
Security, part 2

The systems



Announcements

•
 

HW3, coming soon
•

 
No class next week for Thanksgiving



Last time

•
 

Max Krohn
 

and OKCupid



Last Thursday

•
 

Security, part one:  The tools
–

 
Public-

 
and private-key cryptography

–
 

Feistel
 

block ciphers and DES
–

 
Cryptographic hashing



Today:  Security, part 2

•
 

Digital signatures
•

 
Needham-Schroeder and Kerberos

•
 

Hybrid cryptographic protocols
–

 
TLS / SSL



Digital signature goals

•
 

Authentication
–

 
Prove that a message has not been altered

•
 

Unforgeability
–

 
Prove that the message was created by a 
specific person (a.k.a. the principal)

•
 

Non-repudiation
–

 
Once a message is signed, the principal 
cannot deny that they signed the message



Signatures with public-key crypto

•
 

One option (not used in practice):
–

 
Encrypt with private key to sign a message:

s = E(Kpriv

 

, m)
Send m,s

–
 

Decrypt with public key to verify the signature:
m’ = D(Kpub

 

, s)
Check that m == m’

–
 

Because private key is not shared, the signature is 
unforgeable

 
and unrepudiable

–
 

Because public key is shared, anyone can verify the 
signature

–
 

A problem:  public-key cryptography is slow



Signatures with public-key crypto

•
 

An improvement:  
–

 

Hash the message with a cryptographic hash function first, sign 
the hash:

h = H(m)
s = E(Kpriv

 

, h)
Send m,s

–

 

Use the hash function and public key to verify the signature:
h = H(m)
h’ = D(Kpub

 

, s)
Check that h == h’

–

 

Cryptographic hash functions are often 30-100x faster than 
public-key cryptography

•

 

Public-key crypto needed just to sign the short hash
–

 

Hash function must be cryptographic to prevent attacker from 
replacing m

 

with m’

 

such that H(m’)

 

==

 

H(m)



Signatures with private-key crypto

•
 

Using a cryptographic hash function H
 

and 
shared private key K:

s = H(m

 

+ K)
Send m,s

•
 

To verify:
Compute s’ = H(m

 

+ K)
Check  s

 

== s’

•
 

Very fast:  no encryption/decryption needed
•

 
A problem:  need to reveal private key to verify 
the signature

Bit-string append 
(not addition)



Needham-Schroeder and Kerberos

•
 

Goal:  to create a secure, usable system 
providing authentication and privacy 
without public-key cryptography
–

 
Will use private-key cryptography

•
 

A key problem to solve: private-key cryptography 
requires a shared private key

•
 

Will use a trusted third party to negotiate the 
shared private key



The trusted third party

•
 

Stores private keys for all users
•

 
Generates “tickets” which contain a 
session key when two parties need to 
communicate



Needham-Schroeder and Kerberos

•
 

In following diagrams:
–

 
Client C

 
initiating a connection to server S

•
 

Authentication server A
 

generates a session key 
KSC

–
 

Client C
 

has private key KC

 

, which only A
 

and 
C

 
share

–
 

Server S
 

has private key KS

 

, which only A
 

and 
S

 
share



Needham-Schroeder and Kerberos

•
 

Messages:
1:  C to A:  C,S,n

Authentication 
server A

Server SClient C

1

A nonce:  a “number used 
once.”  In Kerberos this 
is usually the time.



Needham-Schroeder and Kerberos

•
 

Messages:
1:  C to A:  C,S,n
2:  A to C:  {Kcs

 

,S,n}Kc

 

{C,S,Kcs

 

,t1
 

,t2
 

}Ks

Authentication 
server A

Server SClient C

1
2

the session key

KCS

 

,S,n

 

encrypted 
with private key KC

C,S,KCS

 

,t1

 

,t2

 
encrypted with 
private key KS

start and end 
time for KCS



Needham-Schroeder and Kerberos

•
 

Messages:
1:  C to A:  C,S,n
2:  A to C:  {Kcs

 

,S,n}Kc

 

{C,S,Kcs

 

,t1
 

,t2
 

}Ks
3:  C to S:  {request,n’,…}Ksc

 

{C,S,Kcs

 

,t1
 

,t2
 

}Ks

Authentication 
server A

Server SClient C

1
2

3



Needham-Schroeder and Kerberos

•
 

Messages:
1:  C to A:  C,S,n
2:  A to C:  {Kcs

 

,S,n}Kc

 

{C,S,Kcs

 

,t1
 

,t2
 

}Ks
3:  C to S:  {request,n’,…}Ksc

 

{C,S,Kcs

 

,t1
 

,t2
 

}Ks
4:  S to C:  {n’,response,…}Ksc

Authentication 
server A

Server SClient C

1
2

3

4



Needham-Schroeder and Kerberos

•
 

Not shown here:
–

 

In Kerberos, this is just the process for negotiating a session key 
for a new client-server connection.  There’s a separate process 
(with its own authentication server and exchange of messages) 
for initially authenticating to the Kerberos system.

–

 

The client and server typically exchange a subsession

 

key as 
part of their handshake, and use that subsession

 

key for 
encrypting subsequent communication.  (They periodically use 
the original session key to renegotiate new subsession

 

keys, to 
avoid encrypting too much information with a single private key.)

–

 

Kerberos sometimes just used for authentication, not necessarily

 
for encrypting the requests and responses themselves.  (e.g., 
AFS)



Needham-Schroeder and Kerberos

•
 

Problems:
–

 
Trust!

•
 

The trusted 3rd

 

party can authenticate as any user, 
and can read any communication

–
 

Scalability
•

 
The authentication server needs all keys

–
 

Single point of failure
•

 
If the authentication server fails, no new 
connections can be established



Scaling Kerberos

•
 

Divide the world into realms
–

 
Authentication server in each realm has 
private keys for all users in that realm, but 
none for users from other realms

–
 

In Kerberos ver. 4, each realm authentication 
server has cross-realm private keys for every 
other realm



Scaling Kerberos

1:  To initiate a connection with a server in a 
remote realm, client first sends request to 
authentication server in its own realm

Server SClient C

cmu.edu
authentication 

server

mit.edu
authentication 

server

1



Scaling Kerberos

2:  Client gets ticket-granting key; one ticket 
encrypted with cross-realm key, the other 
with C’s private key, much as before.

Server SClient C

cmu.edu
authentication 

server

mit.edu
authentication 

server

1

2



Scaling Kerberos

3&4:  Client uses ticket-granting ticket to 
authenticate to remote realm authentication 
server, which sends a session key for C

 
and S

Server SClient C

cmu.edu
authentication 

server

mit.edu
authentication 

server

1
4

3

2



Scaling Kerberos

Server SClient C

cmu.edu
authentication 

server

mit.edu
authentication 

server

1
4

3

2

5

6

5&6:  Client and server can now 
communicate much as before



Scaling Kerberos

•
 

Problems:
–

 
Realm servers can authenticate as any users 
in their realm, read private client-server 
communication

–
 

Each realm server needs cross-realm private 
key for each other realm server they might 
want to authenticate to

•
 

O(n) keys for each realm server, O(n2) keys total 
for n

 
realm servers



Scaling Kerberos

•
 

Improvements:
–

 
Kerberos ver. 5 allows multi-hop cross-realm 
authentication

•
 

Allows a hierarchy of servers
–

 

Any realm server in your authentication path can read 
your private communication

–

 

When connecting, you get the list of realm servers in 
your authentication path, so you can decide whether or 
not you trust them



Hybrid cryptosystems

•
 

Use public-key cryptography to negotiate a 
private session key

•
 

Use private-key cryptography for the 
actual session

•
 

E.g., SSH, Secure Socket Layer (SSL), 
Transport Layer Security (TLS)



Simplified SSL

•
 

Messages:
1:  request
2:  S’s X.509v3 certificate, containing its public 

key signed by a certificate authority

Server SClient C 2

1



Simplified SSL

•
 

Messages:
1:  request
2:  S’s X.509v3 certificate, containing its public key 

signed by a certificate authority
3:  Client verifies the certificate using the certificate 

authority’s public key, sends session key for 
subsequent communication (encrypted with S’s 
public key)

Server SClient C 2

1

3



Hidden from the simplified view

•
 

Hello messages initiating the 
communication

•
 

Client and server negotiate which 
cryptosystem they will use for the session

•
 

Client can send its own certificate, for 
client authentication



Hybrid cryptosystem problems

•
 

Verifying the public key / certificate in a 
usable manner is hard
–

 
SSH essentially makes you verify it

–
 

How do you get the public certificate for the 
certificate authority?

•
 

Pre-installed in web browsers
–

 

Do you trust your web browser?
–

 

Did you trust your network connection when you 
downloaded your browser?


	Security, part 2
	Announcements
	Last time
	Last Thursday
	Today:  Security, part 2
	Digital signature goals
	Signatures with public-key crypto
	Signatures with public-key crypto
	Signatures with private-key crypto
	Needham-Schroeder and Kerberos
	The trusted third party
	Needham-Schroeder and Kerberos
	Needham-Schroeder and Kerberos
	Needham-Schroeder and Kerberos
	Needham-Schroeder and Kerberos
	Needham-Schroeder and Kerberos
	Needham-Schroeder and Kerberos
	Needham-Schroeder and Kerberos
	Scaling Kerberos
	Scaling Kerberos
	Scaling Kerberos
	Scaling Kerberos
	Scaling Kerberos
	Scaling Kerberos
	Scaling Kerberos
	Hybrid cryptosystems
	Simplified SSL
	Simplified SSL
	Hidden from the simplified view
	Hybrid cryptosystem problems

