Filesystems 2

Administrative

® Remember: You're responsible for checking
announcements in some way -- bboard, RSS, web page.
(ahem: many people showed up at recitations wed...)

® We offered a very enticing suite of extra office hours
Wed, to no avalil.:)

® Questions about the homework?

® Charlie offers suggestion for news->mail program if you
want that too:“newsdeliver”

Admin 2

Remember, homework due 9/29 in class

And lab 2 will be out pretty soon, so get the h/w done
soon.

e And form groups!

Note on hw: Our goal this semester was to make the h/
w a little harder so that little on the exams came as a
surprise.

So...the h/w may be a little harder.:)

® Truth in grading: We do curve up if needed.

Filesystems

® Last time: Looked at how we could use RPC to
split filesystem functionality between client and
server

® But pretty much, we didn’t change the design

® We just moved the entire filesystem to the
server

® and then added some caching on the client in
various ways

You can go farther...

® But it requires ripping apart the filesystem
functionality into modules

® and placing those modules at different
computers on the network

® So now we need to ask...
what does a filesystem do, anyway?

® Well, there’s a disk...

® disks store bits. in fixed-length pieces
called sectors or blocks

® but a filesystem has ... files. and often
directories. and maybe permissions.
creation and modification time. and other
stuff about the files. (“metadata”)

Filesystem functionality

® Directory management (maps entries in a
hierarchy of names to files-on-disk)

® File management (manages adding, reading,
changing, appending, deleting) individual files

® Space management: where on disk to store
these things?

® Metadata management

Conventional filesystem

® Wraps all of these up together
® Useful concepts: [pictures]

® “Superblock” -- well-known location on disk where top-level filesystem info
is stored (pointers to more structures, etc.)

® “Free list” or “Free space bitmap” -- data structures to remember what's
used on disk and what's not. Why? Fast allocation of space for new files.

® “inode” - short for index node - stores all metadata about a file, plus
information pointing to where the file is stored on disk

® Small files may be referenced entirely from the inode; larger files may
have some indirection to blocks that list locations on disk

® Directory entries point to inodes

® ‘“extent” - a way of remembering where on disk a file is stored. Instead of
listing all blocks, list a starting block and a range. More compact
representation, but requires large contiguous block allocation.

Filesystem “VFS” ops

® VFS: (‘virtual filesystem®): common abstraction layer
inside kernels for building filesystems -- interface is
common across FS implementations

® Think of this as an abstract data type for filesystems

® has both syntax (function names, return values, etc)
and semantics (“don’t block on this call”, etc.)

® One key thing to note: The VFS itself may do some
caching and other management...

® in particular: often maintains an inode cache

FUSE

® The lab will use FUSE

® FUSE is a way to implement filesystems in
user space (as normal programs), but
have them available through the kernel --
like normal files

® |t has a kinda VFS-like interface

example/hello /timp/fuse
Is =1 imp/fuse libfuse
i N
slibe | glibe

userspace

kernel 1
FUSE

VES
NFS

Figure from FUSE documentation

Directory operations

® readdir(path) - return directory entries for
each file in the directory

® mkdir(path) -- create a new directory

® rmdir(path) -- remove the named directory

File operations

® mknod(path, mode, dev) -- create a new “node” (generic: a file is one type
of node; a device node is another)

® unlink(path) -- remove link to inode, decrementing inode’s reference count

® many filesystems permit “hard links” -- multiple directory entries
pointing to the same file

® rename(path, newpath)

® open -- open a file, returning a file handle
® read, write

® truncate -- cut off at particular length

® flush -- close one handle to an open file

® release -- completely close file handle

Metadata ops

® getattr(path) -- return metadata struct

® chmod / chown (ownership & perms)

Back to goals of DFS

® Users should have same view of system, be able to share files
® |ast time:

® Central fileserver handles all filesystem operations --
consistency was easy, but overhead high, scalability poor

® Moved to NFS and then AFS: Added more and more
caching at client; added cache consistency problems

® Solved using timeouts or callbacks to expire cached
contents

Protocol & consistency

® Remember last time: NFS defined operations to occur on unique
inode #s instead of names... why? idempotency. Wanted operations
to be unique.

® Related example for today when we're considering splitting up
components: moving a file from one directory to another

® What if this is a complex operation (“remove from one”,“add to
another”), etc.

® Can another user see intermediate state?? (e.g, file in both
directories or file in neither?)

® Last time: Saw issue of when things become consistent

® Presented idea of close-to-open consistency as a compromise

Scaling beyond...

® What happens if you want to build AFS for all of
CMU? More disks than one machine can handle;
more users than one machine can handle

® Simplest idea: Partition users onto different servers
® How do we handle a move across servers?

® How to divide the users? Statically? What about
load balancing for operations & for space! Some
files become drastically more popular?

“Cluster” filesystems

® Lab inspired by Frangipani, a scalable distributed
filesystem.

® Think back to our list of things that filesystems
have to do

e Concurrency management
® Space allocation and data storage

® Directory management and naming

Frangipani design

Frangipani stores all data (inodes,
Program directories, data) in petal; uses lock
server for consistency (eg, creating
Frangipani file file)
server
Distributed Petal aggregates many disks (across
lock service many machines__into one big
“virtual disk”. Simplifying

abstraction for both design

Petal distributed . :
&implementation. exports extents -

virtual disk provides allocation, deallocation,
etc.
Physica| disks Internally: maps (virtual disk, offset)

to (server, physical disk, offset)

Consequential design

User programs User programs

File system switch File system switch

1 Network |

IR S

Petal virpual disk

Figure 2: Frangipani structure. In one typical Frangipani con-
figuration, some machines run user programs and the Frangipani
file server module; others run Petal and the distributed lock ser-
vice. In other configurations, the same machines may play both
roles.

Compare with NFS/
AFS

In NFS/AFS, clients just relay all FS calls to the server;
central server.

Here, clients run enough code to know which server to
direct things to; are active participants in filesystem.

(n.b. -- you could, of course, use the Frangipani/Petal
design to build a scalable NFS server -- and, in fact,
similar techniques are how a lot of them actually are
built. See upcoming lecture on RAID, though: replication
and redundancy management become key)

Lab 2: YFS

® Yet-another File System.:)

® Simpler version of what we just talked
about: only one extent server (you don’t
have to implement Petal; single lock
server)

Each server written in C++
yfs_client interfaces with OS through fuse

Following labs will build YFS incrementally,
starting with the lock server and building
up through supporting file & directory ops
distributed around the network

Warning

® This lab is difficult.
® Assumes a bit more C++ than lab | did.

® Please please please get started early; ask
course staff for help.

® |t will not destroy you; it will make you
stronger. But it may well take a lot of work
and be pretty intensive.

