
Errors and Failures
part 1:  Local.

Carnegie Mellon 15-440, Distributed Systems

Last times...

• Started out looking at local methods for mutual exclusion:  
built up from atomic instructions at the CPU level

• Last two lectures:  distributed mutual exclusion.  Challenge:  
No atomic instructions, so we had to talk to everybody.

• This isn’t really unusual:  atomic instructions and 
consistency on a single multi-processor/multi-core 
machine have to have cache coherence protocols under 
the covers.

• Importance of timestamps in distributed mutex (and, as we’ll 
see later, many protocols that build on dist. mutex)

Today

• Quick quiz:

• What are the most common 
sources of failure in a computer 
system?

• Software bugs...

• Power supplies

• Hard drives

• Memory

And what types of errors?

Hard errors:  The 
component is dead.

Soft errors: A signal or bit 
is wrong, but it doesn’t 
mean the component is 
faulty
(Note:  You can have 
recurring soft errors due 
to faulty, but not dead, h/
w)

Examples

• DRAM errors

• Hard errors:  Often caused by motherboard - faulty 
traces, bad solder, etc.

• Soft errors:  Often caused by cosmic radiation or 
alpha particles (from the chip material itself) hitting 
memory cell, changing value.  (Remember that 
DRAM is just little capacitors to store charge... if you 
hit it with radiation, you can add charge to it.)



Some fun #s

• Both Microsoft and Google have recently 
started to identify DRAM errors as an 
increasing contributor to failures... Google 
in their datacenters, Microsoft on your 
desktops.

• We’ve known hard drives fail for years, of 
course. :)

Coping with failures...

• Let’s say one bit in your DRAM fails.

• Assume it flips a bit in a memory address the kernel is 
writing to.  That causes a big memory error elsewhere, or  
a kernel panic.

• Your program is running one of a dozen storage servers 
for your distributed filesystem.

• A client can’t read from the DFS, so it hangs.

• A professor can’t check out a copy of your 15-440 
assignment, so he gives you an F.

A 
failure

Propagates

Techniques
• We’ve already seen some:  retransmissions in TCP and in your 

RPC system

• Modularity can help in failure isolation:  preventing an error in 
one component from spreading.  Analogy:  The firewall in your 
car keeps an engine fire from turning you into a hamburger.

• Today:  Replication

• Next time:  Specific techniques used in file systems, disks

• This time:  Understand how to quantify reliability

• Understand basic techniques of replication and fault masking

Measuring Availability
• Mean time to failure (MTTF)

• Mean time to repair (MTTR)

• Availability = MTTF / (MTTF + MTTR)

• MTBF = MTTF + MTTR

• Suppose OS crashes once per month, takes 10min to 
reboot.  MTTF = 720 hours = 43,200 minutes
MTTR = 10 minutes
43200 / 43210 = 0.997 (“3 nines”) -- 2 hours 
downtime per year.



One key question

• How correlated are failures?

• Can you assume independence?

• If the failure probability of a computer in a rack is 
p,

• What is p(computer 2 failing) | computer 1 failed?

• Maybe it’s p... or maybe they’re both plugged 
into the same UPS...

Availability in practice

• Carrier airlines (2002 FAA fact book)
• 41 accidents, 6.7M departures
!99.9993% availability

• 911 Phone service (1993 NRIC report)
• 29 minutes per line per year
!99.994%

• Standard phone service (various sources)
• 53+ minutes per line per year
!99.99+%

• End-to-end Internet Availability
!95% - 99.6%

Fault Tolerant Design

•Quantify probability of failure of each 
component

•Quantify the costs of the failure
•Quantify the costs of implementing fault 

tolerance

•This is all probabilities...

11



Disk failure conditional probability distribution

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn 
out

Bathtub curve

Human Mortality 
Rates

(US, 1999)

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004.

Data from http://www.mortality.org

So, back to disks...

• How can disks fail?

• Whole disk failure (power supply, electronics, motor, etc.)

• Sector errors - soft or hard

• Read or write to the wrong place (e.g., disk is bumped 
during operation)

• Can fail to read or write if head is too high, coating on disk 
bad, etc.

• Disk head can hit the disk and scratch it.

What are our options?
• 1)  Silently return the wrong answer.

• 2)  Detect failure.

• Every sector has a header with a checksum.  Every read fetches both, computes 
the checksum on the data, and compares it to the version in the header. [draw 
pic]  Returns error if mismatch.

• 3)  Correct / mask the failure

• Re-read if the firmware signals error (may help if transient error, may not)

• Use an error correcting code (what kinds of errors do they help?)

• Bit flips?  Yes.  Block damaged?  No

• Have the data stored in multiple places (next time)



Building blocks
• Understand the enemy:

• Single bit flips (common in memory, sometimes disks, communication channels)

• Multiple bit flips

• Block erasure or entire block scrambled

• Malicious changes vs. accidental

• Checksums - usually used to guard against accidental modification.  Example:  Parity.

•    [0, 1, 0, 1, 0, 1, 1, 1  --> 1] [0, 0, ... -> 0 ]

• Weak but fast & easy!

• Or block parity:

• parity = [block 1] xor [block 2] xor [block 3] ...

• In general:  [overhead of checksum] vs [size of blocks] vs [detection power]

• Cryptographic hash functions -> usually more expensive, guard against malicious modification

• Can you see a cool trick you can do with block parity, if you know one component has failed, that 
you can’t do with a hash function?  --> Error recovery.

Fail-fast disk

failfast_get (data, sn) {

 get (s, sn);

 if (checksum(s.data) = s.cksum) {

  data ! s.data;

  return OK;

 } else {

  return BAD;

 }

}

Careful disk

careful_get (data, sn) {

 r  !  0;

 while (r < 10) {

  r ! failfast_get (data, sn);

  if (r = OK) return OK;

  r++;

 }

 return BAD;

}

Whole disk replication

•None of those schemes dealt with block 
erasure or disk failure
•Block erasure:  You could do parity on a larger 
scale.  Or you could replicate to another disk.  
Engineering tradeoff - depends on likelihood 
of block erasure vs. disk failure;  if you have 
to guard against disk failure already, maybe 
you don’t want to worry as much about large 
strings of blocks being erased.

•(Gets back to that failure correlation 
question)

20



“RAID”

• Redundant Array of {Inexpensive, Independent} disks
• Replication!  Idea:  Write everything to two disks 

(“RAID-1”)
• If one fails, read from the other

• write(sector, data) ->
• write(disk1, sector, data)

• write(disk2, sector, data)

• read(sector, data)
• data = read(disk1, sector)
• if error

• data = read(disk2, sector)
• if error, return error

• return data

• Not perfect, though... doesn’t solve all uncaught errors.
21

more raid

•Option 1:  Store a strong checksum with 
the data to eliminate all uncaught errors
•Note:  In disks today, errors get through 
checksums.  Why?
•Bits can get flipped at the I/O controller, etc., 
after checksum verification

•Many checksums aren’t 100% strong.  If you read 
4 trillion sectors with a 1-in-a-million error rate, 
a 32-bit checksum will let an error through.

– That would be reading a petabyte of data.  That’s only 
1000 servers reading their entire disk once.

22

Durable disk (RAID 1)

durable_get (data, sn) {

 r ! disk1.careful_get (data, sn);

 if (r = OK) return OK;

 r ! disk2.careful_get (data, sn);

 signal(repair disk1);

 return r;

}

If time permits...

•RAID-5

24



Voting

• Option 2:  Voting!
• If you take this to the extreme

•   [r1]  [r2]  [r3]
• Send requests to all three versions of the software:  Triple 

modular redundancy

• Compare the answers, take the majority
• Observe that you can do this at many layers of abstraction!

• In practice - used mostly in space applications;  some extreme 
high availability apps (stocks & banking?  maybe.  But usually 
there are cheaper alternatives if you don’t need real-time)

• Really crazy stuff we may hit later:  surviving malicious 
failures through voting (byzantine fault tolerance) -- mostly 
still theory today;  tomorrow, who knows?

25

Example questions

• You’re storing archival data at a bank.  The law 
says you have to keep it for X years.  You do not 
want to mess this up.

• What kinds of failures do you need to deal with?
• What are your options, and what is the cost of 

those options?
• error detection, ECC on sector, RAID 1, tape backup, 

offsite tape backup, etc.
• Hint:  What kind of system-level MTTR can you handle?

• How would your answer change if it was realtime 
stock trades?

26

Summary of today

• Definition of MTTF/MTBF/MTTR:  Understanding 
availability in systems.

• Failure detection and fault masking techniques
• Engineering tradeoff:  Cost of failures vs. cost of 

failure masking.
• At what level of system to mask failures?

• Leading into replication as a general strategy for fault 
tolerance

• Thought to leave you with:
• What if you have to survive the failure of entire 

computers?  Of a rack?  Of a datacenter?

27


