Principal-Centric Reasoning in Constructive Authorization Logic

Deepak Garg

Carnegie Mellon University

June 23, 2008
Outline

1. Background

2. Logic design: proof-theory
Outline

1. Background

2. Logic design: proof-theory
Policy is central – how do we represent it?
- Common methods: bit-level encodings, access control lists
- Low-level, confusing; may lead to programming and administrative errors

Represent policies as formulas in a logic
- Rigorous, high-level, flexible
- Can we use the logical representation for enforcement?
- What logic should be we use?
Enforcement through Proofs

- Allow access iff there is a formal proof \[\text{[Blaze et al. '96]}\]
- Let \(\Gamma \) denote the set of formulas representing policies
- Allow access iff \(\Gamma \vdash A \) (\(A \) depends on requester, object, and operation)

- Who constructs the proof?
 - Put burden of proof construction on requesting principal
 - Proof-carrying authorization \[\text{[Appel, Felten '99]}\]
 - Requester **constructs** and submits proof with request
 - Reference monitor **verifies** proof
 - Proof good \(\Rightarrow \) allow access
 - Proof bad \(\Rightarrow \) deny access

Proofs are a generic enforcement mechanism for access control
Which Logic?

- **First-order/propositional** vs. higher-order
- **Intuitionistic** vs. classical

- Does first-order intuitionistic logic suffice?
 - Almost, but some policy motifs need other constructs
Which Logic?

- First-order/propositional vs. higher-order
- Intuitionistic vs. classical

Does first-order intuitionistic logic suffice?

- Almost, but some policy motifs need other constructs
Which Logic?

- First-order/propositional vs. higher-order
- Intuitionistic vs. classical

Does first-order intuitionistic logic suffice?

- Almost, but some policy motifs need other constructs
Decentralization: The Need for Modalities

- Policies may be made by different principals
- Example (Can Alice visit USA? [without a visa])
 1. “Any Canadian national may visit USA without a visa”
 2. “Alice is a Canadian national”
- Policy (1) made by USA; policy (2) made by Canada
- How do we represent the difference?

- K says A (principal K states that formula A is true)
- Family of principal-indexed modalities [Lampson et al. ’92]
- Example
 1. USA says $\forall i. ((\text{Canada says myCitizen}(i)) \supset \text{mayVisit}(i))$
 2. Canada says myCitizen(Alice)

Which modal logic?
Decentralization: The Need for Modalities

- Policies may be made by different principals
- Example (Can Alice visit USA? [without a visa])
 1. “Any Canadian national may visit USA without a visa”
 2. “Alice is a Canadian national”
- Policy (1) made by USA; policy (2) made by Canada
- How do we represent the difference?

\(K \text{ says } A \) (principal \(K \) states that formula \(A \) is true)

- Family of principal-indexed modalities [Lampson et al. ’92]
- Example
 1. USA \text{ says } \forall i. ((\text{Canada says } \text{myCitizen}(i)) \supset \text{mayVisit}(i))
 2. Canada \text{ says } \text{myCitizen}(\text{Alice})

Which modal logic?
Decentralization: The Need for Modalities

- Policies may be made by different principals
- Example (Can Alice visit USA? [without a visa])
 1. “Any Canadian national may visit USA without a visa”
 2. “Alice is a Canadian national”
- Policy (1) made by USA; policy (2) made by Canada
- How do we represent the difference?

- K says A (principal K states that formula A is true)
- Family of principal-indexed modalities [Lampson et al. ’92]
- Example
 1. USA says $\forall i. ((\text{Canada says } \text{myCitizen}(i)) \supset \text{mayVisit}(i))$
 2. Canada says $\text{myCitizen}(\text{Alice})$

Which modal logic?
Choosing the “Right” K says A

- Trade-off between
 - Weak modalities (useless), e.g., treat K says A syntactically
 - Strong modalities (dangerous), e.g., assume $A \equiv (K$ says $A)$

- Some past approaches:
 - □ from modal logic K (classical) [Lampson et al. ’92, ’93]
 \[
 \vdash A \\
 \vdash K \text{ says } A \\
 \vdash (K \text{ says } (A \supset B)) \supset ((K \text{ says } A) \supset (K \text{ says } B))
 \] (nec)
 - Original PCA (classical) [Appel, Felten ’99]
 \[
 \vdash A \supset (K \text{ says } A) \\
 \vdash (K \text{ says } (A \supset B)) \supset ((K \text{ says } A) \supset (K \text{ says } B))
 \] (unit) (K)
 - ○ from lax logic (intuitionistic) [GF ’06, Abadi ’06, …]
 \[
 \vdash A \supset (K \text{ says } A) \\
 \vdash (K \text{ says } (A \supset B)) \supset ((K \text{ says } A) \supset (K \text{ says } B))
 \] (unit) (K)
 \[
 \vdash (K \text{ says } K \text{ says } A) \supset (K \text{ says } A)
 \] (C4)
 - …

- No clear metric to evaluate “fitness” of modality
Choosing the “Right” K says A

- Trade-off between
 - Weak modalities (useless), e.g., treat K says A syntactically
 - Strong modalities (dangerous), e.g., assume $A \equiv (K$ says A)

- Some past approaches:
 - □ from modal logic K (classical) [Lampson et al. ’92, ’93]
 \[
 A \vdash K \text{ says } A
 \]
 \[
 (K \text{ says } (A \supset B)) \supset ((K \text{ says } A) \supset (K \text{ says } B))
 \]
 - Original PCA (classical) [Appel, Felten ’99]
 \[
 A \supset (K \text{ says } A)
 \]
 \[
 (K \text{ says } (A \supset B)) \supset ((K \text{ says } A) \supset (K \text{ says } B))
 \]
 - ○ from lax logic (intuitionistic) [GF ’06, Abadi ’06, …]
 \[
 A \supset (K \text{ says } A)
 \]
 \[
 (K \text{ says } (A \supset B)) \supset ((K \text{ says } A) \supset (K \text{ says } B))
 \]
 \[
 (K \text{ says } K \text{ says } A) \supset (K \text{ says } A)
 \]
 - …

- No clear metric to evaluate “fitness” of modality
In this paper . . .

- A new propositional logic DTL_0 for representing access control policies
 - Sequent calculus and Hilbert-style axiomatization
 - Meta-theory: cut-elimination
 - Kripke semantics
 - Translations from other authorization logics to DTL_0
 - Closely related to constructive S4

- Emphasis on proof-theory esp. sequent calculus and cut-elimination
 - Proofs central to enforcement
 - Assurance of the logic’s soundness (à la Martin-Löf’s type-theory)
In this paper . . .

- A new propositional logic DTL_0 for representing access control policies
 - Sequent calculus and Hilbert-style axiomatization
 - Meta-theory: cut-elimination
 - Kripke semantics
 - Translations from other authorization logics to DTL_0
 - Closely related to constructive S4

- Emphasis on proof-theory esp. sequent calculus and cut-elimination
 - Proofs central to enforcement
 - Assurance of the logic’s soundness (à la Martin-Löf’s type-theory)
Outline

1. Background

2. Logic design: proof-theory
DTL$_0$: Syntax and Axiomatic System

\[A, B ::= P \mid A \land B \mid A \lor B \mid \top \mid \bot \mid A \supset B \mid K \text{ says } A \]

Axiomatic System

\[\vdash A \]
\[\vdash K \text{ says } A \] (nec)
\[\vdash (K \text{ says } (A \supset B)) \supset ((K \text{ says } A) \supset (K \text{ says } B)) \] (K)
\[\vdash (K \text{ says } A) \supset (K \text{ says } K \text{ says } A) \] (4)
\[\vdash K \text{ says } ((K \text{ says } A) \supset A) \] (C)

(C) stands for “conceit”

Replacing (C) with \((K \text{ says } A) \supset A\) gives CS4
Sequent Calculus

- Follow Martin-Löf’s method: separate formulas from judgments
 - Judgments are predicates over formulas, and evidenced by proofs

- Categorical (non-hypothetical) judgments:
 - $A \text{ true}$ (Usually elide the name true)
 - K claims A (K claims $A \equiv (K$ says $A) \text{ true}$)
 - K says A internalizes K claims A into the syntax of formulas

- Hypothetical judgments or sequents: $\Gamma \xrightarrow{K} A \text{ true}$

 $\Gamma ::= \cdot \mid \Gamma, A \text{ true} \mid \Gamma, K \text{ claims } A$

- "If we assume that K claims A implies A for each A, then assumptions Γ entail A"
 - K is called the context of the sequent
Basic Principles

- Context principle: In context K, K claims A entails A true

- Claim principle: K claims A holds (in any context) if using only claims of K, we can prove A true in context K.

- Internalization principle: K claims A is equivalent to (K says A) true
Basic Rules

\[
\begin{align*}
\Gamma, P \text{ true} & \quad \Rightarrow \quad P \text{ true} \\
\Gamma, K \text{ claims } A, A \text{ true} & \quad \Rightarrow \quad C \text{ true} \\
\Gamma, K \text{ claims } A & \quad \Rightarrow \quad C \text{ true}
\end{align*}
\]

Context principle: In context \(K \), \(K \text{ claims } A \) entails \(A \text{ true} \)
Rules for implication

\[
\Gamma, A \text{ true } \xrightarrow{K} B \text{ true} \\
\Gamma \xrightarrow{K} (A \supset B) \text{ true} \\
\Gamma, (A \supset B) \text{ true } \xrightarrow{K} A \text{ true} \quad \Gamma, B \text{ true } \xrightarrow{K} C \text{ true} \\
\Gamma, (A \supset B) \text{ true } \xrightarrow{K} C \text{ true} \\
\]

- Rules for other propositional connectives as usual
Rules for says

\[\Gamma |_K K \rightarrow A \text{ true} \]

\[\frac{\Gamma \rightarrow (K \text{ says } A) \text{ true}}{\text{ saysR}} \]

where \(\Gamma |_K = \{K \text{ claims } C \mid (K \text{ claims } C) \in \Gamma\} \)

\[\Gamma, (K \text{ says } A) \text{ true}, K \text{ claims } A \rightarrow C \text{ true} \]

\[\frac{\Gamma, (K \text{ says } A) \text{ true} K' \rightarrow C \text{ true}}{\text{ saysL}} \]

Internalization principle: \(K \text{ claims } A \) is equivalent to \((K \text{ says } A) \text{ true} \)

Claim principle: \(K \text{ claims } A \) holds (in any context) if using only claims of \(K \), we can prove \(A \text{ true} \) in context \(K \).
Summary of Rules

\[\Gamma, P \text{ true } \xrightarrow{K} P \text{ true}\] \hspace{2cm} \[\Gamma, K \text{ claims } A, A \text{ true } \xrightarrow{K} C \text{ true}\]

\[\Gamma, A \text{ true } \xrightarrow{K} B \text{ true}\] \hspace{2cm} \[\Gamma, (A \supset B) \text{ true } \xrightarrow{K} A \text{ true}\]

\[\Gamma \xrightarrow{K} (A \supset B) \text{ true}\] \hspace{2cm} \[\Gamma, B \text{ true } \xrightarrow{K} C \text{ true}\]

\[\Gamma \xrightarrow{K} A \text{ true}\] \hspace{2cm} \[\Gamma, (A \supset B) \text{ true } \xrightarrow{K} C \text{ true}\]

\[\Gamma, (K \text{ says } A) \text{ true, } K \text{ claims } A \xrightarrow{K'} C \text{ true}\] \hspace{2cm} \[\Gamma, (K \text{ says } A) \text{ true } \xrightarrow{K'} C \text{ true}\]

\[\Gamma \xrightarrow{K'} (K \text{ says } A) \text{ true}\] \hspace{2cm} \[\Gamma, (K \text{ says } A) \text{ true } \xrightarrow{K'} C \text{ true}\]

\[\Gamma, K \text{ claims } A \xrightarrow{K} C \text{ true}\] \hspace{2cm} \[\Gamma, (K \text{ says } A) \text{ true } \xrightarrow{K'} C \text{ true}\]
Properties and Meta-Theory

- **Admissibility of cut:**
 - $\Gamma \vdash K A \text{ true}$ and $\Gamma, A \text{ true} \vdash K C \text{ true}$ imply $\Gamma \vdash K C \text{ true}$

- **Identity:**
 - $\Gamma, A \text{ true} \vdash K A \text{ true}$

- **Connection between axiomatic system and sequent calculus**
 - $\Gamma \vdash K A$ if and only if $\vdash K \text{ says } (\Gamma \supset A)$
 - Actually an *embedding theorem*

- **Sound and complete Kripke semantics in the paper**
 - Adapt Alechina *et al.*’s Kripke semantics for CS4
 - No ♦; need to associate principals with worlds

- **Sound and complete translations from other authorization logics**
DTL₀ Generalizes CS4 (Without ♦)

- In the special case of only one principal (say ℓ), DTL₀’s sequent calculus reduces to that for CS4.

\[
\begin{align*}
\Gamma, P \text{ true} & \xrightarrow{K} P \text{ true} & \Gamma, K \text{ claims } A, A \text{ true} & \xrightarrow{K} C \text{ true} \\
\Gamma, A \text{ true} & \xrightarrow{K} B \text{ true} & \Gamma, (A \supset B) \text{ true} & \xrightarrow{K} C \text{ true}
\end{align*}
\]

\[
\begin{align*}
\Gamma \xrightarrow{K} (A \supset B) \text{ true} & \quad \Gamma, B \text{ true} \xrightarrow{K} C \text{ true} \\
\Gamma |_K \xrightarrow{K} A \text{ true} & \quad \Gamma, (K \text{ says } A) \text{ true, } K \text{ claims } A \xrightarrow{K'} C \text{ true}
\end{align*}
\]

\[
\begin{align*}
\Gamma \xrightarrow{K} (K \text{ says } A) \text{ true} & \quad \Gamma, (K \text{ says } A) \text{ true} \xrightarrow{K'} C \text{ true}
\end{align*}
\]
DTL₀ Generalizes CS4 (Without ♦)

In the special case of only one principal (say ℓ), DTL₀’s sequent calculus reduces to that for CS4.

\[
\begin{align*}
\text{init} & : \Gamma, P \text{ true } \vdash P \text{ true} \\
\Gamma, A \text{ true } \vdash B \text{ true} & : \Gamma \vdash (A \supset B) \text{ true} \\
\Gamma|_{ℓ} \vdash A \text{ true} & : \Gamma \vdash (ℓ \text{ says } A) \text{ true} \\
\Gamma, ℓ \text{ claims } A, A \text{ true } \vdash C \text{ true} & : \Gamma, ℓ \text{ claims } A \vdash C \text{ true} \\
\Gamma, (A \supset B) \text{ true } \vdash A \text{ true} & : \Gamma, B \text{ true } \vdash C \text{ true} \\
\Gamma, (ℓ \text{ says } A) \text{ true } \vdash C \text{ true} & : \Gamma, (ℓ \text{ says } A) \text{ true } \vdash C \text{ true} \\
\end{align*}
\]
DTL$_0$ Generalizes CS4 (Without ♦)

- In the special case of only one principal (say ℓ), DTL$_0$’s sequent calculus reduces to that for CS4.

\[
\begin{align*}
\Gamma, P \text{ true} & \rightarrow P \text{ true} & \Gamma, A \text{ valid, } A \text{ true} & \rightarrow C \text{ true} \\
\Gamma \rightarrow (A \supset B) \text{ true} & \quad \Gamma, (A \supset B) \text{ true} & \rightarrow A \text{ true} & \quad \Gamma, B \text{ true} & \rightarrow C \text{ true} \\
\Gamma | & \rightarrow A \text{ true} & \Gamma, (\square A) \text{ true, } A \text{ valid} & \rightarrow C \text{ true} \\
\Gamma & \rightarrow (\square A) \text{ true} & \Gamma, (\square A) \text{ true} & \rightarrow C \text{ true}
\end{align*}
\]
DTL\textsubscript{0} \Rightarrow \text{CS4}^m

- The following embedding is sound and complete

\[\neg K \text{ says } A^\dashv = \Box_K (g_K \supset \neg A^\dashv)\]

- (CS4m \Rightarrow DTL\textsubscript{0}) Unknown!
Summary and Future Work

- New logic for writing authorization policies
- Unusual, but expressive and (hopefully) useful
- Emphasis on proof-theory; sequent calculus, meta-theoretic properties
- Kripke semantics
- Connections to other logics

Part of a larger project
- More logical primitives: linearity, time
- Applications to real policies
- Implementation of a file system using the logic
- Using proof-theory to prove properties of policies
Thank You

Questions?
Rules without judgments

\[\Gamma, P \xrightarrow{K} P \]

\[\Gamma, A \xrightarrow{K} B \quad \xRightarrow{\text{init}} \quad \Gamma \xrightarrow{K} A \cup B \]

\[\Gamma, A \cup B \xrightarrow{K} A \quad \text{R} \]

\[\Gamma, B \xrightarrow{K} C \quad \text{L} \]

\[K \text{ says } \Gamma \xrightarrow{K} A \quad \xRightarrow{\text{saysR}} \quad K \text{ says } \Gamma, \Gamma' \xrightarrow{K'} K \text{ says } A \]

\[\Gamma, K \text{ says } A, A \xrightarrow{K} C \quad \xRightarrow{\text{saysL}} \quad \Gamma, K \text{ says } A \xrightarrow{K} C \]