
Filesystems 2

Filesystems

• Last time: Looked at how we could use RPC to
split filesystem functionality between client and
server

• But pretty much, we didn’t change the design

• We just moved the entire filesystem to the
server

• and then added some caching on the client in
various ways

You can go farther...

• But it requires ripping apart the filesystem
functionality into modules

• and placing those modules at different
computers on the network

• So now we need to ask...
what does a filesystem do, anyway?

• Well, there’s a disk...

• disks store bits. in fixed-length pieces
called sectors or blocks

• but a filesystem has ... files. and often
directories. and maybe permissions.
creation and modification time. and other
stuff about the files. (“metadata”)

Filesystem functionality

• Directory management (maps entries in a
hierarchy of names to files-on-disk)

• File management (manages adding, reading,
changing, appending, deleting) individual files

• Space management: where on disk to store
these things?

• Metadata management

Conventional filesystem
• Wraps all of these up together

• Useful concepts: [pictures]

• “Superblock” -- well-known location on disk where top-level filesystem info
is stored (pointers to more structures, etc.)

• “Free list” or “Free space bitmap” -- data structures to remember what’s
used on disk and what’s not. Why? Fast allocation of space for new files.

• “inode” - short for index node - stores all metadata about a file, plus
information pointing to where the file is stored on disk

• Small files may be referenced entirely from the inode; larger files may
have some indirection to blocks that list locations on disk

• Directory entries point to inodes

• “extent” - a way of remembering where on disk a file is stored. Instead of
listing all blocks, list a starting block and a range. More compact
representation, but requires large contiguous block allocation.

Filesystem “VFS” ops
• VFS: (‘virtual filesystem‘): common abstraction layer

inside kernels for building filesystems -- interface is
common across FS implementations

• Think of this as an abstract data type for filesystems

• has both syntax (function names, return values, etc)
and semantics (“don’t block on this call”, etc.)

• One key thing to note: The VFS itself may do some
caching and other management...

• in particular: often maintains an inode cache

FUSE

• The lab will use FUSE

• FUSE is a way to implement filesystems in
user space (as normal programs), but
have them available through the kernel --
like normal files

• It has a kinda VFS-like interface

Figure from FUSE documentation

Directory operations

• readdir(path) - return directory entries for
each file in the directory

• mkdir(path) -- create a new directory

• rmdir(path) -- remove the named directory

File operations

• mknod(path, mode, dev) -- create a new “node” (generic: a file is one type
of node; a device node is another)

• unlink(path) -- remove link to inode, decrementing inode’s reference count

• many filesystems permit “hard links” -- multiple directory entries
pointing to the same file

• rename(path, newpath)

• open -- open a file, returning a file handle

• , read, write

• truncate -- cut off at particular length

• flush -- close one handle to an open file

• release -- completely close file handle

Metadata ops

• getattr(path) -- return metadata struct

• chmod / chown (ownership & perms)

Back to goals of DFS

• Users should have same view of system, be able to share files

• Last time:

• Central fileserver handles all filesystem operations --
consistency was easy, but overhead high, scalability poor

• Moved to NFS and then AFS: Added more and more
caching at client; added cache consistency problems

• Solved using timeouts or callbacks to expire cached
contents

Protocol & consistency

• Remember last time: NFS defined operations to occur on unique
inode #s instead of names... why? idempotency. Wanted operations
to be unique.

• Related example for today when we’re considering splitting up
components: moving a file from one directory to another

• What if this is a complex operation (“remove from one”, “add to
another”), etc.

• Can another user see intermediate state?? (e.g., file in both
directories or file in neither?)

• Last time: Saw issue of when things become consistent

• Presented idea of close-to-open consistency as a compromise

Scaling beyond...

• What happens if you want to build AFS for all of
CMU? More disks than one machine can handle;
more users than one machine can handle

• Simplest idea: Partition users onto different servers

• How do we handle a move across servers?

• How to divide the users? Statically? What about
load balancing for operations & for space? Some
files become drastically more popular?

“Cluster” filesystems

• Lab inspired by Frangipani, a scalable distributed
filesystem.

• Think back to our list of things that filesystems
have to do

• Concurrency management

• Space allocation and data storage

• Directory management and naming

Frangipani design

Program

Frangipani file
server

Distributed
lock service

Petal distributed
virtual disk

Physical disks

Petal aggregates many disks (across
many machines_ into one big

“virtual disk”. Simplifying
abstraction for both design

&implementation. exports extents -
provides allocation, deallocation,

etc.
Internally: maps (virtual disk, offset)

to (server, physical disk, offset)

Frangipani stores all data (inodes,
directories, data) in petal; uses lock
server for consistency (eg, creating

file)

Consequential design
User
program

User
program

User
program

Frangipani
file server

Frangipani
file server

Distributed
lock service Petal

distributed virtual
disk service

Physical disks

Figure 1: Frangipani layering. Several interchangeable Frangi-
pani servers provide access to one set of files on one Petal virtual
disk.

Figure 1 illustrates the layering in the Frangipani system. Multi-
ple interchangeable Frangipani servers provide access to the same
files by running on top of a shared Petal virtual disk, coordinat-
ing their actions with locks to ensure coherence. The file system
layer can be scaled up by adding Frangipani servers. It achieves
fault tolerance by recovering automatically from server failures
and continuing to operate with the servers that survive. It provides
improved load balancing over a centralized network file server by
splitting up the file system load and shifting it to the machines that
are using the files. Petal and the lock service are also distributed
for scalability, fault tolerance, and load balancing.
Frangipani servers trust one another, the Petal servers, and the

lock service. Frangipani is designed to run well in a cluster of
workstations within a single administrative domain, although a
Frangipani file system may be exported to other domains. Thus,
Frangipani can be viewed as a cluster file system.
We have implemented Frangipani under DIGITAL Unix 4.0.

Due to Frangipani’s clean layering atop the existing Petal service,
we were able to implement a working system in only a few months.
Frangipani is targeted for environments with program develop-

ment and engineering workloads. Our tests indicate that on such
workloads, Frangipani has excellent performance and scales up to
the limits imposed by the network.

2 System Structure

Figure 2 depicts one typical assignment of functions to machines.
The machines shown at the top run user programs and the Frangi-
pani file server module; they can be diskless. Those shown at the
bottom run Petal and the distributed lock service.
The components of Frangipani do not have to be assigned to

machines in exactly the way shown in Figure 2. The Petal and
Frangipani servers need not be on separate machines; it would
make sense for every Petal machine to run Frangipani as well,
particularly in an installation where the Petal machines are not
heavily loaded. The distributed lock service is independent of the
rest of the system; we showone lock server as running oneach Petal
server machine, but they could just as well run on the Frangipani
hosts or any other available machines.

2.1 Components
As shown in Figure 2, user programs access Frangipani through
the standard operating system call interface. Programs running
on different machines all see the same files, and their views are
coherent; that is, changesmade to a file or directory ononemachine

Petal
server

Lock
server Petal

server

Lock
server Petal

server

Lock
server

Petal virtual disk

Network

User programs

File system switch

Frangipani
file server module

Petal
device driver

User programs

File system switch

Frangipani
file server module

Petal
device driver

Figure 2: Frangipani structure. In one typical Frangipani con-
figuration, some machines run user programs and the Frangipani
file server module; others run Petal and the distributed lock ser-
vice. In other configurations, the same machines may play both
roles.

are immediately visible on all others. Programs get essentially the
same semantic guarantees as on a local Unix file system: changes
to file contents are staged through the local kernel buffer pool
and are not guaranteed to reach nonvolatile storage until the next
applicable fsync or sync system call, but metadata1 changes
are logged and can optionally be guaranteed non-volatile by the
time the system call returns. In a small departure from local file
system semantics, Frangipani maintains a file’s last-accessed time
only approximately, to avoid doing a metadata write for every data
read.
The Frangipani file server module on each machine runs within

the operating system kernel. It registers itself with the kernel’s file
system switch as one of the available file system implementations.
The file server module uses the kernel’s buffer pool to cache data
from recently usedfiles. It reads andwrites Petal virtual disks using
the local Petal device driver. All the file servers read and write the
same file system data structures on the shared Petal disk, but each
server keeps its own redo log of pending changes in a distinct
section of the Petal disk. The logs are kept in Petal so that when
a Frangipani server crashes, another server can access the log and
run recovery. TheFrangipani servers have no need to communicate
directly with one another; they communicate only with Petal and
the lock service. This keeps server addition, deletion, and recovery
simple.
The Petal device driver hides the distributed nature of Petal,

making Petal look like an ordinary local disk to higher layers of
the operating system. The driver is responsible for contacting the

1We define metadata as any on-disk data structure other than the contents of an
ordinary file.

Compare with NFS/
AFS

• In NFS/AFS, clients just relay all FS calls to the server;
central server.

• Here, clients run enough code to know which server to
direct things to; are active participants in filesystem.

• (n.b. -- you could, of course, use the Frangipani/Petal
design to build a scalable NFS server -- and, in fact,
similar techniques are how a lot of them actually are
built. See upcoming lecture on RAID, though: replication
and redundancy management become key)

Lab 2: YFS

• Yet-another File System. :)

• Simpler version of what we just talked
about: only one extent server (you don’t
have to implement Petal; single lock
server)

• Each server written in C++

• yfs_client interfaces with OS through fuse

• Following labs will build YFS incrementally,
starting with the lock server and building
up through supporting file & directory ops
distributed around the network

Warning

• This lab is difficult.

• Assumes a bit more C++ than lab 1 did.

• Please please please get started early; ask
course staff for help.

• It will not destroy you; it will make you
stronger. But it may well take a lot of work
and be pretty intensive.

