Remote Procedure
Calls

Carnegie Mellon University
I5-440 Distributed Systems

Building up to today

® 2x ago: Abstractions for communication

® example: TCP masks some of the pain of
communicating across unreliable IP

® |ast time: Abstractions for computation

Reminder about last
time
® Processes: A resource container for

execution on a single machine

® Threads: One “thread” of execution
through code. Can have multiple threads
per process.

® |mpl as userland, kernel; each has diff.
benefits

Threads - impl

o Use:
® Exploit multiple processors
® Hide long delays

® Run long ops concurrent with short ones to improve
response time (Ul events, etc)

® Thread interface
® Creating and managing threads

® Provide ways to avoid race conditions for updates to shared
data

pthreads interface

® threads
® create
® join == wait until it'’s done

® mutex
condition variables
coming up in next lecture

On to today...

Splitting computation
across the network

® We've looked at primitives for computation
and for communication.
Today, we’ll put them together

® Key question:

What programming abstractions work well to
split work among multiple networked
computers!?

(caveat: we'll be looking at many possible answers to this question...)

Common
communication pattern

working {

Done/Result

Writing it by hand...

® eg, if you had to write a, say, password cracker

struct foomsg {
u_int32_t len;
}

send_foo(char *contents) {
int msglen = sizeof(struct foomsg) + strlen(contents);
char buf = malloc(msglen);
struct foomsg *fm = (struct foomsg *)buf;
fm->len = htonl(strlen(contents));
memcpy (buf + sizeof (struct foomsg),
contents,
strlen(contents));
write(outsock, buf, msglen);

Then wait for response, etc.

RPC

® A type of client/server communication

® Attempts to make remote procedure calls
look like local ones

Client Server
[appication | [application | { e
Lo gt foo()
Clert Stub Server Stub
Mz ot el ..
|ElwentFlun-T|me Library | |Servel Run-Time levaryl }
[Joet] [daocoeg] .
| Tra‘m;:uﬂ» I |] Tlan‘spu.ll | vo'd foo() {
(=T invoke_remote_foo()
figure from Microsoft MSDN }

RPC Goals

® Ease of programming
® Hide complexity (we’ll get to next)
® automate a lot of task of implementing

® Familiar model for programmers (just make
a function call)

Historical note: Seems obvious in retrospect, but RPC was only invented in the ‘80s. See

Birrell & Nelson,“Implementing Remote Procedure Call” ... or
Bruce Nelson, Ph.D.Thesis, Carnegie Mellon University: Remote Procedure Call,, 1981 :)

But it’s not always
simple

® Calling and called procedures run on different
machines, with different address spaces

® And perhaps different environments .. or
operating systems ..

® Must convert to local representation of data

® Machines and network can fail

Marshaling and
Unmarshaling

(From example) hotnl() -- “host to network-byte-order, long”.

® network-byte-order (big-endian) standardized to deal with
cross-platform variance

Note how we arbitrarily decided to send the string by sending its
length followed by L bytes of the string? That’s marshalling, too.

Floating point...

Nested structures! (Design question for the RPC system - do you
support them?)

Complex datastructures? (Some RPC systems let you send lists and
maps as first-order objects)

“stubs’ and IDLs

® RPC stubs do the work of marshaling and
unmarshaling data

® But how do they know how to do it?

® Typically: Write a description of the function
signature using an IDL -- interface definition
language.

® | ots of these. Some look like C, some look
like XML, ... details don’t matter much.

SunRPC

Venerable, widely-used RPC system

Defines “XDR” (“eXternal Data
Representation”) -- C-like language for
describing functions -- and provides a
compiler that creates stubs

struct fooargs {
string msg<255>;
int baz;

}

And describes functions

program FOOPROG {
version VERSION {
void FOO(fooargs) = 1;

void BAR(barargs) = 2;
} = 1;
} = 9999;

More requirements

® Provide reliable transmission (or indicate failure)
® May have a “runtime” that handles this
® Authentication, encryption, etc.

® Nice when you can add encryption to your
system by changing a few lines in your IDL file

® (it’s never really that simple, of course --
identity/key management)

Big challenges

® What happens during communication failures? Programmer
code still has to deal with exceptions! (Normally, calling foo

() to add 5 + 5 can’t fail and doesn’t take 10 seconds to
return)

® Machine failures?

® Did server fail before/after processing request??
Impossible to tell, if it’s still down...

® |t’s impossible to hide all of the complexity under an RPC

system. But marshaling/unmarshaling support is great!

<break>

RPC Context

® |n lab 2, you'll first implement a remote
lock server

® Supports 2 operations: acquire(lock),
release(lock). Implemented using RPC.

RPC failures

Request from cli -> srv lost
Reply from srv -> cli lost
Server crashes after receiving request

Client crashes after sending request

RPC semantics

® At-least-once semantics

® Keep retrying...

® At-most-once

® Use a sequence # to ensure idempotency
against network retransmissions

® and remember it at the server

At-least-once versus at-most-once?
let's take an example: acquiring a lock
if client and server stay up, client receives lock
if client fails, it may have the lock or not (server needs a plan!)
if server fails, client may have lock or not
at-least-once: client keeps trying
at-most-once: client will receive an exception
what does a client do in the case of an exception?
need to implement some application-specific protocol
ask server, do i have the lock?
server needs to have a plan for remembering state across reboots
e.g., store locks on disk.
at-least-once (if we never give up)
clients keep trying. server may run procedure several times
server must use application state to handle duplicates
if requests are not idempotent
but difficult to make all request idempotent
e.g., server good store on disk who has lock and req id
check table for each requst
even if server fails and reboots, we get correct semantics
What is right?
depends where RPC is used.
simple applications:
at-most-once is cool (more like procedure calls)
more sophisticated applications:
need an application-level plan in both cases
not clear at-once gives you a leg up
=> Handling machine failures makes RPC different than procedure calls

comparison from Kaashoek, 6.842 notes

Implementing at-most-
once

® At-least-once: Just keep retrying on client side until you get a
response.

® Server just processes requests as normal, doesn’t remember
anything. Simple!
® At-most-once: Server might get same request twice...

® Must re-send previous reply and not process request (implies:
keep cache of handled requests/responses)

® Must be able to identify requests

e Strawman: remember all RPC IDs handled. -> Ugh! Requires
infinite memory.

® Real: Keep sliding window of valid RPC IDs, have client
number them sequentially.

Exactly-Once?

® Sorry - no can do in general.

® |magine that message triggers an external
physical thing (say, a robot fires a nerf dart
at the professor)

® The robot could crash immediately before
or after firing and lose its state. Don’t
know which one happened. Can, however,
make this window very small.

Implementation
Concerns

® As a general library, performance is often a big concern for RPC
systems

® Major source of overhead: copies and marshaling/unmarshaling
overhead

® Zero-copy tricks:

® Representation: Send on the wire in native format and indicate
that format with a bit/byte beforehand. What does this do?
Think about sending uint32 between two little-endian machines

® Scatter-gather writes (writev() and friends)

Dealing with Environmental
Differences

If my function does: read(foo, ...)

Can | make it look like it was really a local procedure
call??

Maybe!
® Distributed filesystem...

But what about address space?
® This is called distributed shared memory

® People have kind of given up on it - it turns out
often better to admit that you're doing things
remotely

Complex / Pointer
Data Structures

® Very few low-level RPC systems support

® C is messy about things like that -- can’t always
understand the structure and know where to stop
chasing

® One way was to send pointers and use DSM, but ...

® Java RMI (and many other higher-level languages)
allows sending objects as part of an RPC

® But be careful - don’t want to send megabytes of
data across network to ask simple question!

Extra Notes

Some RPC systems for
your use

® SunRPC, or ONC RPC,is very commonly used still. It’s the RPC
system used in the NFS network file system, and in a lot of
existing systems.

® Thrift and Avro are two emerging open-source RPC systems that
are proving quite popular in new large-scale distributed
computing projects. They're used extensively inside companies
like Yahoo! and Facebook to speed implementation of systems.

® 0mq (“zero mq”) (open-source) is being used a fair bit to support
complex communication patterns (e.g., one-to-many, publish-
subscribe) in latency-critical applications such as financial apps.
An established commercial vendor in this space is Tibco’s.

