Filesystems 2

Filesystems

® [ast time: Looked at how we could use RPC to
split filesystem functionality between client and
server

® But pretty much, we didn’t change the design

® We just moved the entire filesystem to the
server

® and then added some caching on the client in
various ways

You can go farther...

® But it requires ripping apart the filesystem
functionality into modules

® and placing those modules at different
computers on the network

® So now we need to ask...
what does a filesystem do, anyway?

® Well, there’s a disk...

® disks store bits. in fixed-length pieces
called sectors or blocks

® but a filesystem has ... files. and often
directories. and maybe permissions.
creation and modification time. and other
stuff about the files. (“metadata”)

Filesystem functionality

® Directory management (maps entries in a
hierarchy of names to files-on-disk)

® File management (manages adding, reading,
changing, appending, deleting) individual files

® Space management: where on disk to store
these things?

® Metadata management

Conventional filesystem

® Wraps all of these up together

® Useful concepts: [pictures]

® “Superblock” -- well-known location on disk where top-level filesystem info
is stored (pointers to more structures, etc.)

® “Free list” or “Free space bitmap” -- data structures to remember what’s
used on disk and what’s not. Why? Fast allocation of space for new files.

® “inode” - short for index node - stores all metadata about a file, plus
information pointing to where the file is stored on disk

e Small files may be referenced entirely from the inode; larger files may
have some indirection to blocks that list locations on disk
® Directory entries point to inodes

® ‘“extent” - a way of remembering where on disk a file is stored. Instead of
listing all blocks, list a starting block and a range. More compact
representation, but requires large contiguous block allocation.

Filesystem “VFS” ops

® VFS: (‘virtual filesystem‘): common abstraction layer
inside kernels for building filesystems -- interface is
common across FS implementations

® Think of this as an abstract data type for filesystems

® has both syntax (function names, return values, etc)
and semantics (“don’t block on this call”, etc.)

® One key thing to note: The VFS itself may do some
caching and other management...

® in particular: often maintains an inode cache

FUSE

® The lab will use FUSE

® FUSE is a way to implement filesystems in
user space (as normal programs), but
have them available through the kernel --
like normal files

® |t has a kinda VFS-like interface

example/hello /tmp/fuse
Is =1 Amp/fuse libfuse

A

glibe glibe
userspace

kernel T
FUSE

VES
NFES

Figure from FUSE documen tation

Directory operations

® readdir(path) - return directory entries for
each file in the directory

® mkdir(path) -- create a new directory

® rmdir(path) -- remove the named directory

File operations

® mknod(path, mode, dev) -- create a new “node” (generic: a file is one type
of node; a device node is another)

® unlink(path) -- remove link to inode, decrementing inode’s reference count

® many filesystems permit “hard links” -- multiple directory entries
pointing to the same file

® rename(path, newpath)

® open -- open a file, returning a file handle
® read, write

® truncate -- cut off at particular length

® flush -- close one handle to an open file

® release -- completely close file handle

Metadata ops

® getattr(path) -- return metadata struct

® chmod / chown (ownership & perms)

Back to goals of DFS

® Users should have same view of system, be able to share files
® |[ast time:

® Central fileserver handles all filesystem operations --
consistency was easy, but overhead high, scalability poor

® Moved to NFS and then AFS: Added more and more
caching at client; added cache consistency problems

® Solved using timeouts or callbacks to expire cached
contents

Protocol & consistency

® Remember last time: NFS defined operations to occur on unique
inode #s instead of names... why? idempotency. Wanted operations
to be unique.

® Related example for today when we're considering splitting up
components: moving a file from one directory to another

® What if this is a complex operation (“remove from one”,“add to
another”), etc.

® Can another user see intermediate state?? (e.g,file in both
directories or file in neither?)

® last time: Saw issue of when things become consistent

® Presented idea of close-to-open consistency as a compromise

Scaling beyond...

® What happens if you want to build AFS for all of
CMU? More disks than one machine can handle;
more users than one machine can handle

® Simplest idea: Partition users onto different servers
® How do we handle a move across servers!?

® How to divide the users? Statically? What about
load balancing for operations & for space! Some
files become drastically more popular?

“Cluster” filesystems

® Lab inspired by Frangipani, a scalable distributed
filesystem.

® Think back to our list of things that filesystems
have to do

e Concurrency management
® Space allocation and data storage

® Directory management and naming

Frangipani design

Frangipani stores all data (inodes,
Program directories, data) in petal; uses lock
server for consistency (eg, creating
Frangipani file file)
server
Distributed Petal aggregates many disks (across
lock service many machines_ into one big
“virtual disk”. Simplifying

abstraction for both design

Petal distributed &i !
|mp|ementat|on. exports extents -

virtual disk provides allocation, deallocation,
etc.
Physical disks Internally: maps (virtual disk, offset)

to (server, physical disk, offset)

Consequential design

User programs User programs

File system switch File system switch

Frangipani gipani
file server module file server module

Petal Petal
device driver device driver

1 Network |
—_

Petal virfual disk

I

Lock
Petal [
server

Figure 2: Frangipani structure. In one typical Frangipani con-
figuration, some machines run user programs and the Frangipani
file server module; others run Petal and the distributed lock ser-
vice. In other configurations, the same machines may play both
roles.

Compare with NFS/
AFS

® In NFS/AFS, clients just relay all FS calls to the server;
central server.

® Here, clients run enough code to know which server to
direct things to; are active participants in filesystem.

® (n.b.-- you could, of course, use the Frangipani/Petal
design to build a scalable NFS server -- and, in fact,
similar techniques are how a lot of them actually are
built. See upcoming lecture on RAID, though: replication
and redundancy management become key)

Lab 2: YFS

® Yet-another File System.:)

® Simpler version of what we just talked
about: only one extent server (you don’t
have to implement Petal; single lock
server)

|st| |yvs| |y15|

— L L

extent lock
server server

Warning

® This lab is difficult.

® Each server written in C++
® Assumes a bit more C++ than lab | did.

® yfs client interfaces with OS through fuse
® Please please please get started early; ask

® Following labs will build YFS incrementally, course staff for help.
starting with the lock server and building
up through supporting file & directory ops
distributed around the network

® |t will not destroy you; it will make you
stronger. But it may well take a lot of work
and be pretty intensive.

