
Distributed Filesystems

1

andrew.cmu.edu

• Let’s start with a familiar example: andrew

10,000s
of

machines

10,000s
of

people

Goal:
Have a consistent namespace for files across computers

Allow any authorized user to access their files from any computer

Disk Disk Disk

Terabytes of
disk

2

Challenges

• Remember our initial list of challenges...

• Heterogeneity (lots of different computers & users)

• Scale (10s of thousands of peeps!)

• Security (my files! hands off!)

• Failures

• Concurrency

• oh no... we’ve got ‘em all.
How can we
build this??

3

Just as important: non-
challenges

• Geographic distance and high latency

• Andrew and AFS target the campus
network, not the wide-area

4

Prioritized goals?

• Often very useful to have an explicit list of prioritized goals. Distributed
filesystems almost always involve trade-offs

• Scale, scale, scale

• User-centric workloads... how do users use files (vs. big programs?)

• Most files are personally owned

• Not too much concurrent access; user usually only at one or a few
machines at a time

• Sequential access is common; reads much more common that writes

• There is locality of reference (if you’ve edited a file recently, you’re
likely to edit again)

We’ll see over several lectures how these
design goals play out.

5

Fault Tolerance

• Many options...

• Do nothing --> NFS

• Hot, consistent replicas (every change
affects multiple servers in case one dies)

• Consistent snapshots (think “a backup of
the filesystem” made easier with help
from the filesystem) --> AFS initial design

6

How?

7

Single file

ServerClient
Open

Read

Write

Read

Write

Close

File

8

and directory ops

• Create file

• create directory

• rename file

• delete file

• delete directory

9

Approach 1: Simple
• Use RPC to forward every filesystem operation to the server

• Server serializes all accesses, performs them, and sends back
result.

• Great: Same behavior as if both programs were running on the
same local filesystem!

• Bad: Performance can stink. Latency of access to remote server
often much higher than to local memory.

• For andrew context: bad bad bad: server would get hammered!

Lesson 1: Needing to hit the server for every detail impairs
performance and scalability.

Question 1: How can we avoid going to the server for everything?
What can we avoid this for? What do we lose in the process?

10

• Huge parts of systems rely on two solutions to every problem:

• 1) “All problems in computer science can be solved by adding
another level of indirection. But that will usually create
another problem.” -- David Wheeler

• 2) Cache it!

• So, uh, what do we cache?

• And if we cache... doesn’t that risk making things inconsistent?

11

Sun NFS

• Cache file blocks, file headers, etc., at both
clients and servers.

• Advantage: No network traffic if open/read/
write/close can be done locally. Woot.

• But: failures and cache consistency.

• NFS trades some consistency for increased
performance... let’s look at the protocol.

12

Failures

• Server crashes

• Data in memory but not disk lost

• So... what if client does seek() ; /* SERVER CRASH */; read()

• If server maintains file position, this will fail. Ditto for open(), read()

• Lost messages: what if we lose acknowledgement for delete(“foo”)

• And in the meantime, another client created foo anew?

• Client crashes

• Might lose data in client cache

13

NFS’s answers

• Stateless design

• Write-through caching: When file is closed, all
modified blocks sent to server. close() does not
return until bytes safely stored.

• Stateless protocol: requests specify exact state.
read() -> read([position]). no seek on server.

• Operations are idempotent

• How can we ensure this? Unique IDs on files/
directories. It’s not delete(“foo”), it’s delete
(1337f00f), where that ID won’t be reused.

14

NFS and Failures

• You can choose -

• retry until things get through to the server

• return failure to client

• Most client apps can’t handle failure of close() call. NFS tries
to be a transparent distributed filesystem -- so how can a
write to local disk fail? And what do we do, anyway?

• Usual option: hang for a long time trying to contact server

15

But... caching?

• If we allow client to cache parts of files, file headers,
etc.

• What happens if another client modifies them?

• [picture]

• 2 readers: no problem!

• But now .. timeline of 1 reader, 1 writer

16

NFS: Weak
Consistency

• NFS writes through at close()

• How does other client find out?

• NFS’s answer: It checks periodically.

• This means the system can be inconsistent for
a few seconds: two clients doing a read() at
the same time for the same file could see
different results if one had old data cached
and the other didn’t.

17

Design choice

• Clients can choose a stronger consistency model: close-
to-open consistency

• How?

• Always ask server before open()

• Trades a bit of scalability for better consistency
(getting a theme here? :)

18

What about multiple
writes?

• NFS provides no guarantees at all!

• Might get one client’s writes, other client’s
writes, or a mix of both!

19

Results

• NFS provides transparent, remote file access

• Simple, portable, really popular

• (it’s gotten a little more complex over time,
but...)

• Weak consistency semantics

• Requires hefty server resources to scale (write-
through, server queried for lots of operations)

20

Let’s look back at
Andrew

• NFS gets us partway there, but

• Probably doesn’t handle scale (* - you can buy huge NFS appliances today
that will, but they’re $$$-y).

• Is very sensitive to network latency

• How can we improve this?

• More aggressive caching (AFS caches on disk in addition to just in memory)

• Prefetching (on open, AFS gets entire file from server, making later ops local
& fast).

• Remember: with traditional hard drives, large sequential reads are much
faster than small random writes. So easier to support (client a: read
whole file; client B: read whole file) than having them alternate.
Improves scalability, particularly if client is going to read whole file
anyway eventually.

21

How to cope with that
caching?

• Close-to-open consistency only (remember: user-
centric!)

• Callbacks! Clients register with server that they
have a copy of file;

• Server tells them: “Invalidate!” if the file changes

• This trades state for improved consistency

• Soooo: What if server crashes?

• Reconstruct: Ask all clients “dude, what files
you got?”

22

Results

• Lower server load than NFS

• More files cached on clients

• Callbacks: server not busy if files are read-only (common case)

• But maybe slower: Access from local disk is much slower than from another
machine’s memory over LAN

• For both:

• Central server is bottleneck: all reads and writes hit it at least once;

• is a single point of failure.

• is spendy: make them fast, beefy, and reliable. $$$ servers.

23

Today’s bits

• Distributed filesystems almost always involve a
tradeoff: consistency, performance, scalability.

• We’ve learned a lot since NFS and AFS (and can
implement faster, etc.), but the general lesson
holds. Especially in the wide-area.

• We’ll see a related tradeoff, also involving
consistency, in a while: the CAP tradeoff.
Consistency, Availability, Partition-resilience.

24

More bits

• Client-side caching is a fundamental technique to improve
scalability and performance

• But raises important questions of cache consistency

• Timeouts and callbacks are common methods for providing
(some forms of) consistency.

• AFS picked close-to-open consistency as a good balance of
usability (the model seems intuitive to users), performance, etc.

• AFS authors argued that apps with highly concurrent, shared
access, like databases, needed a different model

25

