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• What algorithm should I use for <foo>?

• A:  We don’t really care.  Just use a reasonable one.

• A’:  Butler Lampson’s “Hints for computer system 
design” (great paper) has a design hint:
  “When in doubt, use brute force.”
Think about d(technology)/dt.  Simple, well understood 
algorithms are a good way to start.  You can always 
optimize later if time doesn’t save you.

• And we really, really don’t want to see code-level micro-
optimization that impairs readability.

• You have some computational “work” to do.

• How do you think about this work;

what are the units in which it runs?

the abstractions you use in a computer or 
distributed system to represent it?

• How do I divide up work in a distributed 
(parallel) system?

Today

• May seem pretty “definitional”
(Other lectures will have a lot more “how to do cool stuff”)

• No apologies:  We need clear, precise definitions to understand, 
communicate, and build systems.

• Analogy:  A computer will do exactly what you tell it.  But you 
have to know exactly how to express what you want...

• So first, you have to know exactly what you want

• This happens everywhere - ugrad, grad school, and beyond.  Clear 
definitions are necessary for clear thought.

• A challenge:  “Systems contain subsystems that are themselves 
systems” (S&K) -- aka, system decomposition is recursive.



Jobs:  Chunks of work

• A Job (n):  A task that is performed as if it was a single logical unit

Remember, our definitions have to operate at multiple levels of 
abstraction

Example:
From the perspective of your password cracker server, cracking one 
password is a job.  (Batch processing has similar views)

From the client application’s perspective, cracking a range is a job.

From the OS kernel’s perspective, a job is the granularity at which 
threads are scheduled (a burst of activity)

Let’s examine representations of these from bottom-up

Tasks

• Set of instructions

• Usually, a “task” is more generic than a 
“process” or a “thread” (which have 
specific extra stuff with them)
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At the hardware level

• The program counter is the 
instruction reference

• A program is the instructions

• contains address of memory 
location that stores next 
instruction

• Memory:  Storage, the stack, the 
page table (virtual memory 
bindings), the registers

At the OS level

• A process is an instance of a program (code) in 
execution.  In other words, it’s ... the same stuff on 
the previous page, but applied to a single instance of 
a particular chunk of code running.

• (You could have multiple processes running from 
the same program)

• Plus various operating system abstractions:  open 
files, open sockets, etc.

Resource accounting and isolation again!

Practical Stuff:  Using 
processes

• Creating a new process (has its own memory):  fork()

• Makes an almost exact copy of calling process (PID 
changes, etc.)

• How to tell difference?  Return value is 0 in child,  child 
PID in parent.  How?

• Stack copied, but different value placed on top of each

• Executing a different program:  exec()

• Basically entirely replaces the process with a new one 
running the new program.  But some things, maybe some 
file descriptors, are preserved.

Cool internals:  copy-
on-write

• CoW is a useful, general technique that shows up all over 
in systems.

• Mark parents’ memory read-only

• Have child share parents memory instead of copying

• If either one writes -- hey, it was read only!  (CPU will 
raise an exception)

• Now give the child its own copy of the page of 
memory someone was writing



Tasks & Scheduling

Remember last time that a 
process “blocked” if it tried to 
send too much data to a TCP 

socket?  
“waiting”

Resource sharing again!

Types of scheduling

• Cooperative:  one task explicitly yields to 
another

• Preemptive:  some underlying management 
thingy (e.g., the OS) can forcibly switch which 
task is running.  Prevents hogging, out of 
control tasks, etc.

• Food for thought:  Why would you ever want 
cooperative, then?  (We’ll come back to this)
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Threads

• A thread is, roughly, a task within a process

• There can be multiple threads within a single 
process

• A process is the unit
of resource allocation
(Threads don’t have
memory)

• Threads do have execution state, their own stack, 
etc.

figure from wikipedia



Threads in memory Threads

• Threads share memory

• Handy!  They can .. share stuff.

• Dangerous!  They can .. muck stuff.

Why Threads?

• Switching between threads faster than switching between processes 
(don’t have to change as much stuff around -- such as invalidating the 
page table cache)

• Creating and destroying is much cheaper than fork

• Provides convenient abstraction for chunking up work

• Example:  Assign a thread to handling an incoming request in a Web 
server

• This use matches well to blocking semantics of posix

• If we can’t write to the socket, thread blocks, some other 
thread keeps running.  That’s cool - our thread doesn’t need to 
do anything if it can’t send to the client...

• Though it isn’t always the best way to do things, in practice

<break>



How threads?

• Well, that depends -- what do you want to accomplish?

• Early days:  uniprocessor systems

• Threads as a programming abstraction
(as in previous slide)

• This was source of many rollicking debates in system 
community about what abstraction was better.  It got 
ridiculous and religious.

• But no need for multicore foo like today, so...

User Threads

• Implemented via thread libraries.

• These give illusion of independent threads
by masking actions that would block, and calling into 
the
thread scheduler
instead.

• Typically cooperatively
scheduled, but tricky
(done automatically on
system calls, for ex.)

Advantages of User 
Threads

• Ridiculously fast thread switching.

• Never even need to enter the kernel to 
switch threads.

• Provides a good abstraction.

• But...

• On an MP system, only one thread within a process can execute at the same 
time.

• Even if the kernel can schedule multiple processes to run concurrently

• If any thread in a process makes a blocking system call, all threads will be 
blocked

• Common example:  Some DNS functions were not re-entrant, and some 
thread libs failed to mask them.  A long DNS delay could hang process.  
Oops.

• Not all system calls can be “checked” for blocking using select.  Opening 
a file, e.g.

• Why can this block???

• Think about NFS...



Kernel supported user 
threads

• Sun called these “Lightweight Processes”

To

And hybrids...

• If you can tolerate some complexity, you can hybridize 
these.

• LWPs are fairly heavyweight (thread switches require 
going to kernel, etc.)

• Communication between
LWPs requires kernel

• LWPs consume more
resources than 
user threads

• More expensive to
create and destroy

That said

• For simplicity, and as CPU gets cheaper and cheaper and the 
importance of maximally exploiting parallelism grows...

• more and more we’re seeing just kernel supported user threads

• But at other levels...

• Many interpreted languages (ruby, python) provide user threads

• Keeps things simpler (don’t have to write a parallel interpreter)

• but you have to go multiple-process to use multicore.

• (Sun wrote java and they’ve always liked SMP.  Java uses native 
OS threads, so on sun, can use LWPs or user threads...)

Tasks in dist. systems

• May hear other terms:

• “Workers” (clients that are assigned jobs by a 
scheduler of some sort)

• “Master” (the node/task that hands out work)

• Mid-90s research looked at “remote fork” and 
similar primitives -- spawn a new task on some 
other computer.  We’ll look more at these 
abstractions later.


