
15-440 Recitation 4:
Intro to DFS Lab

Vijay Vasudevan

Announcements

• DFS Lab Part 1 out

• Due next Thursday, October 8 at
11:59pm

• You need to have partners!

• Final exam dates available, FYI.

You build a DFS!

• 4 stages, each building on each other

1. Lock server, at-most-once RPC semantics

2. Implement extent server; create/lookup/
readdir FUSE ops

3. Implement read/write/open/setattr

4. Implement mkdir/unlink, integrate locks!

• You have ~1 month to do it, you might need
it all

Today: Part 1

• Implementing the lock server

• Provide mutual exclusion to ‘lock
resources’

• Using pthread mutexes, condition
variables!

• Implementing at-most-once RPC semantics

Using Virtual Machines

• VirtualBox virtualizing software

• We will provide the base Ubuntu OS image

• Root password is “systems” if you want
other packages

• sudo apt-get install package

• Demo....

Providing mutual
exclusion over the net

• In the lab: lock is a 64-bit number

• Client might:

• acquire(lock_a); do work; release(lock_a);

• You must create the lock if it doesn’t yet
exist on the server

Example tester
% ./lock_tester 3772

simple lock client

acquire a release a acquire a release a

acquire a acquire b release b release a

test2: client 0 acquire a release a

test2: client 2 acquire a release a

...

What’s provided

• Simple RPC framework, skeleton for
lockserver code

• What it does: handles setting up sockets,
marshalling/unmarshalling basic data types,
sending over TCP (whew)

• What it doesn’t: does not keep track of
RPC request state; duplicate RPCs are
invoked twice! :(

Example RPC call
lock_protocol::status

lock_server::stat(int clt, lock_protocol::lockid_t lid, int &r)

{

 lock_protocol::status ret = lock_protocol::OK;

 printf("stat request from clt %d\n", clt);

 r = 0;

 return ret;

}

In lock server main:

 lock_server ls;

 rpcs server(htons(atoi(argv[1])));

 server.reg(lock_protocol::stat, &ls, &lock_server::stat);

% make
% ./lock_server 3772
% ./lock_demo 3772
stat request from clt 1450783179
stat returned 0

Your job for lock server
lock_protocol::status lock_server::acquire(int clt, lock_protocol::lockid_t lid, ...)

{

// Does lock exist?

// Is it available?

// If not...

// when function returns, only the calling client should own the lock.

}

lock_protocol::status lock_server::release(int clt, lock_protocol::lockid_t lid, ...)

{

 // Can assume lock exists (no malicious clients)

 // Unlock resource

 // Notify appropriate parties

}

RPC server spawns a thread for every RPC call

Does it work?

• RPC_LOSSY: drops, duplicates, delays.

• Run lock_tester with RPC_LOSSY=0

• Now try running it with RPC_LOSSY=5

• hmm... it should hang or error. FAIL!

Why?

• No at-most-once RPC semantics
implemented...yet.

• If reply dropped, duplicate sent:

• acquire(a), acquire(a)..............................

RPC reliability

• If RPC request dropped, need to resend

• (timeouts!)

• If RPC request delayed, might try to resend.

• (timeouts will cause duplicate to be sent)

• If RPC framework duplicates request

• need to ensure request applied once!

Implementing at-most-
once

• Your job

• Start the timeout thread in rpc server
constructor

• On server: Manage state of RPCs sent,
replies

Strawman

• Remember every RPC call

• Client sends a unique RPC identifier

• Remember every RPC reply

• To avoid invoking the actual function

• What’s the problem with this approach?

Sliding window RPCs

Assume the following sent by client:

marshall m1 << clt nonce // client id

 << svr nonce // server id

 << proc // procedure number (bind, acquire, etc).

 << myxid // unique request id for this RPC

 << xid_rep_window.front() // Last out-of-order RPC reply received

 << req.str(); // Data

But we need some additional info from the client

Client’s Reply window

• Keeps track of “outstanding” replies.

• Example.

Sliding window RPCs
Sent by client:

marshall m1 << clt nonce // client id

 << svr nonce // server id

 << proc // procedure number (bind, acquire, etc).

 << myxid // unique request id for this RPC

 << xid_rep_window.front() // Last out-of-order RPC reply received

 << req.str(); // Data

On server:

You must use the client id, xid, and last out of order RPC

1) Check whether the request is new, in progress, done, or forgotten

2) Figure out which replies you can forget

3) Keep track of replies of the local RPC calls to ensure at-most-once.

At the end

% export RPC_LOSSY=5
% ./lock_server 3772 &

% ./lock_tester 3772

...

all tests passed
% ./rpctest

simple_tests

...
all tests passed

Things you’ll need to
know

• You will be required to know a little bit
about C++ STL data structures for Proj 2

• pthread mutexes, condition variables

• Read the man pages!

• Make sure you initialize them

