Time and synchronization

(“There’s never enough time…”)
Today’s outline

• Time in distributed systems
 – A baseball example
• Synchronizing real clocks
 – Cristian’s algorithm
 – The Berkeley Algorithm
 – Network Time Protocol (NTP)
• Logical time
• Lamport logical clocks
Distributed time

• The notion of time is well-defined (and measurable) at each single location
 – But the relationship between time at different locations is unclear
 – e.g., packet-sending from HW 1 #6:
A baseball example

• Four locations: pitcher’s mound, first base, home plate, and third base
• Ten events:
 e₁: pitcher throws ball to home
 e₂: ball arrives at home
 e₃: batter hits ball to pitcher
 e₄: batter runs to first base
 e₅: runner runs to home
 e₆: ball arrives at pitcher
 e₇: pitcher throws ball to first base
 e₈: runner arrives at home
 e₉: ball arrives at first base
 e₁₀: batter arrives at first base
A baseball example

- Pitcher knows e_1 happens before e_6, which happens before e_7
- Home plate umpire knows e_2 is before e_3, which is before e_4, which is before e_8, ...
- Relationship between e_8 and e_9 is unclear
Ways to synchronize

• Send message from first base to home?
 – Or to a central timekeeper
 – How long does this message take to arrive?
• Synchronize clocks before the game?
 – Clocks drift
 • million to one => 1 second in 11 days
• Synchronize continuously during the game?
 – GPS, pulsars, etc
Perfect networks

• Messages always arrive, with propagation delay exactly d

• Sender sends time T in a message

• Receiver sets clock to $T+d$
 – Synchronization is exact
Synchronous networks

- Messages always arrive, with propagation delay at most D
- Sender sends time T in a message
- Receiver sets clock to $T + D/2$
 - Synchronization error is at most $D/2$
Synchronization in the real world

- Real networks are asynchronous
 - Propagation delays are arbitrary
- Real networks are unreliable
 - Messages don’t always arrive
Cristian’s algorithm

• Request time, get reply
 – Measure actual round-trip time d

• Sender’s time was T between t_1 and t_2
• Receiver sets time to $T + d/2$
 – Synchronization error is at most $d/2$
• Can retry until we get a relatively small d
The Berkeley algorithm

- Master uses Cristian’s algorithm to get time from many clients
 - Computes average time
 - Can discard outliers
- Sends time adjustments back to all clients
The Network Time Protocol (NTP)

• Uses a hierarchy of time servers
 – Class 1 servers have highly-accurate clocks
 • connected directly to atomic clocks, etc.
 – Class 2 servers get time from only Class 1 and Class 2 servers
 – Class 3 servers get time from any server

• Synchronization similar to Cristian’s alg.
 – Modified to use multiple one-way messages instead of immediate round-trip
Real synchronization is imperfect

- Clocks never exactly synchronized
- Often inadequate for distributed systems
 - might need totally-ordered events
 - might need millionth-of-a-second precision
Logical time

• Capture just the “happens before” relationship between events
 – Discard the infinitesimal granularity of time
 – Corresponds roughly to causality
• Time at each process is well-defined
 – Definition ($e \rightarrow_i e'$): We say $e \rightarrow_i e'$ if e happens before e' at process i
Global logical time

• Definition (\rightarrow): We define $e \rightarrow e'$ using the following rules:
 – Local ordering: $e \rightarrow e'$ if $e \rightarrow_i e'$ for any process i
 – Messages: send(m) \rightarrow receive(m) for any message m
 – Transitivity: $e \rightarrow e''$ if $e \rightarrow e'$ and $e' \rightarrow e''$

• We say e “happens before” e' if $e \rightarrow e'$
Concurrency

• \rightarrow is only a partial-order
 – Some events are unrelated

• Definition (concurrency): We say e is concurrent with e' (written $e \parallel e'$) if neither $e \rightarrow e'$ nor $e' \rightarrow e$
The baseball example revisited

• $e_1 \rightarrow e_2$
 – by the message rule

• $e_1 \rightarrow e_{10}$, because
 – $e_1 \rightarrow e_2$, by the message rule
 – $e_2 \rightarrow e_4$, by local ordering at home plate
 – $e_4 \rightarrow e_{10}$, by the message rule
 – Repeated transitivity of the above relations

• $e_8 \parallel e_9$, because
 – No application of the \rightarrow rules yields either $e_8 \rightarrow e_9$ or $e_9 \rightarrow e_8$
Lamport logical clocks

• Lamport clock L orders events consistent with logical “happens before” ordering
 – If $e \rightarrow e'$, then $L(e) < L(e')$

• But not the converse
 – $L(e) < L(e')$ does not imply $e \rightarrow e'$

• Similar rules for concurrency
 – $L(e) = L(e')$ implies $e \parallel e'$ (for distinct e,e')
 – $e \parallel e'$ does not imply $L(e) = L(e')$

• i.e., Lamport clocks arbitrarily order some concurrent events
Lamport’s algorithm

- Each process i keeps a local clock, L_i
- Three rules:
 1. At process i, increment L_i before each event
 2. To send a message m at process i, apply rule 1 and then include the current local time in the message: i.e., $send(m,L_i)$
 3. To receive a message (m,t) at process j, set $L_j = max(L_j,t)$ and then apply rule 1 before time-stamping the receive event
- The global time $L(e)$ of an event e is just its local time
 - For an event e at process i, $L(e) = L_i(e)$
Lamport on the baseball example

• Initializing each local clock to 0, we get

\[L(e_1) = 1 \] (pitcher throws ball to home)
\[L(e_2) = 2 \] (ball arrives at home)
\[L(e_3) = 3 \] (batter hits ball to pitcher)
\[L(e_4) = 4 \] (batter runs to first base)
\[L(e_5) = 1 \] (runner runs to home)
\[L(e_6) = 4 \] (ball arrives at pitcher)
\[L(e_7) = 5 \] (pitcher throws ball to first base)
\[L(e_8) = 5 \] (runner arrives at home)
\[L(e_9) = 6 \] (ball arrives at first base)
\[L(e_{10}) = 7 \] (batter arrives at first base)

• For our example, Lamport’s algorithm says that the run scores!
Total-order Lamport clocks

• Many systems require a total-ordering of events, not a partial-ordering
• Use Lamport’s algorithm, but break ties using the process ID
 \[L(e) = <L_i(e), i> \]
 • \(<L_i(e), i> < <L_j(e’), j> \) if either
 – \(L_i(e) < L_j(e’) \), or
 – \(L_i(e) = L_j(e’) \) and \(i < j \)