
Replication

How’d we get here?

• Failures & single systems;  fault tolerance techniques 
added redundancy (ECC memory, RAID, etc.)

• Conceptually, ECC & RAID both put a “master” in 
front of the redundancy to mask it from clients -- 
ECC handled by memory controller, RAID looks like 
a very reliable hard drive behind a (special) 
controller

Simpler examples...

• Replicated web sites

• e.g., Yahoo! or Amazon:  

• DNS-based load balancing (DNS returns 
multiple IP addresses for each name)

• Hardware load balancers put multiple 
machines behind each IP address

• (Diagram. :)

Read-only content

• Easy to replicate - just make multiple copies of it.

• Performance boost:  Get to use multiple servers to 
handle the load;

• Perf boost 2:  Locality.  We’ll see this later when we 
discuss CDNs, can often direct client to a replica 
near it

• Availability boost:  Can fail-over (done at both DNS 
level -- slower, because clients cache DNS answers 
-- and at front-end hardware level)



But for read-write 
data...

• Must implement write replication, typically 
with some degree of consistency

Important ?:  What 
consistency model?

• Just like in filesystems, want to look at the consistency model you supply

• R/L example:  Google mail.

• Sending mail is replicated to ~2 physically separated datacenters (users 
hate it when they think they sent mail and it got lost);  mail will pause 
while doing this replication.

• Q:  How long would this take with 2-phase commit?  in the wide 
area?

• Marking mail read is only replicated in the background - you can mark it 
read, the replication can fail, and you’ll have no clue (re-reading a read 
email once in a while is no big deal)

• Weaker consistency is cheaper if you can get away with it.

• Strict transactional consistency (you saw before)

• sequentially consistent:  if client a executes operations {a1, a2, 
a3, ...} , b executes {b1, b2, b3, ...}, then you could create some 
serialized version (as if the ops had been performed through a 
single server) a1, b1, b2, a2, ... (or whatever) executed by the 
clients using a central server

• Note this is not transactional consistency - we didn’t enforce 
preserving happens-before.  It’s just per-program 

Failure model

• We’ll assume for today that failures and 
disconnections are relatively rare events - they 
may happen pretty often, but, say, any server is up 
more than 90% of the time.

• We’ll come back later and look at “disconnected 
operation” models.  In particular, a CMU system 
called Coda, that allowed AFS filesystem clients 
to work “offline” and then reconnect later.  But 
not today. :)



Tools we’ll assume

• Group membership manager

• Allow replica nodes to join/leave

• Failure detector

• e.g., process-pair monitoring, etc.

Goal

• Provide a service

• Survive the failure of up to f replicas

• Provide identical service to a non-replicated version (except 
more reliable, and perhaps different performance)

We’ll cover today...

• Primary-backup

• Operations handled by primary, it streams copies to 
backup(s)

• quorum consensus

• Designed to have fast response time even under 
failures

Primary-Backup

• Clients talk to a primary

• The primary handles requests, atomically and 
idempotently, just like your lock server would

• Executes them

• Sends the request to the backups

• Backups reply, “OK”

• ACKs to the client



primary-backup

• Note:  If you don’t care about strong consistency (e.g., the “mail read” 
flag), you can reply to client before reaching agreement with backups 
(sometimes called “asynchronous replication”).

• This looks cool.  What’s the problem?

• What do we do if a replica has failed?

• We wait... how long?  Until it’s marked dead.

• Primary-backup has a strong dependency on the failure detector

• This is OK for some services, not OK for others

• Advantage:  With N servers, can tolerate loss of N-1 copies

implementing primary-
backup

• Remember logging? :-)

• Common technique for replication in 
databases and filesystem-like things:  Stream 
the log to the backup.  They don’t have to 
actually apply the changes before replying, 
just make the log durable.

• You have to replay the log before you can 
be online again, but it’s pretty cheap.

Problems with p-b

• Not a great solution if you want very tight 
response time even when something has 
failed

• For that, quorum based schemes are used

• As name implies, different result:

•   To handle f failures, must have 2f + 1 
replicas  (so that a majority is still alive)

Paxos [Lamport]

• quorum consensus usually boils down to the Paxos algorithm.

• Very useful functionality in big systems/clusters.

• Some notes in advance:

• Paxos is painful to get right, particularly the corner cases.  Steal an 
implementation if you can.  See Yahoo’s “Zookeeper” as a starting point.

• There are lots of optimizations to make the common / no or few failures 
cases go faster;  if you find yourself implementing, research these.

• Paxos is expensive, as we’ll see.  Usually, used for critical, smaller bits of data 
and to coordinate cheaper replication techniques such as primary-backup 
for big bulk data.



Paxos requirement

• Correctness (safety):
–All nodes agree on the same value
–The agreed value X has been proposed by 

some node
• Fault-tolerance:

–If less than N/2 nodes fail, the rest should 
reach agreement eventually w.h.p

–Liveness is not guaranteed

Paxos: general approach

• Elect a replica to be the Leader
• Leader proposes a value and solicits 

acceptance from others
• If a majority ACK, the leader then 

broadcasts a commit message.

• This process may be repeated many times, 
as we’ll see.

Paxos slides adapted from Jinyang Li, NYU;  some terminology from “Paxos Made Live” (Google)

Why is agreement hard?
• What if >1 nodes think they’re leaders simultaneously?
• What if there is a network partition?
• What if a leader crashes in the middle of solicitation?
• What if a leader crashes after deciding but before 

broadcasting commit?
• What if the new leader proposes different values than 

already committed value?

Basic two-phase

• Coordinator tells replicas:  “Value V”
• Replicas ACK
• Coordinator broadcasts “Commit!”

• This isn’t enough
–What if there’s more than 1 coordinator at the 

same time? (let’s solve this first)
– What if some of the nodes or the coordinator 

fails during the communication?
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Combined leader election and 
two-phase

Prepare(N) -- dude, I’m the master

if N >= hN,  Promise(N) -- ok, you’re the boss.  (I haven’t seen anyone 
with a higher N)

if majority promised: Accept(V, N)  --  please agree on 
the value V
if N >= nH,   ACK(V, N)  -- Ok!
if majority ACK:  Commit(V)

Multiple coordinators
• The value N is basically a lamport clock.
• Nodes that want to be the leader generate an N higher than any 

they’ve seen before
• If you get NACK’d on the propose, back off for a while - 

someone else is trying to be leader
• Have to check N at later steps, too, e.g.:
• L1:  N = 5 --> propose --> promise
• L2:  N = 6 --> propose --> promise
• L1:  N = 5 --> accept(V1, ...)
• Replicas:  NACK!  Someone beat you to it.
• L2:  N = 6 --> accept(V2, ...)
• Replicas:  Ok! 22

But...

• What happens if there’s a failure?  Let’s 
say the coordinator crashes before 
sending the commit message

• Or only one or two of the replicas received 
it

•
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Paxos solution

• Proposals are ordered by proposal # 
• Each acceptor may accept multiple 

proposals
–If a proposal with value v is chosen, all higher 

proposals must have value v



Paxos operation: node state

• Each node maintains:
–na, va: highest proposal # and its 

corresponding accepted value 
–nh: highest proposal # seen
–myn: my proposal # in current Paxos

Paxos operation: 3-phase 
protocol

• Phase 1 (Prepare)
–A node decides to be leader (and propose)
–Leader choose myn > nh 
–Leader sends <prepare, myn> to all nodes
–Upon receiving <prepare, n> 

If n < nh 
    reply <prepare-reject>
Else
    nh = n
    reply <prepare-ok, na,va>

This node will not accept 
any proposal lower than n

See the
relation to
lamport
clocks?

Paxos operation
• Phase 2 (Accept):

–If leader gets prepare-ok from a majority
V = non-empty value corresponding to the highest na received
If V= null, then leader can pick any V
Send <accept, myn, V> to all nodes

–If leader fails to get majority prepare-ok
• Delay and restart Paxos

–Upon receiving <accept, n, V>
If n < nh

    reply with <accept-reject>
else
   na = n; va = V; nh = n
    reply with <accept-ok>

Paxos operation

• Phase 3 (Commit)
–If leader gets accept-ok from a majority 

• Send <commit, va> to all nodes
–If leader fails to get accept-ok from a majority

• Delay and restart Paxos



Paxos Examples

• Failure after getting 1 node to accept the 
value
–One example where the master hears the 

value from one of the nodes
–One example where a new value wins

• Failure after getting > 1/2 nodes to accept 
the value

• Simultaneous failure of master and the 1 
node that accepted in a 5 node system
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Paxos operation: an example

Prepare,N1:1

N0 N1 N2

nh=N1:0
na = va = null

nh=N0:0
na = va = null

nh= N1:1
na = null
va = null

ok, na= va=null

Prepare,N1:1

ok, na =va=nulll
nh: N1:1
na = null
va = null

nh=N2:0
na = va = null

Accept,N1:1,val1
Accept,N1:1,val1

nh=N1:1
na = N1:1
va = val1

nh=N1:1
na = N1:1
va = val1

ok
ok

Decide,val1 Decide,val1

Replication Wrap-Up

• Primary/Backup quite common, works well, 
introduces some time lag to recovery when 
you switch over to a backup.  Doesn’t 
handle as large a set of failures.  f+1 nodes 
can handle f failures.

• Paxos is a general, quorum-based 
mechanism that can handle lots of failures, 
still respond quickly.  2f+1 nodes.


