
Internet in a Day
Day 2 of 1

Carnegie Mellon University
15-440, Distributed Systems

Last Time

• Modularity, Layering, and Decomposition

• Example: UDP layered on top of IP to provide
application demux (“ports”)

• Resource sharing and isolation

• Statistical multiplexing - packet switching

• Dealing with heterogenity

• IP “narrow waist” -- allows many apps, many
network technologies

• IP standard -- allows many impls, same proto

• Models to reason about network and
system behavior

• Fail-stop, fail-stutter, byzantine failures

• Sync/Async communication model

• etc.

Today: TCP and Apps

• Remember from last time...

• IP service model: “best-effort”

• Can drop, mangle, re-order, delay packets

• Easy model to provide (imposes few
requirements on underlying layers--widely
applicable)

• Less fun model to program to if you happen to
need reliability, in-order, correct data

Design Question

• If you want reliability, etc.

• Where should you implement it?

Host Switch Switch Switch Switch Host

Option 1: Hop-by-hop

Option 2: end-to-end

Options

• Hop-by-hop: Have each switch/router
along the path ensure that the packet gets
to the next hop

• End-to-end: Have just the end-hosts
ensure that the packet made it through

• What do we have to think about to make
this decision??

A question

• Is hop-by-hop enough?

• [hint: What happens if a switch crashes?
What if it’s buggy and goofs up a packet?]

The End-to-End
Argument

If you have to implement a function end-to-end
anyway (e.g., because it requires the knowledge
and help of the end-point host or application),

don’t implement it inside the communication
system

unless there’s a compelling performance
enhancement

Further Reading: “End-to-End Arguments in System Design.”
Saltzer, Reed, and Clark.

Keep in mind

• This is an engineering rule of thumb
to be weighed against other design guidelines

• not a law

• But in practice, it’s proved to be a nice way to think
about things

• You may encounter situations where you can’t (for
whatever reason - technical, financial, political)
implement things in the way the argument suggests.
The real world can be an ugly place. :)

Let’s apply that to our
question...

• Of where to do retransmissions

• What does e2e argument argue for here?

• TCP uses end-to-end retransmissions

• Can you think of times we might want to also implement hop-by-
hop retransmission?

• Hop-by-hop retransmission is cheaper and faster (count the
“packet-miles” that are traveled)

• So maybe a very high-loss link -- like wireless!

• Your wireless card handles a few retransmissions on its own

Rough view of TCP

Time

Source Dest
Data pkt

ACKnowledgement

What TCP does:
1) Figures out which packets got through/lost
2) Figures out how fast to send packets to use all of the unused capacity,
- But not more
- And to share the link approx. equally with other senders

(This is a very incomplete view - take 15-441. :)

Application View of
TCP

• Remember socket API basics from 15-213

Client /
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close EOF

open_listenfd

acceptconnect

open_clientfd

!"#$%&'()*'+,%-./"0'+1%-12%3
Blocking sockets

• What happens if an application write()s to a socket
waaaaay faster than the network can send the data?

• TCP figures out how fast to send the data...

• And it builds up in the kernel socket buffers at the
sender... and builds...

• until they fill. The next write() call blocks (by default).

• What’s blocking? It suspends execution of the
blocked thread until enough space frees up...

In contrast to UDP

• UDP doesn’t figure out how fast to send
data, or make it reliable, etc.

• So if you write() like mad to a UDP
socket...

• It often silently disappears. Maybe if you’re
lucky the write() call will return an error.
But no promises.

take a breath.

Rehashing all of that...

• TCP is layered on top of IP

• IP understands only the IP header

• The IP header has a “protocol” ID that gets set to TCP

• The TCP at the receiver understands how to parse the TCP information

• IP provides only “best-effort” service

• TCP adds value to IP by adding retransmission, in-order delivery, data checksums,
etc., so that programmers don’t have to re-implement the wheel every time. It also
helps figure out how fast to send data. This is why TCP sockets can “block” from
the app perspective.

• The e2e argument suggests that functionality that must be implemented end-to-end
anyway (like retransmission in the case of dead routers) should probably be
implemented only there -- unless there’s a compelling perf. optimization

Questions to ponder

• What does the end-to-end argument say about where to implement
encryption for confidentiality?

• If you have a whole file to transmit,
how do you send it over the Internet?

• You break it into packets (packet-switched medium)

• TCP, roughly speaking, has the sender tell the receiver “got it!”
every time it gets a packet. The sender uses this to make sure that
the data’s getting through.

• But by e2e, if you have to acknowledge the correct receipt of the
entire file... why bother acknowledging the receipt of the individual
packets???

<break>

Answers
• 1) Encrypt end-to-end.

• A notable exception: The military sometimes
uses hop-by-hop so that they can run
unencrypted on physically secure links ... so that
they can monitor the traffic there.

• 2) This is a bit of a trick question -- it’s not asking
e2e vs in-network. :)
The answer: Imagine the waste if you had to
retransmit the entire file because one packet was
lost. Ow.

Application
Requirements

Q: If you’re building an application...

How do you choose what transport
service to use?

A: That depends what the application’s
communication requirements are...

22

What Transport Service
Does an Application Need?

Data loss
! Some applications (e.g., audio)

can tolerate some loss
! Other applications (e.g., file

transfer, telnet) require 100%
reliable data transfer

Timing
! Some applications (e.g.,

Internet telephony,
interactive games) require
low delay to be “effective”

Bandwidth
! Some applications (e.g., multimedia) require a minimum amount of

bandwidth to be “effective”
! Other applications (“elastic apps”) will make use of whatever bandwidth

they get

23

User Datagram Protocol(UDP):
An Analogy

Example UDP applications
Multimedia, voice over IP

UDP
! Single socket to receive messages
! No guarantee of delivery
! Not necessarily in-order delivery
! Datagram – independent packets
! Must address each packet

Postal Mail
! Single mailbox to receive letters
! Unreliable !
! Not necessarily in-order delivery
! Letters sent independently
! Must address each reply

24

Transmission Control
Protocol (TCP): An Analogy

TCP
! Reliable – guarantee delivery
! Byte stream – in-order delivery
! Connection-oriented – single

socket per connection
! Setup connection followed by

data transfer

Telephone Call
! Guaranteed delivery
! In-order delivery
! Connection-oriented
! Setup connection followed by

conversation

Example TCP applications
Web, Email, Telnet

Why not always use TCP?

!TCP provides “more” than UDP
!Why not use it for everything??

!A: Nothing comes for free...
! 1) Connection setup (take on faith) -- TCP requires one

round-trip time to setup the connection state before it
can chat...

!How long does it take, using TCP, to fix a lost packet?
» At minimum, one “round-trip time” (2x the latency of the network)
» That could be 100+ milliseconds!

! If I guarantee in-order delivery,
what happens if I lose one packet in a stream of
packets?

25

One lost packet

26

Packet #

Time

Sent packets

Received packets (delivered to application)

Time to retransmit lost packet

Delay,
burst

Design trade-off

• If you’re building an app...

• Do you need everything TCP provides?

• If not: Can you deal with its drawbacks to take advantage of the subset of its
features you need?

• If not: You’re going to have to implement the ones you need on top of UDP

• Caveat: There are some libraries, protocols, etc., that can help provide a middle
ground.

• Takes some looking around - they’re not as standard as UDP and TCP.

28

Transport Service Requirements
of Common Applications

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps
elastic

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

file transfer
e-mail

web documents
real-time audio/

video
stored audio/video
interactive games

financial apps

Application Data loss Bandwidth Time Sensitive

!Interactions between layers are important.
»persistent HTTP
»encryption and compression
»MPEG frame types. Loss & real-time video.

Proj 1 and today’s
material

• You’ll use UDP. Why?

• A1: The course staff is full of sadists who want you to do a lot of
work. This is true in part: timeouts and retransmission are a core
aspect of using the network.

• A2: The communication needed is very small, and you have to
implement a lot of reliability stuff anyway to ensure that the work
gets done...

• Honestly? This one seems to me like a middle ground. You might use
TCP for “other” reasons (firewalls that block everything but TCP), or
to avoid the need for the “job ack” part of the protocol. Or you
might stick with UDP to reduce the overhead at the server.

