15-440 Recitation 7: The CAP Theorem

Vijay Vasudevan

Outline

- Questions on Part 3?
- The CAP Theorem

Acids and Bases

- Classical Distributed systems: ACID semantics
 - Atomic
 - Consistent
 - Isolated
 - Durable
- Modern Internet systems: BASE semantics
 - Basically Available
 - Soft-state
 - Eventually consistent

Consistency matters

• (example)

Availability matters

 Amazon being down for I minute = loss of \$10,000 in revenue

Partitions happen

- In the Internet
 - (prefix hijacking, fiber line cuts, etc.)
- Even in datacenters
 - Google, Amazon report network partitions

Can we have it all?

- Strong Consistency
- High Availability
- Partition Tolerance

The CAP Conjecture

 Eric Brewer at Berkeley made the CAP conjecture in 2000

 Conjecture: you can have only two of the three properties

Consistency and Availability

- Examples include:
 - Tightly coupled clusters, databases
- 2PC, cache consistency protocols abound

Consistency and Partition Tolerance

- Distributed databases, locking, quorums
- Techniques:
 - Strict locking
 - Partitions with minority don't work

Availability and Partition Tolerance

- Design of many internet services
- Examples: DNS, caches, large-scale keyvalue stores
- Use TTL/state for eventual consistency, out-of-band conflict resolution

CAP Theorem

 Proven in 2002 by Seth Gilbert, Nancy Lynch

• We'll go over a part of the proof

In reality

- Systems are a neutral mix of ACID and BASE
- ACID *required* for monetary transactions
- BASE for things like shopping cart, DNS