
Security, part 1

The tools

Announcements

•

HW2 due
•

HW3, Project 3 both coming soon

•

Max Krohn

guest lecture next Tuesday

Last time

•

DNS: the Domain Name System
–

A global distributed map

•

names → IP addresses
•

IP addresses → names

•

other information (e.g., domain → mail server)

•

Scalability through
–

Hierarchy of servers

–

Caching, reduced consistency

Today: Security, part 1

•

General background
•

Cryptography
–

public-key and private-key cryptography

–

DES
•

Cryptographic hashing

•

Digital signatures

Distributed systems and security

•

Distributed systems provide access to objects,
data, and functions to authorized users and
processes

•

Security goals:
–

Authenticate users/processes

•

Do not provide services to unauthenticated users
–

Privacy

•

Keep interactions with the system private
–

Availability

•

Do not allow unauthorized users to prevent access by
authorized users

Security models

•

What might an enemy/threat do to attack the
system?
–

Send messages to server, trying to emulate a client

–

Send messages to client, trying to emulate the server
–

Copy, inject, or otherwise alter messages as part of a
communication channel

•

Man-in-the-middle attack
•

Replay attack
•

Denial-of-service attacks

The network

•

Provides only simple message services
–

Messages are unreliable

–

Data is public, no privacy
–

Sender IP address is forgeable

Cryptography

•

A tool to provide authentication and
privacy

•

Typically:
–

An encryption function:

c = E(m)

–

A decryption function:

m = D(c)

•

Two basic types of cryptosystems:
–

Public-key cryptography

–

Private-key cryptography

The “ciphertext”
The “plaintext”
message to encrypt

Public-key cryptography

•

Two keys:
–

A public key Kpub

•

You give your public key to everyone you might
want to communicate with

–

A private key Kpriv
•

You keep your private key as a secret

Public-key cryptography

•

Typically:
–

Public key needed to encrypt a message:

c = E(Kpub

, m)
–

Private key needed to decrypt a message:

m = D(Kpriv

, c)

Public-key cryptography

•

The keys are large
–

Typically 1024 or 2048 bits

•

The algorithms are slow compared to
private-key crypto

Public-key cryptography

•

Security depends on hardness of
determining the private key from the public
key
–

E.g., for RSA, can determine the private key
from the public key only if we can factor large
numbers (product of two large primes)

•

Thus, breaking RSA should be as hard as factoring
•

We haven’t proven that factoring is hard, but a
thousand years worth of mathematicians haven’t
solved the problem yet!

Private-key cryptography

•

One shared key, K
–

Anyone with K

can read messages encrypted

with K
•

Typically:

c = E(K, m)
m = D(K, c)

e.g., A one-time pad

•

Choose K

uniformly at random, with |K| ≥
 |m|

c = E(K, m) = m ⊕

K
m = D(K, c) = c ⊕

K

•

Ciphertext

c

gives no information about m,
if K

used only once

•

Impractical since |K| must be ≥

|m|

XOR

Feistel

block ciphers

•

The basis of several popular private-key
cryptosystems

•

Divide m

into left half L0

and right half R0

•

Given Li

and Ri

, apply Feistel

cipher to get
Li+1

and Ri+1

•

For some function F

and
secret key Ki

:
Li+1

= Ri

Ri+1

= Li

⊕

F(Ri

, Ki

)
•

Repeated rounds “confuse
and diffuse” bits of original
message
–

Not provably secure, but
seems(!) hard to invert
without knowing each Ki

Feistel

block ciphers L0 R0

L1 R1

F K0

⊕

F K1

⊕

…

L2 R2

F K2

Inverting a Feistel

block cipher

•

Easy if you know each Ki

:
Ri

= Li+1

Ri+1

= Li

⊕

F(Ri

, Ki

)
Ri+1

⊕

F(Ri

, Ki

) = Li

⊕

F(Ri

, Ki

) ⊕

F(Ri

, Ki

)
Ri+1

⊕

F(Ri

, Ki

) = Li

Li

= Ri+1

⊕

F(Li+i

, Ki

)

•

Note:
–

Can invert the cipher without inverting F

–

Inversion is essentially the same as computing the
cipher, but using the keys in the reverse order

Can compute
each Ri

and Li

using Ri+1

and Li+1

DES: Data Encryption Standard

•

A 64-bit block cipher
–

2 permutation rounds

–

16 Feistel-based rounds
•

56-bit secret key K

•

Developed in early 1970s
by IBM and NSA
–

Considered obsolete now
because the key size is
too small

L0 R0

L1 R1

m

L16 R16

c

…

DES’s

Feistel

function F(Ri

,Ki

)

•

Step 1: expand Ri

from 32 bits to 48 bits
–

Break Ri

into 4-bit blocks
–

Copy bits from adjacent blocks

Ri

…

…

…

48-bit Ri
’

DES’s

Feistel

function F(Ri

,Ki

)

•

Step 2: Create Ki

from 56-bit secret key K
–

Choose 48 bits from K

using a fixed, pre-

 defined series of permutations and circular
rotations

•

Step 3: Compute 48-bit Ri
’ ⊕

Ki

DES’s

Feistel

function F(Ri

,Ki

)

•

Step 4: Break Ri
’ ⊕

Ki

into 6-bit blocks
–

Use fixed 6-bit-to-4-bit mappings
(“Substitution boxes” or “S-boxes”) to
compute 32-bit Ri+1

•

NSA helped IBM choose “good” S-boxes
–

~15 years later a “new” cryptographic attack
method was discovered…but the S-boxes had
been designed to resist the attack!

Cryptographic hash functions

•

Goal: summarize (or hash) long message m

into
a short digest h: h = H(m)
–

Given h, cannot find m

–

Given H(m), cannot find m’

such that H(m)

= H(m’)
•

Modern cryptographic hash functions yield a
128-to-512-bit hash
–

MD5: 128 bits

–

SHA1: 160 bits
–

SHA2: 224 –

512 bits

Cryptographic hash functions

•

Typically use “confuse and diffuse”
techniques much like private-key crypto
–

Actually, outputting last ciphertext

blocks of an

encrypted message is not a bad hash
technique

•

3-5x faster than private-key cryptography

Digital signature goals

•

Authentication
–

Prove that a message has not been altered

•

Unforgeability
–

Prove that the message was created by a
specific person (a.k.a. the principal)

•

Non-repudiation
–

Once a message is signed, the principal
cannot deny that they signed the message

Signatures with public-key crypto

•

One option (not used in practice):
–

Encrypt with private key to sign a message:

s = E(Kpriv

, m)
Send m,s

–

Decrypt with public key to verify the signature:
m’ = D(Kpub

, s)
Check that m == m’

–

Because private key is not shared, the signature is
unforgeable

and unrepudiable

–

Because public key is shared, anyone can verify the
signature

–

A problem: public-key cryptography is slow

Signatures with public-key crypto

•

An improvement:
–

Hash the message with a cryptographic hash function first, sign
the hash:

h = H(m)
s = E(Kpriv

, h)
Send m,s

–

Use the hash function and public key to verify the signature:
h = H(m)
h’ = D(Kpub

, s)
Check that h == h’

–

Cryptographic hash functions are often 30-100x faster than
public-key cryptography

•

Public-key crypto needed just to sign the short hash
–

Hash function must be cryptographic to prevent attacker from
replacing m

with m’

such that H(m’)

==

H(m)

Signatures with private-key crypto

•

Using a cryptographic hash function H

and
shared private key K:

s = H(m

+ K)
Send m,s

•

To verify:
Compute s’ = H(m

+ K)
Check s

== s’

•

Very fast: no encryption/decryption needed
•

A problem: need to reveal private key to verify
the signature

Bit-string append
(not addition)

	Security, part 1
	Announcements
	Last time
	Today: Security, part 1
	Distributed systems and security
	Security models
	The network
	Cryptography
	Public-key cryptography
	Public-key cryptography
	Public-key cryptography
	Public-key cryptography
	Private-key cryptography
	e.g., A one-time pad
	Feistel block ciphers
	Feistel block ciphers
	Inverting a Feistel block cipher
	DES: Data Encryption Standard
	DES’s Feistel function F(Ri,Ki)
	DES’s Feistel function F(Ri,Ki)
	DES’s Feistel function F(Ri,Ki)
	Cryptographic hash functions
	Cryptographic hash functions
	Digital signature goals
	Signatures with public-key crypto
	Signatures with public-key crypto
	Signatures with private-key crypto

