
Internetworking in a
day

Day 1 of 2

Carnegie Mellon 15-440 - Distributed Systems

Thursday, August 27, 2009

Key Things to Watch
For

• Modularity, Layering, and Decomposition: Techniques
for dividing the work of building systems; hiding the
complexity of components from each other; hiding
implementation details to deal with heterogeneity

• Resource sharing and isolation

• Models and assumptions about the environment and
components

• and...

Thursday, August 27, 2009

Dist. Sys challenges

• Heterogeneity (ex: how many different types of
devices are there on the Internet?)

• Scale (how big is the Internet?);

• Perhaps: Geography (speed of light is a bummer)

• Security (what a mess is the Internet?)

• Failure Handling (how reliable is software?)

• Concurrency

Thursday, August 27, 2009

Networks

• Broadly speaking:

• Circuit-switched (the phone network of
old)

• Packet-switched (the Internet)

• We’re only talking about the latter. What
does this mean? It’s all about sharing.

Thursday, August 27, 2009

How do 2 nodes share
a (wire, other medium?)

Multiplexing!
Talk at different frequencies (TV!)

Take turns -- time (long? circuits! short fixed? TDMA)
Packets (time, but not fixed)

Thursday, August 27, 2009

6

Statistical Multiplexing

Switches arbitrate between inputs

Can send from any input that’s ready
» Links never idle when traffic to send
» (Efficiency!)

What networks can we build with these tools?

Thursday, August 27, 2009

Internets

• An “internet”: A network of networks

• The Internet: a global collection of over 18,000
individual networks that speak a common protocol
(IP) and can talk to each other.

• The history: Uniting a mess of different,
incompatible networks

• Option 1: Protocol translators

• Option 2: a common protocol

Thursday, August 27, 2009

8

What is a Protocol

 An agreement between
parties on how
communication should take
place.

 Protocols may have to define
many aspects of the
communication.

 Syntax:
» Data encoding, language, etc.

 Semantics:
» Error handling, termination, ordering

of requests, etc.
 Protocols at hardware,

software, all levels!
 Example: Buying airline

ticket by typing.
 Syntax: English, ascii, lines

delimited by “\n”

Friendly greeting

Muttered reply

Destination?

Pittsburgh

Thank you

Thursday, August 27, 2009

9

Interfaces

Each protocol offers an interface to its users,
and expects one from the layers on which it
builds

» Syntax and semantics strike again
– Data formats
– Interface characteristics, e.g. IP service model

Protocols build upon each other
» Add value

– E.g., a reliable protocol running on top of IP
» Reuse

– E.g., OS provides TCP, so apps don’t have to rewrite

Thursday, August 27, 2009

Common protocol

• Where to unifiy?

• How can you physically connect machines?

• Optical, Electrical, Wireless, Carrier Pigeon, ...

• Hm. Lots of diversity there -- we probably
shouldn’t define the common layer as a physical
one.

Thursday, August 27, 2009

11

A Layered Network Model

The Open Systems Interconnection (OSI) Model.

Application

Presentation

Session

Transport

Network

Data link

Physical1

2

3

4

5

6

7

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Thursday, August 27, 2009

How do you talk in a
medium?

• Once you’ve established a physical connection ... how do you
signal data?

• 1s and 0s...

• separating messages...

• The answer to this depends a lot on the characteristics of the
physical medium

• Example: point-to-point optical network with a cable in each
direction

• vs. shared wireless where your transmissions can be
overheard by others

• This is the “link” layer, and it’s nice to be able to adapt on a per-
technology basis

Thursday, August 27, 2009

What about
applications?

• You could standardize the mail exchange format
(it’s been done...);

• and then the news format ... and the www
format ... and the skype format .. and .. and ... and...

• Ew! Inhibits deployment of new applications -
results in the phone network. Every network
would have to understand every application
protocol.

Thursday, August 27, 2009

Internet Goals

 Fundamental goal: Effective network interconnection

 Goals, in order of priority:
1. Continue despite loss of networks or gateways
2. Support multiple types of communication service
3. Accommodate a variety of networks
4. Permit distributed management of Internet resources
5. Cost effective
6. Host attachment should be easy
7. Resource accountability

Principle: Fate Sharing
Make ability to communicate depend only on

entities strictly needed...

Thursday, August 27, 2009

15

Survivability

If network disrupted and reconfigured
» Communicating entities should not care!
» No higher-level state reconfiguration
» Ergo, transport interface only knows “working” and “not

working.” Not working == complete partition.
How to achieve such reliability?

» Where can communication state be stored?

Network Host

Failure handing Replication “Fate sharing”

Net Engineering Tough Simple

Switches Maintain state Stateless

Host trust Less More
Thursday, August 27, 2009

16

Fate Sharing

Lose state information for an entity if (and
only if?) the entity itself is lost.

Examples:
» OK to lose TCP state if one endpoint crashes

– NOT okay to lose if an intermediate router reboots
» Is this still true in today’s network?

– NATs and firewalls
Survivability compromise: Heterogenous

network -> less information available to end
hosts and Internet level recovery mechanisms

Connection
State StateNo State

Thursday, August 27, 2009

Soooo...

TCP pushed to endpoints for survivability
» Connections can re-establish if intermediate routers crash and

reboot. Good!

Goal: Minimal requirements to interconnect
networks

IP is about the simplest thing.



17
Thursday, August 27, 2009

IP packets

Full diagram in slides...

Important bits:
» Version
» Length
» Source IP address
» Dest IP address
» Protocol ID to demux to next layer up...

18

V/HL TOS Length
ID Flags/Offset

TTL Prot. H. Checksum
Source IP address

Destination IP address
Options..

Thursday, August 27, 2009

19

The Internet Protocol Suite

Application

Presentation

Session

Transport

Network

Data link

Physical

UDP TCP

Data Link

Physical

Applications
Presentation

Session

The Hourglass Model

Waist

The waist facilitates

Interoperability.
Thursday, August 27, 2009

How to combine protocols?

In networking, often encapsulate
eg IP packets sent in Ethernet packets;
TCP packets sent in IP packets;
HTTP request sent as...

a stream of TCP packets inside IP packets
inside foo...

In OS, more likely to build on top of the
abstraction, but not necessarily carry headers
through

20
Thursday, August 27, 2009

Questions to ask

What is the interface between components?
» IP: send / receive packets

What are the semantics (promise) made?
» IP: “Best-effort” delivery -- we’ll try to get your packets there,

but we might drop them
» or re-order them
» or change the contents
» or let someone listen to them

We could just as easily ask these questions
about, say, an operating system, or a
filesystem. Same principle is at work.

And to reason about them, we might abstract
them into models... 21

Thursday, August 27, 2009

System Models

ISO model of the network stack
» (note differences from TCP/IP model)

Model of a communication channel
» Latency - how long does it take for the first bit to reach

destination
» Capacity - how many bits/sec can we push through? (Often

termed “bandwidth”)
» Jitter - how much variation in latency?
» Loss / Reliability - can the channel drop packets?
» Reordering

22
Thursday, August 27, 2009

Interaction models

And can even model how processes
communicate

» “Synchronous” model: upper and lower bounds of time to
execute a step of a process

» Messages received within bounded time
» Each computer’s clock has bounded error from “true” time

Asynchronous model (the Internet...)
» steps may take unbounded time or fail
» unbounded delay and re-ordering
» no accurate local clock

23
Thursday, August 27, 2009

Failure models

Fail-stop:
» When something goes wrong, the process stops / crashes / etc.

Fail-slow or fail-stutter:
» Performance may vary on failures as well

Byzantine:
» Anything that can go wrong, will.
» Including malicious entities taking over your computers and

making them do whatever they want.

These models are useful for proving things;
The real world typically has a bit of everything.

Deciding which model to use is important! 24
Thursday, August 27, 2009

Model Example: pw cracker

Project 1: Build a password cracker
Server --- many clients
Communication:

» Send job
» ACK job
» do some work
» send result to server
» (repeat)

IP communication model:
» Messages may be lost, re-ordered, corrupted (we’ll ignore

corruption, mostly, except for some sanity checking)
Fail-stop node model:

» You don’t need to worry about evil participants faking you out. 25
Thursday, August 27, 2009

Protocols and Models

An interesting thing...
» We often build protocols that provide “simpler” models

» Example: TCP
» Provides reliable, in-order, mostly no-corruption, stream-

oriented communication

» so that programmers don’t have to implement these features in
every application

» But note limitations: TCP can’t turn a byzantine failure model
into a fail-stop model...

26
Thursday, August 27, 2009

27

Designing applications

Application architecture
» Client-server? (vs p2p vs all in one)
» Application requirements

Application level communication
» TCP vs. UDP
» Addressing

Application examples (Lecture 4).
» ftp, http
» End-to-end argument discussion

Thursday, August 27, 2009

28

Applications and
Application-Layer Protocols

Application: communicating,
distributed processes

»Running in network hosts in “user
space”

»Exchange messages to implement
app

»e.g., email, file transfer, the Web
Application-layer protocols

»One “piece” of an app
»Define messages exchanged by

apps and actions taken
»Use services provided by lower

layer protocols
Sockets API refresher next
week (remember from 213)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Thursday, August 27, 2009

29

Client-Server Paradigm
Typical network app has two pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
 Initiates contact with server (“speaks

first”)
 Typically requests service from server,
 For Web, client is implemented in

browser; for e-mail, in mail reader
Server:
 Provides requested service to client
 e.g., Web server sends requested Web

page, mail server delivers e-mail

 (We’ll cover p2p at semester end)

request

reply

Thursday, August 27, 2009

30

What Transport Service
Does an Application Need?

Data loss
 Some applications (e.g., audio)

can tolerate some loss
 Other applications (e.g., file

transfer, telnet) require 100%
reliable data transfer

Timing
 Some applications (e.g.,

Internet telephony,
interactive games) require
low delay to be “effective”

Bandwidth
 Some applications (e.g., multimedia) require a minimum amount of

bandwidth to be “effective”
 Other applications (“elastic apps”) will make use of whatever bandwidth

they get

Thursday, August 27, 2009

31

User Datagram Protocol(UDP):
An Analogy

Example UDP applications
Multimedia, voice over IP

UDP
 Single socket to receive messages
 No guarantee of delivery
 Not necessarily in-order delivery
 Datagram – independent packets
 Must address each packet

Postal Mail
 Single mailbox to receive letters
 Unreliable 
 Not necessarily in-order delivery
 Letters sent independently
 Must address each reply

Thursday, August 27, 2009

32

Transmission Control
Protocol (TCP): An Analogy

TCP
 Reliable – guarantee delivery
 Byte stream – in-order delivery
 Connection-oriented – single

socket per connection
 Setup connection followed by

data transfer

Telephone Call
 Guaranteed delivery
 In-order delivery
 Connection-oriented
 Setup connection followed by

conversation

Example TCP applications
Web, Email, Telnet

Thursday, August 27, 2009

33

Transport Service Requirements
of Common Applications

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps
elastic

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

file transfer
e-mail

web documents
real-time audio/

video
stored audio/video
interactive games

financial apps

Application Data loss Bandwidth Time Sensitive

Interactions between layers are important.
»persistent HTTP
»encryption and compression
»MPEG frame types. Loss & real-time video.

Thursday, August 27, 2009

34

Server and Client

TCP/UDP

IP

Ethernet Adapter

Server

TCP/UDP

IP

Ethernet Adapter

Clients

Server and Client exchange messages over the
network through a common Socket API

Socket API

hardware

kernel
space

user
spaceports

Thursday, August 27, 2009

