
15-440 Recitation 5:
Intro to DFS Lab cont.

Vijay Vasudevan

1

Announcements

• DFS Lab Part 1

• Due tomorrow, October 8 at 11:59pm

• Updated rpctest.cc available on assn page

• Reduces number of threads in concurrent_test 
(should run more quickly with RPC_LOSSY=5)

• DFS Lab Part 2, 3 out tomorrow

• Midterm coming up...

2

Recall: you’re building a 
DFS!

• 4 stages, each building on each other

1. Lock server,  at-most-once RPC semantics

2. Implement extent server; create/lookup/
readdir FUSE ops

3. Implement read/write/open/setattr

4. Implement mkdir/unlink, integrate locks!

3

Today: Part 2

• Discussing Part 2 today

• May discuss parts of Parts 3-4 if time

4



Outline

• Extent server

• FUSE!

• Semantics of filesystem calls

5

What you’ve built so far*

• Lock server

• Can acquire/release arbitrary lock ids

• Augmented RPC framework with at-most-
once RPC semantics

*so far = as of 11:59pm tomorrow...
6

Frangipani

Program

Frangipani file 
server

Distributed 
lock service

Petal distributed 
virtual disk

Physical disks

User
program

User
program

User
program

Frangipani
file server

Frangipani
file server

Distributed
lock service Petal

distributed virtual
disk service

Physical disks

Figure 1: Frangipani layering. Several interchangeable Frangi-
pani servers provide access to one set of files on one Petal virtual
disk.

Figure 1 illustrates the layering in the Frangipani system. Multi-
ple interchangeable Frangipani servers provide access to the same
files by running on top of a shared Petal virtual disk, coordinat-
ing their actions with locks to ensure coherence. The file system
layer can be scaled up by adding Frangipani servers. It achieves
fault tolerance by recovering automatically from server failures
and continuing to operate with the servers that survive. It provides
improved load balancing over a centralized network file server by
splitting up the file system load and shifting it to the machines that
are using the files. Petal and the lock service are also distributed
for scalability, fault tolerance, and load balancing.
Frangipani servers trust one another, the Petal servers, and the

lock service. Frangipani is designed to run well in a cluster of
workstations within a single administrative domain, although a
Frangipani file system may be exported to other domains. Thus,
Frangipani can be viewed as a cluster file system.
We have implemented Frangipani under DIGITAL Unix 4.0.

Due to Frangipani’s clean layering atop the existing Petal service,
we were able to implement a working system in only a few months.
Frangipani is targeted for environments with program develop-

ment and engineering workloads. Our tests indicate that on such
workloads, Frangipani has excellent performance and scales up to
the limits imposed by the network.

2 System Structure

Figure 2 depicts one typical assignment of functions to machines.
The machines shown at the top run user programs and the Frangi-
pani file server module; they can be diskless. Those shown at the
bottom run Petal and the distributed lock service.
The components of Frangipani do not have to be assigned to

machines in exactly the way shown in Figure 2. The Petal and
Frangipani servers need not be on separate machines; it would
make sense for every Petal machine to run Frangipani as well,
particularly in an installation where the Petal machines are not
heavily loaded. The distributed lock service is independent of the
rest of the system; we showone lock server as running oneach Petal
server machine, but they could just as well run on the Frangipani
hosts or any other available machines.

2.1 Components
As shown in Figure 2, user programs access Frangipani through
the standard operating system call interface. Programs running
on different machines all see the same files, and their views are
coherent; that is, changesmade to a file or directory ononemachine

Petal
server

Lock
server Petal

server

Lock
server Petal

server

Lock
server

Petal virtual disk

Network

User programs

File system switch

Frangipani
file server module

Petal
device driver

User programs

File system switch

Frangipani
file server module

Petal
device driver

Figure 2: Frangipani structure. In one typical Frangipani con-
figuration, some machines run user programs and the Frangipani
file server module; others run Petal and the distributed lock ser-
vice. In other configurations, the same machines may play both
roles.

are immediately visible on all others. Programs get essentially the
same semantic guarantees as on a local Unix file system: changes
to file contents are staged through the local kernel buffer pool
and are not guaranteed to reach nonvolatile storage until the next
applicable fsync or sync system call, but metadata1 changes
are logged and can optionally be guaranteed non-volatile by the
time the system call returns. In a small departure from local file
system semantics, Frangipani maintains a file’s last-accessed time
only approximately, to avoid doing a metadata write for every data
read.
The Frangipani file server module on each machine runs within

the operating system kernel. It registers itself with the kernel’s file
system switch as one of the available file system implementations.
The file server module uses the kernel’s buffer pool to cache data
from recently usedfiles. It reads andwrites Petal virtual disks using
the local Petal device driver. All the file servers read and write the
same file system data structures on the shared Petal disk, but each
server keeps its own redo log of pending changes in a distinct
section of the Petal disk. The logs are kept in Petal so that when
a Frangipani server crashes, another server can access the log and
run recovery. TheFrangipani servers have no need to communicate
directly with one another; they communicate only with Petal and
the lock service. This keeps server addition, deletion, and recovery
simple.
The Petal device driver hides the distributed nature of Petal,

making Petal look like an ordinary local disk to higher layers of
the operating system. The driver is responsible for contacting the

1We define metadata as any on-disk data structure other than the contents of an
ordinary file.

7

YFS

• YFS is much simpler

• One extent, lock server

• No “virtual disk”

• Integrates with FUSE

8



The extent server

• Don’t have to deal with storing data on 
disk: you will store contents in memory

• map<inode, std::string>

• All yfs_client operations synchronize with 
same extent server

9

example: getattr

extent_protocol::attr a;
ec->getattr(inum, a);

yfs_client

extent_client::getattr(extentid_t eid, 
                      attr &attr)
{
  extent_protocol::status ret = extent_protocol::OK;
  ret = cl->call(extent_protocol::getattr, eid, attr);
  return ret;
}

extent_client

extent_server::getattr(extentid_t id, attr &a)
{
  if(attrmap.find(id) != attrmap.end()){
        a = attrmap[id];
        return extent_protocol::OK;
  } else {
        return extent_protocol::NOENT;
  }

}

extent_server
RPC

10

Your job

• Extend extent_server to support

• put(extentid, string, ...)

• get(extentid, string&)

• remove(extentid, ...)

• See extent_protocol.h and extent_smain.cc

• Later you will likely add more!

• Must properly deal with ctime/atime/mtime

11

Data formats at extent server

• Directories maintain a mapping of filenames 
to inode numbers

• if root (inode 1) has two files “file1”, “file2”:

• get(1) might return 

file1:3983293923

file2:3384927553

You can choose how you store 
this information as a string

12



Metadata time mgmt

• atime: access time

• Updated whenever file contents accessed

• Set to 0 on file creation

• mtime: modification time

• Updated when file contents modified

• ctime: change time

• Updated whenever metadata modified

13

FUSE

• Filesystem in Userspace

14

Mapping FUSE functions

  fuseserver_oper.getattr    = fuseserver_getattr;
  fuseserver_oper.statfs     = fuseserver_statfs;
  fuseserver_oper.readdir    = fuseserver_readdir;
  fuseserver_oper.lookup     = fuseserver_lookup;
  fuseserver_oper.create     = fuseserver_create;
  fuseserver_oper.mknod      = fuseserver_mknod;

  
  /* Uncomment these 4 lines for LAB 3 */
  //fuseserver_oper.open       = fuseserver_open;
  //fuseserver_oper.read       = fuseserver_read;
  //fuseserver_oper.write      = fuseserver_write;
  //fuseserver_oper.setattr    = fuseserver_setattr;
  
  /* Uncomment these 4 lines for LAB 4 */
  //fuseserver_oper.unlink     = fuseserver_unlink;
  //fuseserver_oper.mkdir      = fuseserver_mkdir;

In fuse.cc::main

} you implement these
in part 2

15

An example

void
fuseserver_getattr(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi)
{
    struct stat st;
    yfs_client::inum inum = ino;    
    yfs_client::status ret;

    ret = getattr(inum, st);
    if(ret != yfs_client::OK){
      fuse_reply_err(req, ENOENT);
      return;
    }
    fuse_reply_attr(req, &st, 0);
}

In fuse.cc

See http://fuse.sourceforge.net/doxygen/fuse__lowlevel_8h.html for more

16



CREATE/MKNOD

• Generate inode number (rand())

• This is called on files: make sure inode 
has MSB set to 1

• Directories have MSB set to 0

• Create the file at the extent server

• Add the name to inode mapping to 
parent info at extent server

17

Lookup

• Given: filename, parent inode

• Look through parent directory list

• Find inode that maps from filename

• Getattr on that inode

• Fill in return structure (fuse_entry_param)

18

Readdir

• Given: inode number for a directory

• Get filename:inode mapping for that dir

• For each filename:inode pair

• call dirbuf_add(...) function provided

19

At this point...

• You will be able to create empty files in the 
root directory and do an ls on the root

• You’re not yet storing files...

20



Testing

• ./start.sh

• ./test-lab-2.pl

• ./stop.sh

• test-lab-2.pl creates a bunch of files, tests 
whether the files the script created are 
there

21

Parts 3 and 4

• Part 3: You implement open, read, write, 
setattr

• Part 4: You implement mkdir, unlink, and 
locking

• Will be more straightforward having done 
part 2, but we’ll briefly cover this after the 
midterm.

22


