Work.

Project Notes

® What algorithm should | use for <foo>?
® A: We don’t really care. Just use a reasonable one.
® A’ Butler Lampson’s “Hints for computer system
15-440 design” (great paper) has a design hint:
) -)) “When in doubt, use brute force.”
Carnggle' Mellon University Think about d(technology)/dt. Simple, well understood
Distributed Systems algorithms are a good way to start. You can always
optimize later if time doesn’t save you.
® And we really, really don’t want to see code-level micro-
optimization that impairs readability.
® You have some computational “work” to do.
° . . .
How do you think about this work; o May seem pretty “definitional”
(Other lectures will have a lot more “how to do cool stuff”’)
what are the units in which it runs? ® No apologies: We need clear, precise definitions to understand,
communicate, and build systems.
the abstractions you use in a computer or ® Analogy: A computer will do exactly what you tell it. But you
..) have to know exactly how to express what you want...
distributed system to represent it?
® So first, you have to know exactly what you want
® How do | divide up work in a distributed ® This happens everywhere - ugrad, grad school, and beyond. Clear
) definitions are necessary for clear thought.
(parallel) system!? :
® A challenge: “Systems contain subsystems that are themselves

systems” (S&K) -- aka, system decomposition is recursive.

Jobs: Chunks of work

® A Job (n): A task that is performed as if it was a single logical unit

Remember, our definitions have to operate at multiple levels of
abstraction

Example:
From the perspective of your password cracker server, cracking one
password is a job. (Batch processing has similar views)

From the client application’s perspective, cracking a range is a job.

From the OS kernel’s perspective, a job is the granularity at which
threads are scheduled (a burst of activity)

Let’'s examine representations of these from bottom-up

Tasks

® Set of instructions

® Usually, a “task” is more generic than a
“process” or a “thread” (which have
specific extra stuff with them)

Machine organization

Communication

CPU
Python Instruction Re.ference
Interpreter Repertoire
TeX Environment reference

The CPU (etc)

v
instruction Retrieve next
reference instruction
{environment
Interpret retrieved \ reference
instruction
Interrupt signal? yes
v
no
change instruction and
€ environment reference

Diagram adapted from Saltzer & Kaashoek

At the hardware level

® The program counter is the
instruction reference

® A program is the instructions

high
® contains address of memory L

location that stores next
instruction

® Memory: Storage, the stack, the
Page table (v".tua'l memor)’ bss unitinialized variables
bindings), the registers daa initialized vaiables

0 text instruction

At the OS level

® A process is an instance of a program (code) in
execution. In other words, it’s ... the same stuff on
the previous page, but applied to a single instance of
a particular chunk of code running.

® (You could have multiple processes running from
the same program)

® Plus various operating system abstractions: open
files, open sockets, etc.

Resource accounting and isolation again!

Practical Stuff: Using
processes

® Creating a new process (has its own memory): fork()

® Makes an almost exact copy of calling process (PID
changes, etc.)

o How to tell difference? Return value is 0 in child, child
PID in parent. How?

® Stack copied, but different value placed on top of each
® Executing a different program: exec()

® Basically entirely replaces the process with a new one
running the new program. But some things, maybe some
file descriptors, are preserved.

Cool internals: copy-
on-write

® CoW is a useful, general technique that shows up all over
in systems.

® Mark parents’ memory read-only
® Have child share parents memory instead of copying

® [f either one writes -- hey, it was read only! (CPU will
raise an exception)

® Now give the child its own copy of the page of
memory someone was writing

Tasks & Scheduling

Running)

UO o event cormpletion

Remember last time that a
process “blocked” if it tried to
send too much data to a TCP

socket?
“waiting”

Resource sharing again!

Types of scheduling

Cooperative: one task explicitly yields to
another

Preemptive: some underlying management
thingy (e.g., the OS) can forcibly switch which
task is running. Prevents hogging, out of
control tasks, etc.

Food for thought: Why would you ever want
cooperative, then? (We’ll come back to this)

OS Scheduling

|| Core
Task
md Core

Threads

A thread is, roughly, a task within a process

There can be multiple threads within a single
process

A process is the unit Process
of resource allocation
(Threads don’t have
memory)

Time

Threads do have execution state, their own stack,
etc.

figure from wikipedia

Threads in memory

high s
g stack When multiple threads
& exist, each must have a
separate stack. This
stack example shows two.
|
heap
bss unitinialized variables
data initialized variables
0 Text instruction

Threads

® Threads share memory
® Handy! They can .. share stuff.

® Dangerous! They can .. muck stuff.

Why Threads!?

Switching between threads faster than switching between processes
(don’t have to change as much stuff around -- such as invalidating the
page table cache)

Creating and destroying is much cheaper than fork
Provides convenient abstraction for chunking up work

® Example: Assign a thread to handling an incoming request in a Web
server

® This use matches well to blocking semantics of posix

® |f we can’t write to the socket, thread blocks, some other
thread keeps running. That's cool - our thread doesn’t need to
do anything if it can’t send to the client...

® Though it isn’t always the best way to do things, in practice

<break>

How threads!

® Well, that depends -- what do you want to accomplish?
® Early days: uniprocessor systems

® Threads as a programming abstraction
(as in previous slide)

® This was source of many rollicking debates in system
community about what abstraction was better. It got
ridiculous and religious.

® But no need for multicore foo like today, so...

User Threads

® Implemented via thread libraries.

® These give illusion of independent threads

by masking actions that would block, and calling into
the

thread scheduler

instead. PCB PCB PCB PCB PCB

oS

® Typically cooperatively
scheduled, but tricky
(done automatically on
system calls, for ex.)

Process address space

Advantages of User
Threads

® Ridiculously fast thread switching.

® Never even need to enter the kernel to
switch threads.

® Provides a good abstraction.

® But...

® On an MP system, only one thread within a process can execute at the same
time.

® Even if the kernel can schedule multiple processes to run concurrently

® |fany thread in a process makes a blocking system call, all threads will be
blocked

® Common example: Some DNS functions were not re-entrant, and some
thread libs failed to mask them. A long DNS delay could hang process.
Oops.

® Not all system calls can be “checked” for blocking using select. Opening
afile, e.g.

® Why can this block???
® Think about NFS...

Kernel supported user

threads

® Sun called these “Lightweight Processes”

(& (&

PCB PCB PCB

Addr.
Space

PCB PCB PCB PCB PCB PCB
Addr. Addr. Addr. Addr. Addr. Addr. Addr.
Space | |Space | |Space Space | Processes Space Space Space

Processes

And hybrids...

If you can tolerate some complexity, you can hybridize

these.

® |WVPs are fairly heavyweight (thread switches require
going to kernel, etc.)

Communication between

LWPs requires kernel

task 1 task2 task 3

LWPs consume more
resources than
user threads

More expensive to kel

create and destroy
o] [owo] o] [awo)

That said

® For simplicity, and as CPU gets cheaper and cheaper and the
importance of maximally exploiting parallelism grows...

® more and more we're seeing just kernel supported user threads

® But at other levels...

® Many interpreted languages (ruby, python) provide user threads

® Keeps things simpler (don’t have to write a parallel interpreter)

® but you have to go multiple-process to use multicore.

® (Sun wrote java and they've always liked SMP. Java uses native
OS threads, so on sun, can use LWPs or user threads...)

Tasks in dist. systems

® May hear other terms:

® “Workers” (clients that are assigned jobs by a
scheduler of some sort)

® “Master” (the node/task that hands out work)

® Mid-90s research looked at “remote fork” and

similar primitives -- spawn a new task on some
other computer. We’'ll look more at these
abstractions later.

