How'd we get here!

® Failures & single systems; fault tolerance techniques

RePI ICatI on added redundancy (ECC memory, RAID, etc.)

® Conceptually, ECC & RAID both put a “master” in
front of the redundancy to mask it from clients --
ECC handled by memory controller, RAID looks like
a very reliable hard drive behind a (special)
controller

Simpler examples... Read-only content

® Replicated web sites ® Easy to replicate - just make multiple copies of it.

® Performance boost: Get to use multiple servers to

® e.g,Yahoo! or Amazon:
handle the load;

° i .
DINS-based load balancing (DNS returns ® Perf boost 2: Locality. We’'ll see this later when we

multiple IP addresses for each name) discuss CDNs, can often direct client to a replica
. near it
® Hardware load balancers put multiple

machines behind each IP address ® Availability boost: Can fail-over (done at both DNS

level -- slower, because clients cache DNS answers
® (Diagram.:) -- and at front-end hardware level)

But for read-write
data...

® Must implement write replication, typically
with some degree of consistency

Important ?: What
consistency model?

® Just like in filesystems, want to look at the consistency model you supply
® R/L example: Google mail.

® Sending mail is replicated to ~2 physically separated datacenters (users
hate it when they think they sent mail and it got lost); mail will pause
while doing this replication.

® Q: How long would this take with 2-phase commit? in the wide
area!

® Marking mail read is only replicated in the background - you can mark it
read, the replication can fail, and you’ll have no clue (re-reading a read
email once in a while is no big deal)

® Weaker consistency is cheaper if you can get away with it.

® Strict transactional consistency (you saw before)

® sequentially consistent: if client a executes operations {al, a2,
a3,..},b executes {bl,b2,b3, ..}, then you could create some
serialized version (as if the ops had been performed through a
single server) al,bl, b2,a2, ... (or whatever) executed by the
clients using a central server

® Note this is not transactional consistency - we didn’t enforce
preserving happens-before. It’s just per-program

Failure model

® We'll assume for today that failures and
disconnections are relatively rare events - they
may happen pretty often, but, say, any server is up
more than 90% of the time.

® We'll come back later and look at “disconnected
operation” models. In particular,a CMU system
called Coda, that allowed AFS filesystem clients
to work “offline” and then reconnect later. But
not today. :)

Tools we’ll assume

® Group membership manager
® Allow replica nodes to join/leave
® Failure detector

® e.g, process-pair monitoring, etc.

Goal

Provide a service
Survive the failure of up to f replicas

Provide identical service to a non-replicated version (except
more reliable, and perhaps different performance)

We'll cover today...

® Primary-backup

® Operations handled by primary, it streams copies to
backup(s)

L quorum consensus

® Designed to have fast response time even under
failures

Primary-Backup

Clients talk to a primary

The primary handles requests, atomically and
idempotently, just like your lock server would

Executes them
Sends the request to the backups
Backups reply, “OK”

ACKs to the client

primary-backup

Note: If you don’t care about strong consistency (e.g., the “mail read”
flag), you can reply to client before reaching agreement with backups
(sometimes called “asynchronous replication”).

This looks cool. What’s the problem?

® What do we do if a replica has failed?

® We wait... how long? Until it’s marked dead.

® Primary-backup has a strong dependency on the failure detector
This is OK for some services, not OK for others

Advantage: With N servers, can tolerate loss of N-I copies

implementing primary-
backup

® Remember logging? :-)

® Common technique for replication in
databases and filesystem-like things: Stream
the log to the backup. They don’t have to
actually apply the changes before replying,
just make the log durable.

® You have to replay the log before you can
be online again, but it’s pretty cheap.

Problems with p-b

Not a great solution if you want very tight
response time even when something has
failed

For that, quorum based schemes are used
As name implies, different result:

To handle f failures, must have 2f + |
replicas (so that a majority is still alive)

Paxos [Lamport]

® quorum consensus usually boils down to the Paxos algorithm.
® Very useful functionality in big systems/clusters.
® Some notes in advance:

® Paxos is painful to get right, particularly the corner cases. Steal an
implementation if you can. See Yahoo's “Zookeeper” as a starting point.

® There are lots of optimizations to make the common / no or few failures
cases go faster; if you find yourself implementing, research these.

® Paxos is expensive, as we'll see. Usually, used for critical, smaller bits of data
and to coordinate cheaper replication techniques such as primary-backup
for big bulk data.

Paxos requirement

* Correctness (safety):
—All nodes agree on the same value

—The agreed value X has been proposed by
some node

* Fault-tolerance:

—If less than N/2 nodes fail, the rest should
reach agreement eventually w.h.p

—Liveness is not guaranteed

Paxos: general approach

* Elect a replica to be the Leader

» Leader proposes a value and solicits
acceptance from others

« If a majority ACK, the leader then
broadcasts a commit message.

* This process may be repeated many times,
as we'll see.

Paxos slides adapted from Jinyang Li, NYU; some terminology from “Paxos Made Live” (Google)

Why is agreement hard?

* What if >1 nodes think they’re leaders simultaneously?
» What if there is a network partition?
» What if a leader crashes in the middle of solicitation?

» What if a leader crashes after deciding but before
broadcasting commit?

» What if the new leader proposes different values than
already committed value?

Basic two-phase

» Coordinator tells replicas: “Value V”
* Replicas ACK
e Coordinator broadcasts “Commit!”

* This isn’t enough
—What if there’s more than 1 coordinator at the
same time? (let’s solve this first)

— What if some of the nodes or the coordinator

fails during the communication?
20

Combined leader election and
two-phase

Prepare(N) -- dude, I'm the master

if N >= hN, Promise(N) -- ok, you're the boss. (I haven’t seen anyone
with a higher N)

if majority promised: Accept(V, N) -- please agree on
the value V

if N >=nH, ACK(V, N) -- Ok!

if majority ACK: Commit(V)

Multiple coordinators

The value N is basically a lamport clock.

Nodes that want to be the leader generate an N higher than any
they’ve seen before

If you get NACK’d on the propose, back off for a while -
someone else is trying to be leader

Have to check N at later steps, too, e.g.:
L1: N =5 --> propose --> promise

L2: N = 6 --> propose --> promise

L1: N =5-->accept(V1, ...)

Replicas: NACK! Someone beat you to it.
L2: N =6 --> accept(V2, ...)

Replicas: Ok! 2

But...

* What happens if there’s a failure? Let’s
say the coordinator crashes before
sending the commit message

* Or only one or two of the replicas received
it

23

Paxos solution

Proposals are ordered by proposal #
Each acceptor may accept multiple
proposals

—If a proposal with value v is chosen, all higher
proposals must have value v

Paxos operation: node state

 Each node maintains:

—nNa, Vva: highest proposal # and its
corresponding accepted value

—nh: highest proposal # seen
—myn: my proposal # in current Paxos

Paxos operation: 3-phase
protocol

* Phase 1 (Prepare)
—A node decides to be leader (and propose)
—Leader choose myn > nn
—Leader sends <prepare, myn>to all nodes
—Upon receiving <prepare, n>

Ifn<nn
See the reply <prepare-reject>
relation to Else This node will not accept
|amp0rt Nh =n any proposal lower than n
clocks? reply <prepare-ok, na,va>

Paxos operation

* Phase 2 (Accept):

—If leader gets prepare-ok from a majority
V = non-empty value corresponding to the highest nareceived
If V= null, then leader can pick any V
Send <accept, myn, V> to all nodes
—If leader fails to get majority prepare-ok
* Delay and restart Paxos
—Upon receiving <accept, n, V>
If n <nh
reply with <accept-reject>
else
Na=n;va=V,nh=n
reply with <accept-ok>

Paxos operation

* Phase 3 (Commit)
—If leader gets accept-ok from a majority
* Send <commit, va> to all nodes
—If leader fails to get accept-ok from a majority
* Delay and restart Paxos

Paxos Examples

* Failure after getting 1 node to accept the
value

—One example where the master hears the
value from one of the nodes

—One example where a new value wins

* Failure after getting > 1/2 nodes to accept
the value

* Simultaneous failure of master and the 1
node that accepted in a 5 node system

29

Paxos operation: an example

nh=N0:0 nh=N1:0
na = va = null na = va = null
Prepare,N1:1 Prepare,N1:1
nh= N1:1 \
na = null ok, ne= va=null ok, na =va=nulll
va = null
AcceptN1:1,valt Accept,N1:1,vall
nh=N1:1 T
na=N1:1 ok
vazvall | /
Decide,val1 %

NO

N1

nh=N2:0
na = va = null

nh: N1:1
na = null
va = null

nh=N1:1
na = N1:1
va = val1

N2

Replication Wrap-Up

® Primary/Backup quite common, works well,
introduces some time lag to recovery when
you switch over to a backup. Doesn’t
handle as large a set of failures. f+1 nodes
can handle f failures.

® Paxos is a general, quorum-based
mechanism that can handle lots of failures,
still respond quickly. 2f+| nodes.

