Constructive Authorization Logics

Deepak Garg

Languages and Logics for Security
Outline

1. Introduction
 - Goals and Motivation
 - Choosing a Logic

2. A Constructive Logic for Authorization

3. Proof Carrying Authorization
 - Enforcement with PCA
 - Issues and Limitations

4. Analysis of Authorization Policies
 - Non-interference

5. System Specification
 - Knowledge Modalities
 - Actual Modeling
 - Open Ends
What’s an Authorization Logic?

- Must be a logic!
 - Proof theory, cut elimination
 - Semantics?

- Useful for Authorization
 - Express policies ("says", delegation, ...)
 - Enforce policies (PCA, Bit-level implementations, ...)
 - Explore policies (Can my ex-employee access his files?)

- Emphasis on distributed scenarios
What’s an Authorization Logic?

- Must be a logic!
 - Proof theory, cut elimination
 - Semantics?

- Useful for Authorization
 - **Express** policies (“says”, delegation, ...)
 - **Enforce** policies (PCA, Bit-level implementations, ...)
 - **Explore** policies (Can my ex-employee access his files?)

- Emphasis on distributed scenarios
What's an Authorization Logic?

- Must be a logic!
 - Proof theory, cut elimination
 - Semantics?
- Useful for Authorization
 - Express policies (“says”, delegation, ...)
 - Enforce policies (PCA, Bit-level implementations, ...)
 - Explore policies (Can my ex-employee access his files?)
- Emphasis on distributed scenarios
Using the Logics

- Designed for
 - Proof carrying authorization
 - Specification of security systems
 - Also requires us to model states of knowledge

- Not Designed for
 - Authentication Properties (which key relates to which principal?)
 - Protocol specification
Using the Logics

- **Designed for**
 - Proof carrying authorization
 - Specification of security systems
 - Also requires us to model states of knowledge

- **Not Designed for**
 - Authentication Properties (which key relates to which principal?)
 - Protocol specification
Introduction

Goals and Motivation

Legacy (A little bit!)

- ABLP logic
- Binder [Soutei, Delegation Logic]
- Grey System at CyLab
- Proof Carrying Authentication [Appel, Felten]
 - Using lax logic
Choosing a Logic

“K says A” seems reasonable
- Models statements from distinct principal
- We write as $\langle K \rangle A$.

“speaks for” is too general
- $\langle K \rangle (K' \Rightarrow K)$
- Does K know all predicates it delegated over?

Constructive!

Linearity is useful
Choosing a Logic

- “K says A” seems reasonable
 - Models statements from distinct principal
 - We write as $\langle K \rangle A$.

- “speaks for” is too general
 - $\langle K \rangle (K' \Rightarrow K)$
 - Does K know all predicates it delegated over?

- Constructive!
- Linearity is useful
“K says A” seems reasonable
- Models statements from distinct principal
- We write as $\langle K \rangle A$.

“speaks for” is too general
- $\langle K \rangle (K' \Rightarrow K)$
- Does K know all predicates it delegated over?

Constructive!
- Linearity is useful
“K says A” seems reasonable
 - Models statements from distinct principal
 - We write as $\langle K \rangle A$.

“speaks for” is too general
 $\langle K \rangle (K' \Rightarrow K)$
 - Does K know all predicates it delegated over?

Constructive!

Linearity is useful
Why Constructive Logic?

- In constructive logic, \(\vdash A \lor B \) implies \(\vdash A \) or \(\vdash B \)
- Provides meaningful insights via proof normalization
Why Constructive Logic?

\[p_1 : \text{all} _\text{read}(F) \supset \text{may} _\text{read}(K, F) \]
\[p_2 : \text{owner} _\text{read}(F) \supset \text{owner}(K, F) \supset \text{may} _\text{read}(K, F) \]
\[p_3 : \text{owner} (\text{Alice, foo.pdf}) \]
\[M = \lambda x : (\text{all} _\text{read}(\text{foo.pdf}) \lor \text{owner} _\text{read}(\text{foo.pdf})). \]
 \[\text{case } x \text{ of} \]
 \[\text{inl } y \Rightarrow (p_1) y \]
 \[\text{inr } z \Rightarrow (p_2) z (p_3) \]

- Alice constructs a closed proof
 \[p : (\text{all} _\text{read}(\text{foo.pdf}) \lor \text{owner} _\text{read}(\text{foo.pdf})) \]
- Submits proof \((M \ p) : \text{may} _\text{read} (\text{Alice, foo.pdf})\)
- Gets access
- Does \((M \ p)\) tell us why Alice got access?
Why Constructive Logic?

Introduction
Choosing a Logic

$p1 : \text{all_read}(F) \supset \text{mayread}(K, F)$
$p2 : \text{owner_read}(F) \supset \text{owner}(K, F) \supset \text{mayread}(K, F)$
$p3 : \text{owner}(Alice, \text{foo.pdf})$

$M = \lambda x : (\text{all_read}(\text{foo.pdf}) \lor \text{owner_read}(\text{foo.pdf})).$

\[
\begin{cases}
\text{case } x \text{ of} \\
\quad \text{inl } y \Rightarrow (p1) y \\
\quad | \text{inr } z \Rightarrow (p2) z (p3)
\end{cases}
\]

$p : (\text{all_read}(\text{foo.pdf}) \lor \text{owner_read}(\text{foo.pdf}))$
$(M p) : \text{mayread}(Alice, \text{foo.pdf})$

- Does $(M p)$ tell us why Alice got access?
- In constructive logic, yes!
- p reduces to $(\text{inl } p')$ or $(\text{inr } p'')$
- $(M p)$ reduces to $((p1) p')$ or $((p2) (p'') (p3))$
Why Constructive Logic?

\[p1 : \text{all}_\text{read}(F) \supset \text{may}_\text{read}(K, F) \]
\[p2 : \text{owner}_\text{read}(F) \supset \text{owner}(K, F) \supset \text{may}_\text{read}(K, F) \]
\[p3 : \text{owner}(Alice, foo.pdf) \]
\[M = \lambda x : (\text{all}_\text{read}(foo.pdf) \lor \text{owner}_\text{read}(foo.pdf)). \]
\[\text{case } x \text{ of } \]
\[\text{inl } y \Rightarrow (p1) y \]
\[\text{| inr } z \Rightarrow (p2) z (p3) \]
\[p : (\text{all}_\text{read}(foo.pdf) \lor \text{owner}_\text{read}(foo.pdf)) \]
\[(M p) : \text{may}_\text{read}(Alice, foo.pdf) \]

- Does not work classically.

- \[p4 : \neg(\neg \text{all}_\text{read}(F) \land \neg \text{owner}_\text{read}(F)) \]

- Classically (using double negation elimination), this entails that
 \[(\text{all}_\text{read}(foo.pdf) \lor \text{owner}_\text{read}(foo.pdf)) \]

- Classical normal form is uninformative
Need for Linearity

- Models “use-once” authorizations
 - $\langle Alice \rangle \text{allow}_\text{read}(K, foo.pdf) \rightarrow \text{mayread}(K, foo.pdf)$
 - Alice can sign a linear certificate “allow_read(Charlie, foo.pdf)” to allow Charlie to read foo.pdf only once.

- Can model revocation
 - $\langle Alice \rangle \text{revoke}(K, foo.pdf) \rightarrow$
 - $\langle Alice \rangle \text{allow}_\text{read}(K, foo.pdf) \rightarrow 1$

- Problem with revocation: What guarantees that this rule is used before file is read?
Models “use-once” authorizations

\[(\langle Alice \rangle \text{allow_read}(K, foo.pdf) \rightarrow \text{mayread}(K, foo.pdf))\]

Alice can sign a linear certificate “allow_read(Charlie, foo.pdf)” to allow Charlie to read foo.pdf only once.

Can model revocation

\[(\langle Alice \rangle \text{revoke}(K, foo.pdf)) \rightarrow \]
\[(\langle Alice \rangle \text{allow_read}(K, foo.pdf)) \rightarrow 1\]

Problem with revocation: What guarantees that this rule is used before file is read?
Need for Linearity

- Models “use-once” authorizations
- \((\langle Alice \rangle \text{allow_read}(K, foo.pdf) \rightarrow \text{mayread}(K, foo.pdf))\)
- Alice can sign a linear certificate “allow_read(Charlie, foo.pdf)” to allow Charlie to read foo.pdf only once.

- Can model revocation
- \((\langle Alice \rangle \text{revoke}(K, foo.pdf)) \rightarrow (\langle Alice \rangle \text{allow_read}(K, foo.pdf)) \rightarrow 1\)

- Problem with revocation: What guarantees that this rule is used before file is read?
Outline

1. Introduction
 - Goals and Motivation
 - Choosing a Logic

2. A Constructive Logic for Authorization

3. Proof Carrying Authorization
 - Enforcement with PCA
 - Issues and Limitations

4. Analysis of Authorization Policies
 - Non-interference

5. System Specification
 - Knowledge Modalities
 - Actual Modeling
 - Open Ends
Indexed Lax Logic

- \(\langle K \rangle A \) is a **lax** modality
- Judgmentally presented
- Two categorical judgments
 - \(A \) **true** (abbrev. \(A \))
 - \(K \) **affirms** \(A \) (cf. \(A \) lax)

\[
\frac{\Gamma; \Delta \Rightarrow A}{\Gamma; \Delta \Rightarrow K \ \text{affirms} \ A} \quad \text{aff}
\]

\[
\frac{\Gamma; \Delta \Rightarrow K \ \text{affirms} \ A}{\Gamma; \Delta \Rightarrow \langle K \rangle A} \quad \langle R \rangle
\]

\[
\frac{\Gamma; \Delta, A \Rightarrow K \ \text{affirms} \ C}{\Gamma; \Delta, \langle K \rangle A \Rightarrow K \ \text{affirms} \ C} \quad \langle L \rangle
\]

\[
\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \ \text{lax}}
\]

\[
\frac{\Gamma \Rightarrow A \ \text{lax}}{\Gamma \Rightarrow \bigcirc A}
\]
Indexed Lax Logic

- \(\langle K \rangle A \) is a \textit{lax} modality
- Judgmentally presented
- Two categorical judgments
 - \(A \) \textit{true} (abbrev. \(A \))
 - \(K \) \textit{affirms} \(A \) (cf. \(A \) \textit{lax})

\[
\begin{align*}
\Gamma; \Delta \Rightarrow A & \quad \text{aff} \\
\Gamma; \Delta \Rightarrow K \text{ affirms } A \\
\Gamma; \Delta \Rightarrow \langle K \rangle A & \quad \text{\(\langle \rangle R \)} \\
\Gamma; \Delta, A \Rightarrow K \text{ affirms } C & \quad \text{\(\langle \rangle L \)}
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow A & \quad \Gamma \Rightarrow A \text{ lax} \\
\Gamma \Rightarrow A \text{ lax} & \quad \Gamma \Rightarrow \bigcirc A \\
\Gamma, A, \bigcirc A \Rightarrow C \text{ lax} & \quad \Gamma, \bigcirc A \Rightarrow C \text{ lax}
\end{align*}
\]
Cut-Elimination

If $\Gamma; \Delta_1 \Rightarrow A$
and $\Gamma; \Delta_2, A \Rightarrow \psi$ \quad ($\psi = C$ or K affirms C)
then $\Gamma; \Delta_1, \Delta_2 \Rightarrow \psi$

If $\Gamma; \Delta_1 \Rightarrow K$ affirms A
and $\Gamma; \Delta_2, A \Rightarrow K$ affirms C
then $\Gamma; \Delta_1, \Delta_2 \Rightarrow K$ affirms C
Consequences of Cut-Elimination

- Consistency
 - \(\not\vdash \bot \)
 - \(\not\vdash (\langle K \rangle \bot) \supset \bot \)
- Sub-formula property (useful in policy analysis)
- Proof-normalization (very important)
Outline

1. Introduction
 - Goals and Motivation
 - Choosing a Logic

2. A Constructive Logic for Authorization

3. Proof Carrying Authorization
 - Enforcement with PCA
 - Issues and Limitations

4. Analysis of Authorization Policies
 - Non-interference

5. System Specification
 - Knowledge Modalities
 - Actual Modeling
 - Open Ends
Recap of PCA

\[p_1 : \langle \text{admin} \rangle \text{mayread}(\text{Alice}, \text{foo.pdf}) \]
\[p_2 : \langle \text{admin} \rangle (\langle \text{Alice} \rangle \text{allow_read}(K, \text{foo.pdf}) \rightarrow \text{mayread}(K, \text{foo.pdf})) \]

1. K \rightarrow Server: Let me read foo.pdf
2. Server \rightarrow K: Prove \langle \text{admin} \rangle \text{mayread}(K, \text{foo.pdf})
3. K assembles a proof M
4. K \rightarrow Server: M
5. Server verifies M (Grants or denies access)
Recap of PCA

\[p1: \langle \text{admin} \rangle \text{mayread}(Alice, \text{foo.pdf}) \]
\[p2: \langle \text{admin} \rangle (\langle Alice \rangle \text{allow_read}(K, \text{foo.pdf}) \]
\[\quad \rightarrow \text{mayread}(K, \text{foo.pdf}) \]

- Logic only models the authorization policy, not information flow

\[\langle K \rangle \text{req_read}(\text{foo.pdf}) \]
\[\quad \rightarrow \text{hasproof}(K, \langle \text{admin} \rangle \text{mayread}(K, \text{foo.pdf})) \]
\[\quad \rightarrow \text{allow_access}(K, \text{foo.pdf}, \text{read}) \]

- Concluding sequent always has form

\[\langle K_1 \rangle A_1, \ldots \langle K_n \rangle A_n \Rightarrow \langle K \rangle A \]

- Assumptions discharged by signed certificates (X.509, ...)

Deepak Garg (CMU)
Recap of PCA

\[p1 : \langle \text{admin} \rangle \text{mayread} \left(\text{Alice}, \text{foo.pdf} \right) \]
\[p2 : \langle \text{admin} \rangle \left(\langle \text{Alice} \rangle \text{allow_read} \left(K, \text{foo.pdf} \right) \right) \quad \rightarrow \quad \text{mayread} \left(K, \text{foo.pdf} \right) \]

- Logic only models the authorization policy, not information flow
 \[\langle K \rangle \text{req_read} \left(\text{foo.pdf} \right) \]
 \[\rightarrow \text{hasproof} \left(K, \langle \text{admin} \rangle \text{mayread} \left(K, \text{foo.pdf} \right) \right) \]
 \[\rightarrow \text{allow_access} \left(K, \text{foo.pdf}, \text{read} \right) \]

- Concluding sequent always has form
 \[\langle K_1 \rangle A_1, \ldots \langle K_n \rangle A_n \Rightarrow \langle K \rangle A \]

- Assumptions discharged by signed certificates (X.509, ...)

Deepak Garg (CMU) Constructive Authorization Logics
What’s a linear certificate, and how do we make sure it is used once?

Centralized scenario:
- Store all linear certificates at a trusted server
- Each verifier contacts server when it verifies proof
- Server marks certificates “used”

Decentralized scenario:
- Each linear certificate mentions a ratifier (decided by signer)
- Ratifiers contacted at time of proof verification
- Ratifiers atomically mark certificates “used”
- Very inefficient
What’s a linear certificate, and how do we make sure it is used once?

Centralized scenario:
- Store all linear certificates at a trusted server
- Each verifier contacts server when it verifies proof
- Server marks certificates “used”

Decentralized scenario:
- Each linear certificate mentions a ratifier (decided by signer)
- Ratifiers contacted at time of proof verification
- Ratifiers atomically mark certificates “used”
- Very inefficient
What’s a linear certificate, and how do we make sure it is used once?

Centralized scenario:
- Store all linear certificates at a trusted server
- Each verifier contacts server when it verifies proof
- Server marks certificates “used”

Decentralized scenario:
- Each linear certificate mentions a ratifier (decided by signer)
- Ratifiers contacted at time of proof verification
- Ratifiers *atomically* mark certificates “used”
- Very inefficient
Central naming conventions

- When “Charlie” signs \texttt{mayread}(Alice, foo.pdf), who does he call “Alice” and “mayread”?

Severly limits the possibility of user defined predicates \textit{or} requires namespace conventions

- Infrastructure for managing keys is needed (PGP, SPKI, ...)
- Mapping keys to principals (“speaks for” is ideal here, but we abandoned it!)
Namspaces and Key Infrastructure

- Central naming conventions
 - When “Charlie” signs `mayread(Alice, foo.pdf)`, who does he call “Alice” and “mayread”? Sevlerly limits the possibility of user defined predicates or requires namespace conventions

- Infrastructure for managing keys is needed (PGP, SPKI, ...)
- Mapping keys to principals (“speaks for” is ideal here, but we abandoned it!)
A shop assistant (A) wants to sell an item at price P

He has no authority to determine if P is a fair price, so he delegates the decision to the owner (O).

\[p_1 : \langle A \rangle (\langle O \rangle \text{sell}(P) \Implies \text{sell}(P)) \]

Owner allows the sale if the price is fair

\[p_2 : \langle O \rangle (\text{fair}(P) \Implies \text{sell}(P)) \]

Assistant but not the owner believes that \text{fair}(P).

\[p_3 : \langle A \rangle \text{fair}(P) \]

Should the assistant be allowed to sell the item?

Is \langle A \rangle \text{sell}(P) provable from \(p_1, p_2, p_3 \)?
A shop assistant (A) wants to sell an item at price P.
He has no authority to determine if P is a fair price, so he delegates the decision to the owner (O).

\[p_1 : \langle A \rangle (\langle O \rangle \text{sell}(P) \supset \text{sell}(P)) \]

Owner allows the sale if the price is fair.

\[p_2 : \langle O \rangle (\text{fair}(P) \supset \text{sell}(P)) \]

Assistant but not the owner believes that \text{fair}(P).

\[p_3 : \langle A \rangle \text{fair}(P) \]

Should the assistant be allowed to sell the item?

Is \langle A \rangle \text{sell}(P) provable from \(p_1, p_2, p_3\)?
Limitation of Lax Logic: The Shop Assistant Problem

- A shop assistant (A) wants to sell an item at price P
- He has no authority to determine if P is a fair price, so he delegates the decision to the owner (O).
 \[p1 : \langle A \rangle (\langle O \rangle \text{sell}(P) \supset \text{sell}(P)) \]

- Owner allows the sale if the price is fair
 \[p2 : \langle O \rangle (\text{fair}(P) \supset \text{sell}(P)) \]

- Assistant but not the owner believes that \text{fair}(P).
 \[p3 : \langle A \rangle \text{fair}(P) \]

Should the assistant be allowed to sell the item?
Is \(\langle A \rangle \text{sell}(P) \) provable from \(p1, p2, p3 \)?
Limitation of Lax Logic: The Shop Assistant Problem

$p1 : \langle A \rangle (\langle O \rangle \text{sell}(P) \supset \text{sell}(P))$
$p2 : \langle O \rangle (\text{fair}(P) \supset \text{sell}(P))$
$p3 : \langle A \rangle \text{fair}(P)$
Goal: $\langle A \rangle \text{sell}(P)$

- Intuitively, goal should not be provable: O does not believe fairness of P
- But, if $\langle K \rangle$ is lax, then goal is provable!
- Completely counterintuitive

- Problematic axiom is “unit” law: $\vdash A \supset \langle K \rangle A$
- Can use weaker logics (ongoing work)
Limitation of Lax Logic: The Shop Assistant Problem

\[p1 : \langle A \rangle (\langle O \rangle \text{sell}(P) \supset \text{sell}(P)) \]
\[p2 : \langle O \rangle (\text{fair}(P) \supset \text{sell}(P)) \]
\[p3 : \langle A \rangle \text{fair}(P) \]
Goal: \[\langle A \rangle \text{sell}(P) \]

- Intuitively, goal should not be provable: \(O \) does not believe fairness of \(P \)
- But, if \(\langle K \rangle \) is lax, then goal is provable!
- Completely counterintuitive

- Problematic axiom is “unit” law: \(\vdash A \supset \langle K \rangle A \)
- Can use weaker logics (ongoing work)
Limitation of Lax Logic: The Shop Assistant Problem

\[p_1 : \langle A \rangle (\langle O \rangle \text{sell}(P) \supset \text{sell}(P)) \]
\[p_2 : \langle O \rangle (\text{fair}(P) \supset \text{sell}(P)) \]
\[p_3 : \langle A \rangle \text{fair}(P) \]
Goal: \[\langle A \rangle \text{sell}(P) \]

- Intuitively, goal should not be provable: \(O \) does not believe fairness of \(P \)
- But, if \(\langle K \rangle \) is lax, then goal is provable!
- Completely counterintuitive

- Problematic axiom is “unit” law: \(\vdash A \supset \langle K \rangle A \)
- Can use weaker logics (ongoing work)
Outline

1. Introduction
 - Goals and Motivation
 - Choosing a Logic

2. A Constructive Logic for Authorization

3. Proof Carrying Authorization
 - Enforcement with PCA
 - Issues and Limitations

4. Analysis of Authorization Policies
 - Non-interference

5. System Specification
 - Knowledge Modalities
 - Actual Modeling
 - Open Ends
How do we know that a policy is correct?

Simple question:

“Does the policy allow Alice to read foo.pdf?”

- Can be answered with a theorem prover for the logic

More complicated question:

“If Alice signs something of the form $\text{mayread}(K, F)$, will it affect any decision drawn from the policy?”

(Does Alice have any control over predicate mayread)

- Cannot be answered with a theorem prover
- Needs a meta-level theorem about the policy.
How do we know that a policy is correct?

Simple question:
“Does the policy allow Alice to read foo.pdf?”
- Can be answered with a theorem prover for the logic

More complicated question:
“If Alice signs something of the form $\text{mayread}(K, F)$, will it affect any decision drawn from the policy?”
(Does Alice have any control over predicate mayread)
- Cannot be answered with a theorem prover
- Needs a meta-level theorem about the policy.
How do we know that a policy is correct?

Simple question:

“Does the policy allow Alice to read foo.pdf?”

- Can be answered with a theorem prover for the logic

More complicated question:

“If Alice signs something of the form mayread(K, F), will it affect any decision drawn from the policy?”

(Does Alice have any control over predicate mayread)

- Cannot be answered with a theorem prover
- Needs a meta-level theorem about the policy.
How do we know that a policy is correct?

Simple question:
“Does the policy allow Alice to read foo.pdf?”
 Can be answered with a theorem prover for the logic

More complicated question:
“If Alice signs something of the form \texttt{mayread}(K, F), will it affect any decision drawn from the policy?”
(Does Alice have any control over predicate \texttt{mayread})

 Cannot be answered with a theorem prover
 Needs a meta-level theorem about the policy.
Non-interference Property

- Property of the following form:
 If $\Gamma, A \Rightarrow \psi$ and
 $<\text{Some VERIFIABLE condition on } \Gamma, A, \psi>$
 then $\Gamma \Rightarrow \psi$

- Assumption A does not “interfere” with policy Γ for conclusions ψ
- Can be formulated very generally for large classes of Γ, A and ψ
Non-interference Property

- Property of the following form:
 If $\Gamma, A \Rightarrow \psi$ and
 $<\text{Some VERIFIABLE condition on } \Gamma, A, \psi>$
 then $\Gamma \Rightarrow \psi$

- Assumption A does not “interfere” with policy Γ for conclusions ψ
- Can be formulated very generally for large classes of Γ, A and ψ
Simple Non-interference

If $\Gamma, \langle K \rangle A \Rightarrow \psi$ and
$\langle K \notin \Gamma, \psi \text{ and } \Gamma, \psi \text{ are quantifier-free} \rangle$
then $\Gamma \Rightarrow \psi$

- Can be used to show that irrelevant principals cannot interfere!
- Quite weak for practical purposes
 - Most realistic policies have quantifiers
Simple Non-interference

If $\Gamma, \langle K \rangle A \Rightarrow \psi$ and $\langle K \notin \Gamma, \psi \text{ and } \Gamma, \psi \text{ are quantifier-free} \rangle$
then $\Gamma \Rightarrow \psi$

- Can be used to show that irrelevant principals cannot interfere!
- Quite weak for practical purposes
 - Most realistic policies have quantifiers
Non-interference using affirmation flow

\[p1 : \langle admin \rangle \text{mayread}(Alice, foo.pdf) \]
\[p2 : \langle admin \rangle (\langle Alice \rangle \text{allow_read}(K, foo.pdf)) \]
\[\text{mayread}(K, foo.pdf) \]

Using the policy, derive a “flow relation”:

\[\text{admin.}((\text{Alice.} \text{allow_read}) \leq \text{mayread}) \]

“Inside the admin’s domain, a statement by Alice regarding allow_read may affect the truth of a statement containing mayread”

\[\leq \text{ is reflexive, transitive + other properties (related to lax modality)} \]

\[\text{Depends on the policy} \]
Non-interference using affirmation flow

\[
p1: \langle \text{admin}\rangle \text{mayread}(Alice, foo.pdf) \\
p2: \langle \text{admin}\rangle (\langle Alice\rangle \text{allow}_\text{read}(K, foo.pdf) \implies \text{mayread}(K, foo.pdf))
\]

- Using the policy, derive a “flow relation”:
 \[
 \text{admin}.((Alice.\text{allow}_\text{read}) \leq \text{mayread})
 \]
 “Inside the admin’s domain, a statement by Alice regarding \text{allow}_\text{read} may affect the truth of a statement containing \text{mayread}”

- \leq is reflexive, transitive + other properties (related to lax modality)
- Depends on the policy
Non-interference using affirmation flow

\[p1 : \langle \text{admin} \rangle \text{mayread}(Alice, \text{foo.pdf}) \]
\[p2 : \langle \text{admin} \rangle (\langle Alice \rangle \text{allow_read}(K, \text{foo.pdf}) \rightarrow \text{mayread}(K, \text{foo.pdf})) \]

If \(\Gamma, A \Rightarrow \psi \) and
\(<\text{Nothing in } A \text{ is below anything in } \psi \text{ in the relation } \leq \text{ derived from } \Gamma, A, \psi>\)
then \(\Gamma \Rightarrow \psi \)

\(\leq \) can be constructed and verified automatically
Non-interference using affirmation flow

\[p_1 : \langle \text{admin} \rangle \text{mayread}(\text{Alice}, \text{foo.pdf}) \]
\[p_2 : \langle \text{admin} \rangle (\langle \text{Alice} \rangle \text{allow_read}(K, \text{foo.pdf}) \]
\[\rightarrow \text{mayread}(K, \text{foo.pdf}) \]

- \textbf{Alice}.\text{mayread} \not\subseteq \textbf{admin}.\text{mayread}
- \text{p}_1, \text{p}_2, \langle \text{Alice} \rangle \text{mayread}(K, F) \Rightarrow \langle \text{admin} \rangle \text{mayread}(K', F')

 if and only if

\[\text{p}_1, \text{p}_2 \Rightarrow \langle \text{admin} \rangle \text{mayread}(K', F') \]

- Alice has no jurisdiction on predicate \text{mayread}!

 (Makes intuitive sense: Alice's jurisdiction is over the predicate \text{allow_read})
Non-interference using affirmation flow

\[p1 : \langle \text{admin} \rangle \text{mayread}(Alice, \text{foo.pdf}) \]
\[p2 : \langle \text{admin} \rangle (\langle Alice \rangle \text{allow_read}(K, \text{foo.pdf}) \]
\[\rightarrow \text{mayread}(K, \text{foo.pdf}) \]

- \textbf{Alice}.mayread \nsubseteq \textbf{admin}.mayread

- \(p1, p2, \langle Alice \rangle \text{mayread}(K, F) \rightarrow \langle admin \rangle \text{mayread}(K', F') \)
 if and only if

- \(p1, p2 \Rightarrow \langle admin \rangle \text{mayread}(K', F') \)

- Alice has no jurisdiction on predicate \text{mayread}!
 (Makes intuitive sense: Alice’s jurisdiction is over the predicate \text{allow_read})
Outline

1 Introduction
 - Goals and Motivation
 - Choosing a Logic

2 A Constructive Logic for Authorization
 - Enforcement with PCA
 - Issues and Limitations

3 Proof Carrying Authorization
 - Enforcement with PCA
 - Issues and Limitations

4 Analysis of Authorization Policies
 - Non-interference

5 System Specification
 - Knowledge Modalities
 - Actual Modeling
 - Open Ends
Given an *implemented* system with
- Rules for transferring and updating data/information/objects
- Authorizations for allowing transfers

Example of rule:
If “Server has information” and “K may access information”, then “K has information”

Objective is to model both information and authorizations in one logic

How do we model “K has information”?
- Model “information” as a logical formula (usually a predicate)
- Add modalities for modelling “K has”
Given an *implemented* system with
- Rules for transferring and updating data/information/objects
- Authorizations for allowing transfers

Example of rule:
If “Server has information” and “K may access information”, then “K has information”

Objective is to model both information and authorizations in one logic

How do we model “K has information”?
- Model “information” as a logical formula (usually a predicate)
- Add modalities for modelling “K has”
Knowledge Modalities: $[K]$ and $[K]'$

- $[K]'A$ reads “K knows that A is true”
- Models facts
 - $[K]'\text{round}(\text{world})$
 - $[K]'\text{contents}(F, C)$
 - $[K]'\text{password}(\text{"abc"})$

- $[K]'A$ reads “K possesses A ”
- Models objects which should not be replicated (linear)
 - $[K]'\text{cash}(\$10)$
 - $[K]'\text{check}(K', \$1000)$
 - $[K]'\text{lock}(F)$
Formal description of $[K]$ and $[K]$

- $[K]$ and $[K]$ are intuitionistic S4 □ modalities
- Two new categorical judgments: K knows A and K has A
- Occur only on left (like A valid in S4)

\[
\begin{align*}
\Gamma; \Delta|_K & \Rightarrow A \\
\Gamma; \Delta; [K]A & \Rightarrow \psi
\end{align*}
\]

\[
\begin{align*}
\Gamma|_K; \Delta; [K]A & \Rightarrow \psi \\
\Gamma; \Delta; K \text{ has } A & \Rightarrow \psi
\end{align*}
\]
Formal description of $[K]$ and $[K]$

- $[K]$ and $[K]$ are intuitionistic S4 □ modalities
- Two new categorical judgments: K knows A and K has A
- Occur only on left (like A valid in S4)

\[
\frac{\Gamma|_K; \Delta|_K \Rightarrow A}{\Gamma; \Delta|_K \Rightarrow [K]A} \quad R
\]

\[
\frac{\Gamma; \Delta|_K \Rightarrow [K]A}{\Gamma; \Delta, K \ has \ A \Rightarrow \psi} \quad L
\]

\[
\frac{\Gamma; \Delta, A \Rightarrow \psi}{\Gamma; \Delta, K \ has \ A \Rightarrow \psi} \quad \text{has}
\]

\[
\frac{\Gamma, K \ knows \ A; \Delta \Rightarrow \psi}{\Gamma; \Delta, [K]A \Rightarrow \psi} \quad L
\]

\[
\frac{\Gamma, K \ knows \ A; \Delta, A \Rightarrow \psi}{\Gamma, K \ knows \ A; \Delta \Rightarrow \psi} \quad \text{knows}
\]
If $\Gamma|_K \vdash A$

and $\Gamma, K \text{ knows } A; \Delta \Rightarrow \psi \quad (\psi = C \text{ or } K \text{ affirms } C)$

then $\Gamma; \Delta \Rightarrow \psi$

If $\Gamma|_K; \Delta_1|_K \Rightarrow A$

and $\Gamma; \Delta_2, K \text{ has } A \Rightarrow \psi$

then $\Gamma; \Delta_1|_K, \Delta_2 \Rightarrow \psi$
Actual Modeling

\[[Server] \text{contents}(F, C) \supset \langle \text{admin} \rangle \text{mayread}(K, F) \supset [K] \text{contents}(F, C)\]

- Knowledge Semantics
 \[[K] \text{contents}(F, C) \rightarrow ? (\text{Store})\]

- Authorization Semantics
 \langle \text{admin} \rangle \text{mayread}(K, F) \rightarrow ? (\text{ACL, Certificate or Proof})

- Ensure that implementation conforms to specification
 - No requirement of completeness

- Last lecture’s work a step in this direction

- A lot more needs to be done
Actual Modeling

\[
\text{[Server]} \text{contents}(F, C) \supset
\langle \text{admin} \rangle \text{mayread}(K, F) \supset
\text{[K]} \text{contents}(F, C)
\]

- Knowledge Semantics
 \[
 \text{[K]} \text{contents}(F, C) \rightarrow ? \ (\text{Store})
 \]

- Authorization Semantics
 \[
 \langle \text{admin} \rangle \text{mayread}(K, F) \rightarrow ? \ (\text{ACL, Certificate or Proof})
 \]

- Ensure that implementation conforms to specification
 - No requirement of completeness

- Last lecture’s work a step in this direction

- A lot more needs to be done
Actual Modeling

\[\text{Server} \] \text{contents}(F, C) \supset
\langle \text{admin} \rangle \text{mayread}(K, F) \supset
\[K\] \text{contents}(F, C)

- Knowledge Semantics
 \[K\] \text{contents}(F, C) \rightarrow ? (Store)

- Authorization Semantics
 \langle \text{admin} \rangle \text{mayread}(K, F) \rightarrow ? (ACL, Certificate or Proof)

- Ensure that implementation conforms to specification
 - No requirement of completeness

- Last lecture’s work a step in this direction

- A lot more needs to be done
Actual Modeling

\[
[Server] \text{contents}(F, C) \supset \\
\langle \text{admin} \rangle \text{may read}(K, F) \supset \\
\[K\]\text{contents}(F, C)
\]

- Knowledge Semantics
 \[
[K]\text{contents}(F, C) \rightarrow ? \text{(Store)}
\]
- Authorization Semantics
 \[
\langle \text{admin} \rangle \text{may read}(K, F) \rightarrow ? \text{(ACL, Certificate or Proof)}
\]
- Ensure that implementation conforms to specification
 - No requirement of completeness
- Last lecture’s work a step in this direction
- A lot more needs to be done
Why do all this?

- Prove properties of the specification
- Since implementation conforms, it obeys the same properties
- Banking system: account books remain balanced
- University registration: credit limits respected
- Secure file system: every access preceded by authorization
Almost all certificate schemes allow expiration time
How do we model this?

Add a new modality for time: $A@I$, I is an interval of time
Certificates become: $\langle K \rangle (A@I)$
Logic is Hybrid
Problem: how do we enforce $A@I$ in general?

Tie time to says modality: $\langle K, I \rangle A$
Closely tied to PCA implementations
Question: What rules do we choose for $\langle K, I \rangle A$?
Will lax work?
Almost all certificate schemes allow expiration time.

How do we model this?

Add a new modality for time: $A@I$, I is an interval of time.

Certificates become: $\langle K \rangle (A@I)$

Logic is Hybrid.

Problem: how do we enforce $A@I$ in general?

Tie time to says modality: $\langle K, I \rangle A$

Closely tied to PCA implementations.

Question: What rules do we choose for $\langle K, I \rangle A$?

Will lax work?
Almost all certificate schemes allow expiration time
How do we model this?

Add a new modality for time: $A@I$, I is an interval of time
Certificates become: $\langle K \rangle (A@I)$
Logic is Hybrid
Problem: how do we enforce $A@I$ in general?

Tie time to says modality: $\langle K, I \rangle A$
Closely tied to PCA implementations
Question: What rules do we choose for $\langle K, I \rangle A$?
Will lax work?
Open End: Complexity Questions

(Based on Joint Work with Martín Abadi)

- Theorem provers and proof-search inevitable for policy analysis
- How hard are they?

- Answer via translation to classical S4
 \[\langle K \rangle A \sqsubseteq \Box (K \lor \neg A) \]
- Sound and complete

Consequences:
1. Propositional fragment decidable (PSPACE)
2. Complete Kripke semantics (don’t seem very useful, though)
3. Finite model property
(Based on Joint Work with Martín Abadi)

- Theorem provers and proof-search inevitable for policy analysis
- How hard are they?

- Answer via translation to classical S4
- $\lnot \langle K \rangle A \models = \Box (K \lor \lnot A)$
- Sound and complete

Consequences:
1. Propositional fragment decidable (PSPACE)
2. Complete Kripke semantics (don’t seem very useful, though)
3. Finite model property
Open End: Complexity Questions

(Based on Joint Work with Martín Abadi)

- Theorem provers and proof-search inevitable for policy analysis
- How hard are they?

 Answer via translation to classical S4

 $\langle K \rangle A \models = \Box (K \lor \lnot A)$

- Sound and complete

Consequences:

1. Propositional fragment decidable (PSPACE)
2. Complete Kripke semantics (don’t seem very useful, though)
3. Finite model property