
Work.

15-440
Carnegie Mellon University

Distributed Systems

Project Notes

• What algorithm should I use for <foo>?

• A: We don’t really care. Just use a reasonable one.

• A’: Butler Lampson’s “Hints for computer system
design” (great paper) has a design hint:
 “When in doubt, use brute force.”
Think about d(technology)/dt. Simple, well understood
algorithms are a good way to start. You can always
optimize later if time doesn’t save you.

• And we really, really don’t want to see code-level micro-
optimization that impairs readability.

• You have some computational “work” to do.

• How do you think about this work;

what are the units in which it runs?

the abstractions you use in a computer or
distributed system to represent it?

• How do I divide up work in a distributed
(parallel) system?

Today

• May seem pretty “definitional”
(Other lectures will have a lot more “how to do cool stuff”)

• No apologies: We need clear, precise definitions to understand,
communicate, and build systems.

• Analogy: A computer will do exactly what you tell it. But you
have to know exactly how to express what you want...

• So first, you have to know exactly what you want

• This happens everywhere - ugrad, grad school, and beyond. Clear
definitions are necessary for clear thought.

• A challenge: “Systems contain subsystems that are themselves
systems” (S&K) -- aka, system decomposition is recursive.

Jobs: Chunks of work

• A Job (n): A task that is performed as if it was a single logical unit

Remember, our definitions have to operate at multiple levels of
abstraction

Example:
From the perspective of your password cracker server, cracking one
password is a job. (Batch processing has similar views)

From the client application’s perspective, cracking a range is a job.

From the OS kernel’s perspective, a job is the granularity at which
threads are scheduled (a burst of activity)

Let’s examine representations of these from bottom-up

Tasks

• Set of instructions

• Usually, a “task” is more generic than a
“process” or a “thread” (which have
specific extra stuff with them)

Machine organization

Memory

Interpreter

Communication

CPU
Python

TeX
...

Instruction Reference
Repertoire

Environment reference

The CPU (etc)

Retrieve next
instruction

Interpret retrieved
instruction

Interrupt signal?

Diagram adapted from Saltzer & Kaashoek

yes

change instruction and
environment reference

no

environment
reference

instruction
reference

At the hardware level

• The program counter is the
instruction reference

• A program is the instructions

• contains address of memory
location that stores next
instruction

• Memory: Storage, the stack, the
page table (virtual memory
bindings), the registers

At the OS level

• A process is an instance of a program (code) in
execution. In other words, it’s ... the same stuff on
the previous page, but applied to a single instance of
a particular chunk of code running.

• (You could have multiple processes running from
the same program)

• Plus various operating system abstractions: open
files, open sockets, etc.

Resource accounting and isolation again!

Practical Stuff: Using
processes

• Creating a new process (has its own memory): fork()

• Makes an almost exact copy of calling process (PID
changes, etc.)

• How to tell difference? Return value is 0 in child, child
PID in parent. How?

• Stack copied, but different value placed on top of each

• Executing a different program: exec()

• Basically entirely replaces the process with a new one
running the new program. But some things, maybe some
file descriptors, are preserved.

Cool internals: copy-
on-write

• CoW is a useful, general technique that shows up all over
in systems.

• Mark parents’ memory read-only

• Have child share parents memory instead of copying

• If either one writes -- hey, it was read only! (CPU will
raise an exception)

• Now give the child its own copy of the page of
memory someone was writing

Tasks & Scheduling

Remember last time that a
process “blocked” if it tried to
send too much data to a TCP

socket?
“waiting”

Resource sharing again!

Types of scheduling

• Cooperative: one task explicitly yields to
another

• Preemptive: some underlying management
thingy (e.g., the OS) can forcibly switch which
task is running. Prevents hogging, out of
control tasks, etc.

• Food for thought: Why would you ever want
cooperative, then? (We’ll come back to this)

OS Scheduling

Core

Core

Core

Core

Task

Task

Task

Task

Task

Task

Task

Threads

• A thread is, roughly, a task within a process

• There can be multiple threads within a single
process

• A process is the unit
of resource allocation
(Threads don’t have
memory)

• Threads do have execution state, their own stack,
etc.

figure from wikipedia

Threads in memory Threads

• Threads share memory

• Handy! They can .. share stuff.

• Dangerous! They can .. muck stuff.

Why Threads?

• Switching between threads faster than switching between processes
(don’t have to change as much stuff around -- such as invalidating the
page table cache)

• Creating and destroying is much cheaper than fork

• Provides convenient abstraction for chunking up work

• Example: Assign a thread to handling an incoming request in a Web
server

• This use matches well to blocking semantics of posix

• If we can’t write to the socket, thread blocks, some other
thread keeps running. That’s cool - our thread doesn’t need to
do anything if it can’t send to the client...

• Though it isn’t always the best way to do things, in practice

<break>

How threads?

• Well, that depends -- what do you want to accomplish?

• Early days: uniprocessor systems

• Threads as a programming abstraction
(as in previous slide)

• This was source of many rollicking debates in system
community about what abstraction was better. It got
ridiculous and religious.

• But no need for multicore foo like today, so...

User Threads

• Implemented via thread libraries.

• These give illusion of independent threads
by masking actions that would block, and calling into
the
thread scheduler
instead.

• Typically cooperatively
scheduled, but tricky
(done automatically on
system calls, for ex.)

Advantages of User
Threads

• Ridiculously fast thread switching.

• Never even need to enter the kernel to
switch threads.

• Provides a good abstraction.

• But...

• On an MP system, only one thread within a process can execute at the same
time.

• Even if the kernel can schedule multiple processes to run concurrently

• If any thread in a process makes a blocking system call, all threads will be
blocked

• Common example: Some DNS functions were not re-entrant, and some
thread libs failed to mask them. A long DNS delay could hang process.
Oops.

• Not all system calls can be “checked” for blocking using select. Opening
a file, e.g.

• Why can this block???

• Think about NFS...

Kernel supported user
threads

• Sun called these “Lightweight Processes”

To

And hybrids...

• If you can tolerate some complexity, you can hybridize
these.

• LWPs are fairly heavyweight (thread switches require
going to kernel, etc.)

• Communication between
LWPs requires kernel

• LWPs consume more
resources than
user threads

• More expensive to
create and destroy

That said

• For simplicity, and as CPU gets cheaper and cheaper and the
importance of maximally exploiting parallelism grows...

• more and more we’re seeing just kernel supported user threads

• But at other levels...

• Many interpreted languages (ruby, python) provide user threads

• Keeps things simpler (don’t have to write a parallel interpreter)

• but you have to go multiple-process to use multicore.

• (Sun wrote java and they’ve always liked SMP. Java uses native
OS threads, so on sun, can use LWPs or user threads...)

Tasks in dist. systems

• May hear other terms:

• “Workers” (clients that are assigned jobs by a
scheduler of some sort)

• “Master” (the node/task that hands out work)

• Mid-90s research looked at “remote fork” and
similar primitives -- spawn a new task on some
other computer. We’ll look more at these
abstractions later.

