
Internetworking in a 
day

Day 1 of 2

Carnegie Mellon 15-440 - Distributed Systems

Thursday, August 27, 2009



Key Things to Watch 
For

• Modularity, Layering, and Decomposition:  Techniques 
for dividing the work of building systems;  hiding the 
complexity of components from each other;  hiding 
implementation details to deal with heterogeneity

• Resource sharing and isolation

• Models and assumptions about the environment and 
components

• and...
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Dist. Sys challenges

• Heterogeneity  (ex:  how many different types of 
devices are there on the Internet?)

• Scale (how big is the Internet?);

• Perhaps:  Geography (speed of light is a bummer)

• Security (what a mess is the Internet?)

• Failure Handling (how reliable is software?)

• Concurrency
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Networks

• Broadly speaking:

• Circuit-switched (the phone network of 
old)

• Packet-switched (the Internet)

• We’re only talking about the latter.  What 
does this mean?  It’s all about sharing.
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How do 2 nodes share 
a (wire, other medium?)

Multiplexing!
Talk at different frequencies (TV!)

Take turns -- time (long?  circuits!  short fixed?  TDMA)
Packets (time, but not fixed)
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Statistical Multiplexing

Switches arbitrate between inputs

Can send from any input that’s ready
» Links never idle when traffic to send
» (Efficiency!)

What networks can we build with these tools?
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Internets

• An “internet”:  A network of networks

• The Internet:  a global collection of over 18,000 
individual networks that speak a common protocol 
(IP) and can talk to each other.

• The history:  Uniting a mess of different, 
incompatible networks

• Option 1:  Protocol translators

• Option 2:  a common protocol
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What is a Protocol

 An agreement between 
parties on how 
communication should take 
place.

 Protocols may have to define 
many aspects of the 
communication.

 Syntax:
» Data encoding, language, etc.

 Semantics:
» Error handling, termination, ordering 

of requests, etc.
 Protocols at hardware, 

software, all levels!
 Example:  Buying airline 

ticket by typing.
 Syntax:  English, ascii, lines 

delimited by “\n”

Friendly greeting

Muttered reply

Destination?

Pittsburgh

Thank you
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Interfaces

Each protocol offers an interface to its users, 
and expects one from the layers on which it 
builds

» Syntax and semantics strike again
– Data formats
– Interface characteristics, e.g. IP service model

Protocols build upon each other
» Add value

– E.g., a reliable protocol running on top of IP
» Reuse

– E.g., OS provides TCP, so apps don’t have to rewrite
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Common protocol

• Where to unifiy?

• How can you physically connect machines?

• Optical, Electrical, Wireless, Carrier Pigeon, ...

• Hm.  Lots of diversity there -- we probably 
shouldn’t define the common layer as a physical 
one.
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A Layered Network Model

The Open Systems Interconnection (OSI) Model.
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How do you talk in a 
medium?

• Once you’ve established a physical connection ... how do you 
signal data?

• 1s and 0s...

• separating messages...

• The answer to this depends a lot on the characteristics of the 
physical medium

• Example:  point-to-point optical network with a cable in each 
direction

• vs. shared wireless where your transmissions can be 
overheard by others

• This is the “link” layer, and it’s nice to be able to adapt on a per-
technology basis
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What about 
applications?

• You could standardize the mail exchange format 
(it’s been done...);

• and then the news format ... and the www 
format ... and the skype format .. and .. and ... and...

• Ew!  Inhibits deployment of new applications - 
results in the phone network.  Every network 
would have to understand every application 
protocol.

Thursday, August 27, 2009



Internet Goals

 Fundamental goal:  Effective network interconnection

 Goals, in order of priority:
1. Continue despite loss of networks or gateways
2. Support multiple types of communication service
3. Accommodate a variety of networks
4. Permit distributed management of Internet resources
5. Cost effective
6. Host attachment should be easy
7. Resource accountability

Principle:  Fate Sharing
Make ability to communicate depend only on 

entities strictly needed...
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Survivability

If network disrupted and reconfigured
» Communicating entities should not care!
» No higher-level state reconfiguration
» Ergo, transport interface only knows “working” and “not 

working.”  Not working == complete partition.
How to achieve such reliability?

» Where can communication state be stored?

Network Host

Failure handing Replication “Fate sharing”

Net Engineering Tough Simple

Switches Maintain state Stateless

Host trust Less More
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Fate Sharing

Lose state information for an entity if (and 
only if?) the entity itself is lost.

Examples:
» OK to lose TCP state if one endpoint crashes

– NOT okay to lose if an intermediate router reboots
» Is this still true in today’s network?

– NATs and firewalls
Survivability compromise:  Heterogenous 

network -> less information available to end 
hosts and Internet level recovery mechanisms

Connection 
State StateNo State
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Soooo...

TCP pushed to endpoints for survivability 
» Connections can re-establish if intermediate routers crash and 

reboot.  Good!

Goal:  Minimal requirements to interconnect 
networks

IP is about the simplest thing.



17
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IP packets

Full diagram in slides...

Important bits:
» Version
» Length
» Source IP address
» Dest IP address
» Protocol ID to demux to next layer up...

18

V/HL TOS Length
ID Flags/Offset

TTL Prot. H. Checksum
Source IP address

Destination IP address
Options..
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The Internet Protocol Suite
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How to combine protocols?

In networking, often encapsulate
eg IP packets sent in Ethernet packets;
TCP packets sent in IP packets;
HTTP request sent as...

a stream of TCP packets inside IP packets 
inside foo...

In OS, more likely to build on top of the 
abstraction, but not necessarily carry headers 
through

20
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Questions to ask

What is the interface between components?
» IP:  send / receive packets

What are the semantics (promise) made?
» IP:  “Best-effort” delivery -- we’ll try to get your packets there, 

but we might drop them
» or re-order them
» or change the contents
» or let someone listen to them

We could just as easily ask these questions 
about, say, an operating system, or a 
filesystem.  Same principle is at work.

And to reason about them, we might abstract 
them into models... 21
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System Models

ISO model of the network stack
» (note differences from TCP/IP model)

Model of a communication channel
» Latency - how long does it take for the first bit to reach 

destination
» Capacity - how many bits/sec can we push through?  (Often 

termed “bandwidth”)
» Jitter - how much variation in latency?
» Loss / Reliability - can the channel drop packets?
» Reordering

22
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Interaction models

And can even model how processes 
communicate

» “Synchronous” model:  upper and lower bounds of time to 
execute a step of a process

» Messages received within bounded time
» Each computer’s clock has bounded error from “true” time

Asynchronous model (the Internet...)
» steps may take unbounded time or fail
» unbounded delay and re-ordering
» no accurate local clock

23
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Failure models

Fail-stop:
» When something goes wrong, the process stops / crashes / etc.

Fail-slow or fail-stutter:
» Performance may vary on failures as well

Byzantine:
» Anything that can go wrong, will.
» Including malicious entities taking over your computers and 

making them do whatever they want.

These models are useful for proving things;
The real world typically has a bit of everything.  

Deciding which model to use is important! 24
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Model Example:  pw cracker

Project 1:  Build a password cracker
Server --- many clients
Communication:

» Send job
» ACK job
» do some work
» send result to server
» (repeat)

IP communication model:
» Messages may be lost, re-ordered, corrupted (we’ll ignore 

corruption, mostly, except for some sanity checking)
Fail-stop node model:

» You don’t need to worry about evil participants faking you out. 25
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Protocols and Models

An interesting thing...
» We often build protocols that provide “simpler” models

» Example:  TCP
» Provides reliable, in-order, mostly no-corruption, stream-

oriented communication

» so that programmers don’t have to implement these features in 
every application

» But note limitations:  TCP can’t turn a byzantine failure model 
into a fail-stop model...

26
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Designing applications

Application architecture
» Client-server?  (vs p2p vs all in one)
» Application requirements

Application level communication
» TCP vs. UDP
» Addressing

Application examples (Lecture 4).
» ftp, http
» End-to-end argument discussion
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Applications and 
Application-Layer Protocols

Application: communicating, 
distributed processes

»Running in network hosts in “user 
space”

»Exchange messages to implement 
app

»e.g., email, file transfer, the Web
Application-layer protocols

»One “piece” of an app
»Define messages exchanged by 

apps and actions taken
»Use services provided by lower 

layer protocols
Sockets API refresher next 
week (remember from 213)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical
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Client-Server Paradigm
Typical network app has two pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
 Initiates contact with server (“speaks 

first”)
 Typically requests service from server, 
 For Web, client is implemented in 

browser; for e-mail, in mail reader
Server:
 Provides requested service to client
 e.g., Web server sends requested Web 

page, mail server delivers e-mail

 (We’ll cover p2p at semester end)

request

reply
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What Transport Service 
Does an Application Need?

Data loss
 Some applications (e.g., audio) 

can tolerate some loss
 Other applications (e.g., file 

transfer, telnet) require 100% 
reliable data transfer 

Timing
 Some applications (e.g., 

Internet telephony, 
interactive games) require 
low delay to be “effective”

Bandwidth
 Some applications (e.g., multimedia) require a minimum amount of 

bandwidth to be “effective”
 Other applications (“elastic apps”) will make use of whatever bandwidth 

they get 
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User Datagram Protocol(UDP): 
An Analogy

Example UDP applications
Multimedia, voice over IP

UDP
 Single socket to receive messages
 No guarantee of delivery
 Not necessarily in-order delivery
 Datagram – independent packets
 Must address each packet

Postal Mail
 Single mailbox to receive letters
 Unreliable 
 Not necessarily in-order delivery
 Letters sent independently         
 Must address each reply
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Transmission Control 
Protocol (TCP): An Analogy 

TCP
 Reliable – guarantee delivery
 Byte stream – in-order delivery
 Connection-oriented – single 

socket per connection
 Setup connection followed by 

data transfer

Telephone Call
 Guaranteed delivery
 In-order delivery
 Connection-oriented 
 Setup connection followed by 

conversation

Example TCP applications
Web, Email, Telnet
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Transport Service Requirements 
of Common Applications

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above 
few Kbps
elastic

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

file transfer
e-mail

web documents
real-time audio/

video
stored audio/video
interactive games

financial apps

Application Data loss Bandwidth Time Sensitive

Interactions between layers are important.
»persistent HTTP
»encryption and compression
»MPEG frame types.  Loss & real-time video.
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Server and Client

TCP/UDP

IP

Ethernet Adapter

Server

TCP/UDP

IP

Ethernet Adapter

Clients

Server and Client exchange messages over the 
network through a common Socket API

Socket API

hardware

kernel 
space

user 
spaceports
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