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Abstract

Do we really need 3D labels in order to learn how to
predict 3D? In this paper, we show that one can learn a
mapping from appearance to 3D properties without ever
seeing a single explicit 3D label. Rather than use explicit
supervision, we use the regularity of indoor scenes to learn
the mapping in a completely unsupervised manner. We
demonstrate this on both a standard 3D scene understand-
ing dataset as well as Internet images for which 3D is un-
available, precluding supervised learning. Despite never
seeing a 3D label, our method produces competitive results.

1. Introduction
Consider the image in Fig. 1. When we see this image,

we can easily recognize and compensate for the underlying
3D structure: for example, we have no trouble recogniz-
ing the orientation of the bookshelves and the floor. But
how can computers do this? Traditionally, the answer is to
use a supervised approach: simply collect large amounts of
labeled data to learn a mapping from RGB to 3D. In the-
ory, this is mathematically impossible, but the argument is
that there is sufficient regularity to learn the mapping from
data. In this paper, we take this argument one step further:
we claim that there is enough regularity in indoor scenes
to learn a model for 3D scene understanding without ever
seeing an explicit 3D label.

At the heart of our approach is the observation that im-
ages are a product of two separate phenomena. From a
graphics point of view, the image we see is a combination of
(1) the coarse scene geometry or meshes in our coordinate
frame and (2) the texture in some canonical representation
that is put on top of these meshes. For instance, the scene in
Fig. 1 is the combination of planes at particular orientations
for the bookshelf and the floor, as well as the fronto-parallel
rectified texture maps representing the books and the alpha-
bet tiles. We call the coarse geometry the 3D structure and
the texture maps the style1. In the 3D world these are dis-

1Of course, the books in Fig. 1 themselves could be further represented
by 3D models. However, in this paper, we ignore this fine change in far
structure, and represent the books in terms of their contribution to texture.
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Figure 1. How can we learn to understand images in a 3D way?
In this paper, we show a way to do this without using a single
3D label. Our approach treats images as a combination of a 3D
model (3D structure) with canonical textures (style) applied on
top. In this paper, we learn style elements that recognize tex-
ture (e.g., bookshelves, tile floors) rectified to a canonical view.
Rather than use explicit supervision, we use the regularity of in-
door scenes and a hypothesize-and-verify approach to learn these
elements. We thus learn models for single image 3D without see-
ing a single explicit 3D label. 3D model from [18].

tinct, but when viewed as a single image, the signals for
both get mixed together with no way to separate them.

Based on this observation, we propose style elements
as a basic unit of 3D inference. Style elements detect the
presence of style, or texture that is correctly rectified to
a canonical fronto-parallel view. They include things like
cabinets, window-blinds, and tile floors. We use these style
elements to recognize when a texture has been rectified to
fronto-parallel correctly. This lets us recognize the orien-
tation of the scene in a hypothesize-and-verify framework:
for instance, if we warp the bookshelf in Fig. 2 to look as
if it is facing right, our rectified bookshelf detector will re-
spond strongly; if we warp it to look as if it is facing left,
our rectified bookshelf detector will respond poorly.

In this paper, we show that we can learn these style ele-
ments in an unsupervised manner by leveraging the regular-
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Figure 2. We infer a 3D interpretation of a new scene with style elements by detecting them in the input image rectified to the main
directions of the scene. For instance, our bookshelf style-element (orange) will respond well to the bookshelf when it is rectified with the
correct direction (facing leftwards) and poorly when it is not. We show how we can automatically learn these style elements, and thus a
model for 3D scene understanding without any 3D supervision. Instead, the regularity of the world acts as the supervisory signal.

ity of the world’s 3D structure. The key assumption of our
approach is that we expect the structure of indoor scenes to
resemble an inside-out-box on average: on the left of the
image, surfaces should face right and in the middle, they
should face us. We show how this prior belief can vali-
date style elements in a hypothesize-and-verify approach:
we propose a style element and check how well its detec-
tions match this belief about 3D structure over a large set of
unlabeled images; if an element’s detections substantially
mismatch, our hypothesis was probably wrong. To the best
of our knowledge, this is the first paper to propose an unsu-
pervised learning-based approach for 3D scene understand-
ing from a single image.
Why unsupervised? We wish to show that unsupervised
3D learning can be effective for predicting 3D. We do
so on two datasets: NYUv2, a standard 3D dataset, and
Places-205, which contains scenes not covered by Kinect
datasets, such as supermarkets and airports. Our method
is unsupervised and does not use any training data or
any pre-trained geometry models; nevertheless: (1) Our
method nearly matches comparable supervised approaches
on NYUv2: it is within < 3◦ of 3DP [16] and better in
many metrics on vertical regions. (2) When fused with 3DP,
our method achieves state-of-the-art results in 4/6 metrics
on NYUv2. (3) As an unsupervised approach, our method
can learn from unlabeled Internet images like Places. This
is fundamentally impossible for supervised methods, which
must resort to pre-trained models and suffer performance
loss from the domain shift. Our approach can use this data
and outperforms 3DP by 3.7%.
Why Style Elements? Operating in this style space lets us
learn about the world in a viewpoint-independent fashion.
In this paper, we show how this enables us to learn unsu-
pervised models for 3D, but we see broader advantages to
this: first, we can detect particular combinations of style
and structure that were not present at training time, which
is impossible in many existing models; second, since our

style elements are viewpoint-independent, we can share in-
formation across different viewpoints. We illustrate these
advantages in Fig. 3: our method learns one element for
all the orientations of the cabinets, but a standard viewer-
centric approach learns one element per orientation.

2. Related Work
The task of predicting the 3D structure or layout from a

single image is arguably as old as computer vision. Early
work used extracted contours [33, 23, 7] or geometric prim-
itives [2, 4] and rules to infer structure. However, these
primitives were too difficult to detect reliably in natural im-
ages, and the community moved towards learning-based ap-
proaches. Over the past decade, one dominant paradigm
has emerged: at training time, one takes a large collection
of images and 3D labels and learns a mapping between the
two. The argument for this paradigm is that scenes are suf-
ficiently regular so that such a mapping can be learned from
data. The mapping is often learned over segments [34, 22],
discriminative patches [16], or pixels [26]. At test time, this
local mapping is used on a single image to infer the 3D la-
bels; in other works, it is again presumed that there is such
regularity that one can impose even more top-down con-
straints, such as the Manhattan-world assumption [8], an
indoor box model [20, 35], or others [27, 6, 5, 17, 1, 44].
In this work, we tackle the same class of problem, but
show that there is enough regularity to even do unsuper-
vised learning of models. In particular, we do not use an
explicit 3D supervisory signal at any point. Additionally,
our method learns across viewpoints, unlike most work on
single-image 3D which learn view-dependent representa-
tions. The most related work among these methods is [25],
which recognizes regions at canonical depths; in contrast,
our method is unsupervised and predicts surface normals.

Our approach uses visual elements discovered from a
large dataset and draws from a rich literature on discrimi-
native patch-discovery [37, 11, 10, 24, 3]. Like Juneja et
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Figure 3. An illustration of sharing enabled by style elements.
Top: elements from a 3DP model; Bottom: (left) a style element
and (right) selections from its top 15 discovery-set detections. 3DP
detects each and every cabinet orientation with a separate element
because it is viewer-centric; our model compactly recognizes all
cabinets orientations with one element.

al. [24], we take a hypothesize-and-verify approach which
filters a large set of candidate patch hypotheses by patch de-
tections on a dataset. Among these works, our work is most
closely related to discriminative patches for 3D [16, 32]
or visual-style-sensitive patches [29]. These frameworks,
however, capture the Cartesian product of appearance and
the label (style or 3D), meaning that for these frameworks
to capture an oven-front at a particular angle, they need to
see an oven-front at that particular angle. On the other hand,
our approach analytically compensates for 3D structure by
rectifying the image data. Thus our elements can predict la-
bels not seen at training time (e.g., an oven at a previously
unseen angle). We illustrate this in Fig. 3.

Warping images to a canonical view has been used to
boost performance of local patch descriptors for tasks like
location recognition [41, 38], in which 3D structure is
known or estimated via pre-trained models, or in detection
[21, 14], in which it is given at training time. Our work,
on the other hand, is unsupervised and jointly reasons about
3D structure and style.

The idea of figuring out the 3D structure by optimizing
properties of the unwarped image has been used in shape-
from-texture (e.g., [15, 31]) and modern texture analysis
[43] and compression [39] approaches. These works are
complementary to our own: many obtain a detailed inter-
pretation on presegmented regions or in specific domains

by optimizing some criterion such as regularity within one
image or a single domain. Our style elements on the other
hand, are discovered automatically via the regularity in
large amounts of data, and are more general than instance-
level texture patterns. They can further interpret novel,
generic non-presegmented scenes, although our interpreta-
tions on these cluttered scenes are more coarse in compari-
son.

3. Overview
Given a dictionary of discovered style elements, we can

use this dictionary of detectors in rectified images to deter-
mine the orientation of surfaces: the elements only respond
when the scene is rectified correctly. But how do we obtain
this dictionary of correctly rectified style elements if we do
not have 3D labels?

In Section 4.2, we show how to solve this chicken-and-
egg problem with a hypothesize-and-verify approach: we
hypothesize a style element, run it on the dataset, and check
whether its pattern of detections is plausible. We evaluate
the style element’s detections by comparing it with a prior
that assumes that the world is an inside-out-box. Training
thus takes a collection of RGB images as input, and pro-
duces a dictionary of detectors as output. In Section 4.3, we
describe how to use these style elements to interpret a new
image: we run our style elements in a new image, and the
detector responses vote for the underlying structure.

As this work is unsupervised, we make some assump-
tions. We use the Manhattan-world assumption [8] to re-
duce our label space to three orthogonal directions; we find
these directions and rectification homographies for them us-
ing vanishing points estimated by [20]. We note, however,
that there can be other directions present; we simply do not
learn or detect style elements on them. We further assume
that the images are upright so we can process the horizon-
tal and vertical directions separately. Finally, our method
models each style element as having a single label.

4. Method
Our method begins with a discovery set of images and

finds style elements that will help us interpret a new im-
age. This task entails determining the orientation of sur-
faces throughout the discovery set so that we can obtain
fronto-parallel rectified representations of the texture.

Since we have no explicit 3D labels, this task seems
hopeless: in theory, each part of each image could face any
direction! We take a hypothesize-and-verify approach that
lets us inject knowledge via a prior on the 3D structure of
scenes. We guess a large number of style elements by rec-
tifying the images and sampling patches. Most guesses are
wrong, but some are right. We identify the correct ones by
computing agreement between our prior and what each hy-
pothesis would imply about the 3D structure of the world.
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Figure 4. Selected style elements automatically discovered by our method. In each, we show the element on the left and its top detections
on the discovery set; these and other detections are used to identify good and bad style elements. Notice that the top detections of most
vertical style elements have a variety of orientations.

4.1. Prior

Consider the TV on the top-left of Fig. 4. How can we
know that it is a good style element (i.e., rectified to be
fronto-parallel) without knowing the underlying 3D of the
image? While we do not know the 3D at that location, if
we looked at the whole discovery set, we would observe a
distinct pattern in terms of where TVs appear and in what
direction they face: due to the regularity of human scenes,
TVs on the left-hand-side of the image tend to face right-
wards; on the right-hand-side, they tend to face leftwards.
Thus, if we were to run our TV detector over the discovery
set, we would expect to see this same distribution. On the
other hand, it would be suspicious if we had a detector that
only found leftwards facing TVs irrespective of where they
appear in the image. We now explain how to formalize this
intuition by constructing a prior that gives a probability of

each orientation as a function of image location; this lets us
score hypothetical style elements by their detections.

Our goal is to build a prior that evaluates the likelihood of
a surface orientation as a function of pixel coordinate. Our
overarching assumption is that our images are taken with
an upright camera inside a box. Then, as in [22], we factor
the question of orientation into two independent questions
– “is the region vertical or horizontal?” and “if it is ver-
tical, which vertical direction does it face?”. We then as-
sume the probability of vertical/horizontal depends on the
y-coordinate in the image. For the vertical direction, we
note that if we assume the world is a box, we can deter-
mine how likely each vertical direction is at each pixel as a
function of its x coordinate.

We formalize this prior as follows, proceeding analyti-
cally since we do not have access to data. Since we ex-
pect horizontal surfaces like floors to be more common at
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Figure 5. Selecting hypotheses by their detections. We compare hypothesized style elements’ detections with our prior. We show a good
(left) and a bad (right) style hypothesis in red squares. For each, we show a scatter plot of their detections on the discovery set, plotting
the x-location in the image on the x-axis and how left-vs-right the detection is on the y-axis. We illustrate a few of these detections: for
instance, the bedroom scene in the middle is a leftwards facing detection on the right-side of the image. On the far left, we show what
our prior expects – a steady change from right-facing to left-facing. We rank elements by how well their detections match this prior: for
instance, we reject the incorrect style element on the right since it predicts that everything faces left, which is unlikely under the prior.

the bottom of the image, we model the vertical/horizontal
distinction with a negative exponential on the y-location,
∝ exp(−y2/σ2). Since the camera is upright, the horizon
determines the sign of the horizontal directions. For vertical
directions, we assume the camera is inside a box with aspect
ratio ∼ Uniform[1, 2] and all rotations equally likely. The
likelihood of each direction (left-to-right) as a function of x
location can then be obtained in a Monte-Carlo fashion: we
histogram normals at each location over renderings of 100K
rooms sampled according to the assumptions.

4.2. Hypothesizing-and-Verifying Style Elements

Now that we have a way to verify a style element, we
can use it in a hypothesize-and-verify approach. We first
explain how we generate our hypotheses and then how we
use the prior introduced in the the previous section to verify
hypothesized style patches.

We first need a way to generate hypotheses. Unfortu-
nately, there are an infinite number of possible directions to
try at each pixel. However, if we assume the world is a box,
our search space is dramatically smaller: there are only 6
possible directions and these can be obtained by estimating
Manhattan-world vanishing points in the image. Once we
have rectified the image to these main scene directions, we
sample a large collection (≈ 25K total) of patches on these
rectified images. Each patch is converted to a detector via
an ELDA detector [19] over HOG [9]. Most patches will
be wrong because the true scene geometry disagrees with
them. One wrong hypothesis appears on the right of Fig. 5
in which a shelf has been rectified to the wrong direction.

We sift through these hypotheses by comparing what
their detection pattern over the discovery set implies about
3D structure with our prior. For instance, if a style patch
corresponds to a correctly rectified TV monitor, then our
detections should, on average, match our box assumption.
If it corresponds to an incorrectly rectified monitor then it
will not match. We perform this by taking the ELDA detec-

tor for each patch and looking at the location and implied
orientations of the top 1K detections over the training set.
Since our prior assumes vertical and horizontal are separate
questions, we have different criteria for each. For vertical
surfaces, we compute average orientation as a function of x
location and compare it to the average orientation under the
prior, using the mean absolute difference as our criterion.
For horizontal surfaces, our prior assumes that x location
is independent from horizontal sign (i.e., floors do not just
appear on the left); we additionally do not expect floor to
share many style elements with ceilings. We thus compute
the correlation between x and horizontal sign and the purity
of up-vs-down labelings in the top firings. We illustrate this
for two hypothesized vertical style elements in Fig. 5.

We use these criteria to rank a collection of hypothetical
vertical and horizontal style elements. Our final model is
the top 500 from each. We show some of the style elements
we discover on NYU v2 in Fig. 4.

4.3. Inference

Given a new image and our style elements, we com-
bine our prior and detections of the style elements to inter-
pret the scene. We extract three directions from vanishing
points to get our label space and run the style elements on
the rectified images. The detections and the prior then vote
for the final label. We maintain a multinomial distribution
at each pixel over both whether the pixel is horizontal-vs-
vertical and the vertical direction. Starting with the prior,
we add a likelihood from detections: we count overlapping
detections agreeing with the direction, weighted by score.
We then take the maximum response, deciding whether the
pixel is horizontal or vertical, and if the latter, the vertical
orientation.

Our method produces good interpretations in many
places, but does not handle ambiguous parts like untextured
carpets well. These ambiguities are normally handled by
transferring context [16] or doing some form of learned rea-
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Figure 6. Sample results on NYUv2. First two rows: selected; last two row: random. In row 1, notice that the sides of objects are being
labeled (discernible via conflicting colors), even though this severely violates the prior. In row 2, notice that our predictions can extend
across the image or form convex corners: even though our prior is a box, we ignore in light of evidence from style elements.

Input GT 3DP Prior Proposed Fusion Fus. Choice

Figure 7. Comparison with the supervised 3DP method. The methods have complementary errors and we can fuse their results: 3DP often
struggles with near-perpendicular surfaces; however these are easy to recognize once rectified by the proposed method. Our method has
more trouble distinguishing floors from walls. We show the fusion result and which prediction is being used (Red: proposed; blue: 3DP).

soning [20, 35, 27, 17]. Without explicit 3D signal, we rely
on unsupervised label propagation over segments: we ex-
tract multiple segmentations by varying the parameters of
[13]2. Each segment assumes the mode of its pixels, and
the final label of a pixel is the mode over the segmentations.

4.4. Implementation Details:
We finally report a number of implementation details of

our method; more details appear in the supplement. Patch
representation: Throughout the approach, we use HOG fea-
tures [9] with a 8 × 8 pixel cells at a canonical size of 80
pixels. Rectification: we obtain Manhattan-world vanishing
points from [20] and rectify following [42]: after autocali-
bration, the remaining parameters up to a similarity trans-
form are determined via vanishing point orthogonality; the
similarity transform is handled by aligning the Manhattan

2 (σ = 0.5, 1, 1.5, 2; k = 100, 200; min = 50, 100)

directions with the image axes and by operating at multiple
scales. Sample rectified images appear in Fig. 2: our detec-
tors are discovered and tested on these images. At test time,
we max-pool detector responses over multiple rectifications
per vertical direction. Initial Patch Pool: Our hypotheses
are obtained by rectifying each image in the discovery set
to the scene directions and following the sampling strategy
of [37] while rejecting patches whose corresponding quadri-
lateral has area < 1002 pixels.

5. Experimental Validation
We now describe experiments done to validate the ap-

proach. We are guided by the following questions: (1) How
well does the method work? (2) Can the approach be com-
bined with supervised methods? and (3) Are there scenarios
that only an unsupervised approach can handle?

To answer the first two questions, we use the NYUv2



[36] dataset, which has gained wide acceptance; we find
that our method does nearly as well as a comparable super-
vised method and that a simple learned fusion of the meth-
ods matches or surpasses the state-of-the-art in 4/6 metrics
among methods not using the larger video dataset. To an-
swer the final question, we use the Places-205 dataset [45],
which has many locations not covered by Kinect datasets.
Supervised approaches must resort to a model trained on
existing datasets, but our method can adapt to the dataset.
We find that this enables us to outperform a comparable su-
pervised method by a large margin (3.7%).

5.1. Experiments on NYU v2

We first document our experimental setup. We follow
standard protocols and compare against the state-of-the-art.
Data: We use the standard splits of [36]. We use the
ground-truth normals from [26] but found similar conclu-
sions on those from [16].
Evaluation Criteria: As introduced by [16], we evaluate
results on a per-pixel basis over all over valid pixels. We
report the mean, median, RMSE and the fraction of pix-
els with error below a threshold t, or PGP-t (percent good
pixels) for t = 11.25◦, 22.5◦, 30◦. Like [22], our model
breaks the task into a vertical/horizontal problem and a ver-
tical subcategory problem. We evaluate both, and evaluate
the vertical task on surfaces within 30◦ of the y-axis.
Baselines: We stress that our goal as an unsupervised
method is not to outperform supervised methods but instead
to show that our approach is effective. We report results of
all methods that could be considered state-of-the-art at the
time of submission, including even those from methods us-
ing the much larger video dataset [40, 12]. The most infor-
mative comparison is with the Manhattan-world version of
3DP [16] because it keeps two sources of variance fixed, the
base feature and the Manhattan-world assumption.
Combining with supervised methods: We learn a model,
termed 3DP+Prop that fuses our method with 3DP. Fol-
lowing [30], we learn random forests (100 trees, cross-
validated min-children) on training data to predict whether
each method’s outputs are within 22.5◦ of the ground-truth.
We train separate forests for our method before segmenta-
tion propagation, its vertical predictions only, and 3DP. We
use for features the confidences and normals from all meth-
ods and the image location. At test time, we take the pre-
diction that is most likely to be correct.
Results: We first report qualitative results in Fig. 6. Our
method is unsupervised but obtains an accurate interpreta-
tion on most scenes. The method frequently picks up on
small details, for instance, the right-wards facing chair back
(1st row, left) and the side of the shelving in (1st, middle).
These small details, as well as the correct inwards-pointing
box of the refrigerator (2, middle), are unlikely under the
box prior and demonstrate that the method is not simply
regurgitating the prior. Our unsupervised propagation is

Table 1. Evaluation on all pixels on NYU v2. The most infor-
mative comparison is with 3DP and UNFOLD. Our unsupervised
approach nearly matches 3DP and in combination with 3DP, ob-
tains state-of-the-art results in 4/6 metrics. Starred methods do not
use the Manhattan-world assumption.

Summary Stats. (◦) % Good Pixels
(Lower Better) (Higher Better)

Mean Median RMSE 11.25◦ 22.5◦ 30◦

3DP+Prop. 34.6 17.5 48.7 40.6 54.7 59.7
Ladicky∗ [26] 33.5 23.1 44.6 27.7 49.0 58.7
UNFOLD [17] 35.2 17.9 49.6 40.5 54.1 58.9
3DP [16] 36.3 19.2 50.4 39.2 52.9 57.8
Proposed 38.6 21.7 52.6 36.7 50.6 55.4
Lee et al. [28] 43.8 35.8 55.8 26.8 41.2 46.6

(With External Data)
Wang [40] 26.9 14.8 -NR- 42.0 61.2 68.2
Eigen∗ [12] 23.7 15.5 -NR- 39.2 62.0 71.1

Table 2. Ablative analysis

Mean Median RMSE 11.25◦ 22.5◦ 30◦

Full 38.6 21.7 52.6 36.8 50.6 55.4
No Segm. 39.6 23.4 53.5 35.7 49.3 54.0
Prior 43.2 30.2 56.7 33.1 45.2 49.8

3DP on Prior 41.7 27.0 55.6 34.6 47.1 51.6

Table 3. Vertical evaluation. Our method outperforms a 3DP on
3/6 metrics, but fusing the two gives a substantial boost

Summary Stats. (◦) % Good Pixels
(Lower Better) (Higher Better)

Mean Median RMSE 11.25◦ 22.5◦ 30◦

Prior 39.3 26.0 52.0 30.4 46.7 53.2
Proposed 33.9 19.7 46.5 35.1 53.2 59.7
3DP [16] 33.9 19.9 46.5 36.4 52.6 58.8

3DP+Prop. 32.1 18.0 44.6 37.5 55.2 61.5

sometimes too aggressive, as seen in (2nd, right, under the
blinds; 3rd, left, on the floor), but helps with boundaries.

We report quantitative results in Table 1. Our method
is always within 2.5◦ of the most immediately compara-
ble supervised method, 3DP, and is always within 3.8◦ of
[17], which fuses multiple models in a complex MIQP for-
mulation. We also substantially outperform [28], the other
unsupervised method for this task. Our simple fusion of
3DP and our method obtains state-of-the-art results in 4/6
metrics among methods using only the original 795 training
images. Since the Manhattan-world assumption is rewarded
by some metrics and not by others, fair comparison with
non-Manhattan-world methods such as [26, 12] is difficult:
e.g., on PGP-11.25, due to our use of vanishing points, our
method is within 2.4% of [12], which uses orders of magni-
tude more data.

We report ablative analysis in Table 2: we greatly outper-
form relying on only the prior (i.e., not using detection ev-



Figure 8. Results on Places-205. Note the stark contrast with NYUv2. Our method can learn from this new data despite a lack of labels.
Museum Subway Supermarket Laundromat Locker Rm.

Figure 9. Example vertical elements learned on Internet images.

idence), especially on the median, and segmentation helps
but does not drive performance. Training 3DP using label
maps from the prior yielded worse performance. This is
because 3DP relies heavily on junctions and edges in the
normal map, and the the prior does not provide this de-
tailed information. We found our method to be insensitive
to parameters: changing the box prior’s aspect ratio or the
prior weight by a factor of two yields changes < 0.7◦ and
< 0.6% across metrics; many settings produced better re-
sults than the settings used (more details in the supplement).

Our result is better in relative terms on the vertical task,
as can be seen in in Table 3: it matches 3DP in 2 metrics and
bests it in 3. This is because many indoor horizontal sur-
faces are defined by location and lack of texture, which our
single-plane HOG patch approach cannot leverage; 3DP, on
the other hand, learns structured patches and its vocabulary
captures horizontal surfaces via edges and corners. Again,
fusing our method with 3DP improves results.

5.2. Internet Images
We now investigate tasks that only an unsupervised

method can do. Suppose one wants to interpret pictures of
supermarkets, airport terminals, or another place not cov-
ered by existing RGBD datasets. The only option for a
supervised approach (besides collecting new data at great
expense) is to use a pre-trained model. However, with our
unsupervised 3D approach, we can learn a model from im-
ages alone.
Data: We collected a subset of 10 categories3 from the
Places-205 dataset [45] that are not present in 3D datasets
and annotated them with Manhattan-world labelings. We

3 Airport, art gallery, conference room, locker room, laundromat, mu-
seum, restaurant, shoe shop, subway, supermarket

Table 4. Accuracy on Places-205, subdivided by category.

Airport Art Gallery Conference. Locker Rm. Laundromat

3DP 50.1 64.2 63.0 65.9 65.1
FC-[40] 51.6 70.3 71.2 69.4 71.9
Prop. 54.0 71.1 64.3 67.8 71.4

Museum Restaurant Shoe Shop Subway Supermarket Avg.

58.9 57.6 59.9 58.2 49.3 59.2
61.2 63.2 64.0 56.2 57.7 63.7
64.0 60.5 62.1 52.3 61.9 62.9

took at most 700 images from each category, and set aside
200 for evaluation. We sparsely annotated 10 superpixels
in each image, each randomly selected to avoid bias; each
could be labeled as one of the 6 possible Manhattan normals
or passed if multiple directions were present. Since our la-
bel space is Manhattan world, we removed images where
vanishing points could not be estimated, identified as ones
where the independent estimates of [28, 20] disagree.

Results: We learned an unsupervised model on each cate-
gory and compared its performance with models pretrained
on NYU, including 3DP and a fully convolutional variant
of [40] which obtains within 1.1% PGP-30 on NYU. Note
that standard supervised methods cannot compensate for
this shift. We show qualitative results illustrating the dataset
and our approach in Fig. 8: even NYU contains no wash-
ing machines, but our approach can learn elements for these
from Internet data, as seen in Fig. 9. On the other hand,
pretrained methods struggle to adapt to this new data. We
report results in Table 4. Our approach outperforms 3DP,
pretrained on NYUv2, in 9/10 categories and overall by
3.7% and outperforms [40] in 4/10 categories, with gains
as large as 3.9%. Our labels are sparse so we verify the gain
over 3DP with a 95% bootstrapped confidence interval; our
approach consistently outperforms 3DP ([2.7, 4.8]).
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