
Project 1 Q&A
Design & Modularity

15-440 Recitation 2
Vijay Vasudevan

Carnegie Mellon University

Thursday, September 10, 2009

Announcements

• Project 1 due September 17, before
class

• Project 1 Documentation Updates
– Range ordering updated to match tester

• 1234567890 (different than ASCII ordering)
– Fix to cracker_checker:

• mkdir testing
• cp cracker_checker.sh testing

2

Thursday, September 10, 2009

Agenda

• Project 1 Q&A

• Leftover time: Design and Modularity

3

Thursday, September 10, 2009

Thinking about Design

• How do you start thinking about how a
program should work?

• Data-centric programs:
– What data does it operate on?
– How does it store it?

• Protocol-centric programs
– How they interact with the rest of the world
– (Maybe “Interface-centric”)

Thursday, September 10, 2009

Design Principles

• Goal: pain management

• Be able to develop independently
• Avoid the big brick end-of-semester wall
• Stay motivated

Thursday, September 10, 2009

P1: Don’t Repeat Yourself

• Aka “DRY”
• Like factoring out common terms…
• If you’re copy/pasting code or writing

“similar feeling” code, perhaps it should
be extracted into its own chunk.

• Small set of orthogonal interfaces to
modules

Thursday, September 10, 2009

Modularity example

7

 void node_mgr::send_put_response(string* key,
 uint32_t c) {

 PutResponse pr(myIP.data(), myIP.size(),
 key->data(), key_size,
 c);

 string* send_data = pr.to_string();
 if (send_data != NULL) {
 int err_code = 0;
 if ((err_code = send(feSocket,

 (void *)send_data->data(),
 pr.size(), 0)) < 0) {

 perror("send");
 cout << "cannot send" << err_code << endl;
 }
 delete send_data;
 }
}

Thursday, September 10, 2009

Modularity example

8

void node_mgr::send_get_response(string* key,
 string* value,
 uint32_t c) {

GetResponse gr(myIP.data(), myIP.size(),
 key->data(), key->size(),
 value->data(), value->size(),
 c);

 string* send_data = gr.to_string();
 if (send_data != NULL) {
 int err_code = 0;
 if ((err_code = send(feSocket,

 (void *)send_data->data(),
 gr.size(), 0)) < 0) {

 perror("send");
 cerr << "cannot send:" << err_code << endl;
 }
 delete send_data;
 }

}

Thursday, September 10, 2009

Breaking up functions

9

void constructMessage(Message *m, string *send_data) {
 int data_size = m->ByteSize() + sizeof(uint32_t);
 send_data->reserve(data_size);
 uint32_t msg_size = htonl(data_size);
 send_data->append((const char*)&msg_size,
 sizeof(msg_size));
 if (!m->AppendToString(send_data)) {
 ...
 }
}

void constructAndSend(Message *m, int socket, bool cerr) {
 string send_data;
 constructMessage(m, &send_data);

 int err_code = send(socket,
 (void *)send_data.data(),
 send_data.size(), 0);
 if (err_code < 0) {
 ...

Thursday, September 10, 2009

End result

10

void node_mgr::send_put_response(string* key, uint32_t c) {
 FawnKVMesg fm;
 fm.set_type(PUTRSP);
 PutResponse *prp = fm.mutable_prp();
 prp->set_key(*key);
 prp->set_continuation(c);
 constructAndSend(&fm, feSocket, false);
}

void node_mgr::send_get_response(string* key, string* val,
 uint32_t c) {
 FawnKVMesg fm;
 fm.set_type(GETRSP);
 GetResponse *grp = fm.mutable_grp();
 grp->set_key(*key);
 grp->set_value(val);
 grp->set_continuation(c);
 constructAndSend(&fm, feSocket, false);
}

Thursday, September 10, 2009

P2: Hide Unnecessary Details

• aka, “write shy code”
– Doesn’t expose itself to others
– Doesn’t stare at others’ privates
– Doesn’t have too many close friends

• Benefit:
– Can change those details later without

worrying about who cares about them

Thursday, September 10, 2009

Example 1:
• int send_message_to_user(
 struct user *u,

 char *message)

• int send_message_to_user(

 int user_num,
 int user_sock,

 char *message)

Thursday, September 10, 2009

Example 2

int send_to_user(char *uname, char *msg){
 …
 struct user *u;

 for (u = userlist; u != NULL; u = u->next) {
 if (!strcmp(u->username, uname)

 …

Consider factoring into:
 struct user *find_user(char *username)

• Hides detail that users are in a list
– Could re-implement as hash lookup if bottleneck

• Reduces size of code / duplication / bug count
– Code is more self-explanatory (“find_user” obvious), easier to read, easier

to test

Thursday, September 10, 2009

P3: Be consistent

• Naming, style, etc.
– Doesn’t matter too much what you choose
– But choose some way and stick to it
– printf(str, args) fprintf(file, str, args)

– bcopy(src, dst, len) memcpy(dst, src, len)

• Resources: Free where you allocate
– Consistency helps avoid memory leaks

Thursday, September 10, 2009

Error handling

• Detect at low level, handle high
– Bad:
 malloc() { … if (NULL) abort(); }

– Appropriate action depends on program

– Be consistent in return codes and
consistent about who handles errors

Thursday, September 10, 2009

Incremental Happiness

• Not going to write program in one sitting
• Cycle to go for:

– Write a bit
– Compile; fix compilation errors
– Test run; fix bugs found in testing

• Implies frequent points of
“kinda-working-ness”

Thursday, September 10, 2009

Development Chunks

• Identify building blocks (structures, algos)
– Classical modules with clear functions
– Should be able to implement some with rough

sketch of program design
• Identify “feature” milestones

– Pare down to bare minimum and go from there
– Try to identify points where testable
– Helps keep momentum up!

• Examples from password cracker?

Thursday, September 10, 2009

Testability

• Test at all levels
– Recall goal: reduced pain!
– Bugs easiest to find/correct early and in

small scope. Ergo:
• Unit tests only test component (easier to locate)
• Early tests get code while fresh in mind
• Write tests concurrently with code. Or before!

– Also need to test higher level functions
• Scripting languages work well here

Thursday, September 10, 2009

440 Testability

• Unit test examples:
– Any hash, list, etc., classes you write
– Machinery that buffers input for line-based

processing
• Are you serializing properly?

– Others?

Thursday, September 10, 2009

Bigger tests

• More structured test framework early
– “Connect” test (does it listen?)
– “Timeout” test (do timeouts get triggered?)
– …

Thursday, September 10, 2009

Testing Mindset

• Much like security: Be Adversarial
• Your code is the enemy. Break it!

– Goal of testing is not to quickly say “phew,
it passes test 1, it must work!”

– It’s to ensure that 5 days later, you don’t
spend 5 hours tracking down a bug in it

• Think about the code and then write
tests that exercise it. Hit border cases.

Thursday, September 10, 2009

Design & Debugging

• Covering more next week, but…
• Strongly, strongly encourage people to

use a consistent DEBUG()-like macro
for debugging

• Leave your debugging output in
• Make it so you can turn it on/off

Thursday, September 10, 2009

