
Remote Procedure
Calls

Carnegie Mellon University
15-440 Distributed Systems

Administrivia

• Readings are now listed on the syllabus

• See .announce post for some details

• The book covers a ton of material pretty
quickly; readings are diced up pretty
finely to try to hit best info.

Building up to today

• 2x ago: Abstractions for communication

• example: TCP masks some of the pain of
communicating across unreliable IP

• Last time: Abstractions for computation

Reminder about last
time

• Processes: A resource container for
execution on a single machine

• Threads: One “thread” of execution
through code. Can have multiple threads
per process.

• Impl as userland, kernel; each has diff.
benefits

Threads - impl

• Use:

• Exploit multiple processors

• Hide long delays

• Run long ops concurrent with short ones to improve
response time (UI events, etc)

• Thread interface

• Creating and managing threads

• Provide ways to avoid race conditions for updates to shared
data

pthreads interface

• threads

• create

• join == wait until it’s done

• mutex
condition variables
coming up in next lecture

On to today...
Splitting computation
across the network

• We’ve looked at primitives for computation
and for communication.
Today, we’ll put them together

• Key question:

What programming abstractions work well to
split work among multiple networked

computers?

(caveat: we’ll be looking at many possible answers to this question...)

Common
communication pattern

Client ServerHey, do something

working {

Done/Result

Writing it by hand...

• eg, if you had to write a, say, password cracker

struct foomsg {

 u_int32_t len;

}

send_foo(char *contents) {

 int msglen = sizeof(struct foomsg) + strlen(contents);

 char buf = malloc(msglen);

 struct foomsg *fm = (struct foomsg *)buf;

 fm->len = htonl(strlen(contents));

 memcpy(buf + sizeof(struct foomsg),

 contents,

 strlen(contents));

 write(outsock, buf, msglen);

}

Then wait for response, etc.

RPC

• A type of client/server communication

• Attempts to make remote procedure calls
look like local ones

figure from Microsoft MSDN

{ ...
 foo()
}
void foo() {
 invoke_remote_foo()
}

RPC Goals

• Ease of programming

• Hide complexity (we’ll get to next)

• automate a lot of task of implementing

• Familiar model for programmers (just make
a function call)

Historical note: Seems obvious in retrospect, but RPC was only invented in the ‘80s. See
Birrell & Nelson, “Implementing Remote Procedure Call” ... or
Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University: Remote Procedure Call., 1981 :)

But it’s not always
simple

• Calling and called procedures run on different
machines, with different address spaces

• And perhaps different environments .. or
operating systems ..

• Must convert to local representation of data

• Machines and network can fail

Marshaling and
Unmarshaling

• (From example) hotnl() -- “host to network-byte-order, long”.

• network-byte-order (big-endian) standardized to deal with
cross-platform variance

• Note how we arbitrarily decided to send the string by sending its
length followed by L bytes of the string? That’s marshalling, too.

• Floating point...

• Nested structures? (Design question for the RPC system - do you
support them?)

• Complex datastructures? (Some RPC systems let you send lists and
maps as first-order objects)

“stubs” and IDLs

• RPC stubs do the work of marshaling and
unmarshaling data

• But how do they know how to do it?

• Typically: Write a description of the function
signature using an IDL -- interface definition
language.

• Lots of these. Some look like C, some look
like XML, ... details don’t matter much.

SunRPC

• Venerable, widely-used RPC system

• Defines “XDR” (“eXternal Data
Representation”) -- C-like language for
describing functions -- and provides a
compiler that creates stubs

struct fooargs {
 string msg<255>;
 int baz;
}

And describes functions

program FOOPROG {

 version VERSION {

 void FOO(fooargs) = 1;

 void BAR(barargs) = 2;

 } = 1;

} = 9999;

More requirements

• Provide reliable transmission (or indicate failure)

• May have a “runtime” that handles this

• Authentication, encryption, etc.

• Nice when you can add encryption to your
system by changing a few lines in your IDL file

• (it’s never really that simple, of course --
identity/key management)

Big challenges

• What happens during communication failures? Programmer
code still has to deal with exceptions! (Normally, calling
foo() to add 5 + 5 can’t fail and doesn’t take 10 seconds to
return)

• Machine failures?

• Did server fail before/after processing request??
Impossible to tell, if it’s still down...

• It’s impossible to hide all of the complexity under an RPC
system. But marshaling/unmarshaling support is great!

<break>

RPC Context

• In lab 2, you’ll first implement a remote
lock server

• Supports 2 operations: acquire(lock),
release(lock). Implemented using RPC.

RPC failures

• Request from cli -> srv lost

• Reply from srv -> cli lost

• Server crashes after receiving request

• Client crashes after sending request

RPC semantics

• At-least-once semantics

• Keep retrying...

• At-most-once

• Use a sequence # to ensure idempotency
against network retransmissions

• and remember it at the server

At-least-once versus at-most-once?

 let's take an example: acquiring a lock

 if client and server stay up, client receives lock

 if client fails, it may have the lock or not (server needs a plan!)

 if server fails, client may have lock or not

 at-least-once: client keeps trying

 at-most-once: client will receive an exception

 what does a client do in the case of an exception?

 need to implement some application-specific protocol

 ask server, do i have the lock?

! server needs to have a plan for remembering state across reboots

 e.g., store locks on disk.

 at-least-once (if we never give up)

 clients keep trying. server may run procedure several times

 server must use application state to handle duplicates

 if requests are not idempotent

! but difficult to make all request idempotent

 e.g., server good store on disk who has lock and req id

 check table for each requst

 ! even if server fails and reboots, we get correct semantics

 What is right?

 depends where RPC is used.

 simple applications:

 at-most-once is cool (more like procedure calls)

 more sophisticated applications:

 need an application-level plan in both cases

! not clear at-once gives you a leg up

 => Handling machine failures makes RPC different than procedure calls

comparison from Kaashoek, 6.842 notes

Implementing at-most-
once

• At-least-once: Just keep retrying on client side until you get a
response.

• Server just processes requests as normal, doesn’t remember
anything. Simple!

• At-most-once: Server might get same request twice...

• Must re-send previous reply and not process request (implies:
keep cache of handled requests/responses)

• Must be able to identify requests

• Strawman: remember all RPC IDs handled. -> Ugh! Requires
infinite memory.

• Real: Keep sliding window of valid RPC IDs, have client
number them sequentially.

Exactly-Once?

• Sorry - no can do in general.

• Imagine that message triggers an external
physical thing (say, a robot fires a nerf dart
at the professor)

• The robot could crash immediately before
or after firing and lose its state. Don’t
know which one happened. Can, however,
make this window very small.

Implementation
Concerns

• As a general library, performance is often a big concern for RPC
systems

• Major source of overhead: copies and marshaling/unmarshaling
overhead

• Zero-copy tricks:

• Representation: Send on the wire in native format and indicate
that format with a bit/byte beforehand. What does this do?
Think about sending uint32 between two little-endian machines

• Scatter-gather writes (writev() and friends)

Dealing with Environmental
Differences

• If my function does: read(foo, ...)

• Can I make it look like it was really a local procedure
call??

• Maybe!

• Distributed filesystem...

• But what about address space?

• This is called distributed shared memory

• People have kind of given up on it - it turns out
often better to admit that you’re doing things
remotely

Complex / Pointer
Data Structures

• Very few low-level RPC systems support

• C is messy about things like that -- can’t always
understand the structure and know where to stop
chasing

• One way was to send pointers and use DSM, but ...

• Java RMI (and many other higher-level languages)
allows sending objects as part of an RPC

• But be careful - don’t want to send megabytes of
data across network to ask simple question!

