• ACKs to the client

primary-backup

• Note: If you don’t care about strong consistency (e.g., the “mail read”
flag), you can reply to client before reaching agreement with backups
(sometimes called “asynchronous replication”).

• This looks cool. What’s the problem?

• What do we do if a replica has failed?

• We wait... how long? Until it’s marked dead.

• Primary-backup has a strong dependency on the failure detector

• This is OK for some services, not OK for others

• Advantage: With N servers, can tolerate loss of N-1 copies

implementing primary-
backup

• Remember logging? :-)

• Common technique for replication in
databases and filesystem-like things: Stream
the log to the backup. They don’t have to
actually apply the changes before replying,
just make the log durable.

• You have to replay the log before you can
be online again, but it’s pretty cheap.

Problems with p-b

• Not a great solution if you want very tight
response time even when something has
failed

• For that, quorum based schemes are used

• As name implies, different result:

• To handle f failures, must have 2f + 1
replicas (so that a majority is still alive)

Paxos [Lamport]

• quorum consensus usually boils down to the Paxos algorithm.

• Very useful functionality in big systems/clusters.

• Some notes in advance:

• Paxos is painful to get right, particularly the corner cases. Steal an
implementation if you can. See Yahoo’s “Zookeeper” as a starting point.

• There are lots of optimizations to make the common / no or few failures
cases go faster; if you find yourself implementing, research these.

• Paxos is expensive, as we’ll see. Usually, used for critical, smaller bits of data
and to coordinate cheaper replication techniques such as primary-backup
for big bulk data.

Paxos requirement

• Correctness (safety):
–All nodes agree on the same value
–The agreed value X has been proposed by

some node
• Fault-tolerance:

–If less than N/2 nodes fail, the rest should
reach agreement eventually w.h.p

–Liveness is not guaranteed

Paxos: general approach

• Elect a replica to be the Leader
• Leader proposes a value and solicits

acceptance from others
• If a majority ACK, the leader then

broadcasts a commit message.

• This process may be repeated many times,
as we’ll see.

Paxos slides adapted from Jinyang Li, NYU; some terminology from “Paxos Made Live” (Google)

Why is agreement hard?
• What if >1 nodes think they’re leaders simultaneously?
• What if there is a network partition?
• What if a leader crashes in the middle of solicitation?
• What if a leader crashes after deciding but before

broadcasting commit?
• What if the new leader proposes different values than

already committed value?

Basic two-phase

• Coordinator tells replicas: “Value V”
• Replicas ACK
• Coordinator broadcasts “Commit!”

• This isn’t enough
–What if there’s more than 1 coordinator at the

same time? (let’s solve this first)
– What if some of the nodes or the coordinator

fails during the communication?
20

Combined leader election and
two-phase

Prepare(N) -- dude, I’m the master

if N >= hN, Promise(N) -- ok, you’re the boss. (I haven’t seen anyone
with a higher N)

if majority promised: Accept(V, N) -- please agree on
the value V
if N >= nH, ACK(V, N) -- Ok!
if majority ACK: Commit(V)

Multiple coordinators
• The value N is basically a lamport clock.
• Nodes that want to be the leader generate an N higher than any

they’ve seen before
• If you get NACK’d on the propose, back off for a while -

someone else is trying to be leader
• Have to check N at later steps, too, e.g.:
• L1: N = 5 --> propose --> promise
• L2: N = 6 --> propose --> promise
• L1: N = 5 --> accept(V1, ...)
• Replicas: NACK! Someone beat you to it.
• L2: N = 6 --> accept(V2, ...)
• Replicas: Ok! 22

But...

• What happens if there’s a failure? Let’s
say the coordinator crashes before
sending the commit message

• Or only one or two of the replicas received
it

•

23

Paxos solution

• Proposals are ordered by proposal #
• Each acceptor may accept multiple

proposals
–If a proposal with value v is chosen, all higher

proposals must have value v

Paxos operation: node state

• Each node maintains:
–na, va: highest proposal # and its

corresponding accepted value
–nh: highest proposal # seen
–myn: my proposal # in current Paxos

Paxos operation: 3-phase
protocol

• Phase 1 (Prepare)
–A node decides to be leader (and propose)
–Leader choose myn > nh
–Leader sends <prepare, myn> to all nodes
–Upon receiving <prepare, n>

If n < nh
 reply <prepare-reject>
Else
 nh = n
 reply <prepare-ok, na,va>

This node will not accept
any proposal lower than n

See the
relation to
lamport
clocks?

Paxos operation
• Phase 2 (Accept):

–If leader gets prepare-ok from a majority
V = non-empty value corresponding to the highest na received
If V= null, then leader can pick any V
Send <accept, myn, V> to all nodes

–If leader fails to get majority prepare-ok
• Delay and restart Paxos

–Upon receiving <accept, n, V>
If n < nh

 reply with <accept-reject>
else
 na = n; va = V; nh = n
 reply with <accept-ok>

Paxos operation

• Phase 3 (Commit)
–If leader gets accept-ok from a majority

• Send <commit, va> to all nodes
–If leader fails to get accept-ok from a majority

• Delay and restart Paxos

Paxos Examples

• Failure after getting 1 node to accept the
value
–One example where the master hears the

value from one of the nodes
–One example where a new value wins

• Failure after getting > 1/2 nodes to accept
the value

• Simultaneous failure of master and the 1
node that accepted in a 5 node system

29

Paxos operation: an example

Prepare,N1:1

N0 N1 N2

nh=N1:0
na = va = null

nh=N0:0
na = va = null

nh= N1:1
na = null
va = null

ok, na= va=null

Prepare,N1:1

ok, na =va=nulll
nh: N1:1
na = null
va = null

nh=N2:0
na = va = null

Accept,N1:1,val1
Accept,N1:1,val1

nh=N1:1
na = N1:1
va = val1

nh=N1:1
na = N1:1
va = val1

ok
ok

Decide,val1 Decide,val1

Replication Wrap-Up

• Primary/Backup quite common, works well,
introduces some time lag to recovery when
you switch over to a backup. Doesn’t
handle as large a set of failures. f+1 nodes
can handle f failures.

• Paxos is a general, quorum-based
mechanism that can handle lots of failures,
still respond quickly. 2f+1 nodes.

