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Abstract
Abstract: The estimation of models or structures from outlier-contaminated data 
containing multiple models has a large number of applications in computer vision, 
the study of the automated understanding of visual data: for instance, geometric 
figures may be detected from 2D points, and planar surfaces in a scene may be 
found in pairs of images of the scene using feature matches. This thesis describes a 
number of contemporary algorithms for multi-model estimation and some of their 
historical antecedents, as well as an evaluation methodology for the multi-model 
estimation problem.

Three problem instances are depicted to the right. Left, right: the detection of 
lines and circles from 2D data points; center: the detection of planar surfaces from 
feature correspondences.
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Overview
This thesis describes the development of solutions to the detection of multiple 

structures from sets of discrete data points. In contrast to techniques such as 
ordinary or total least-squares, multi-model algorithms do not aim to minimize an 
objective function over all data points and are not guaranteed to succeed. Instead, 
they use random sampling to approximate aspects of the model space and heuristic 
strategies to extract structures from data.

After discussing historical antecedents for outlier-free data (not presented on 
this poster), we introduce RANSAC [4], a classic approach for the single-model 
case. We then discuss a number of contemporary approaches for handling the case 
of multiple models. Finally, we discuss a methodology for the evaluation of multi-
model estimation algorithms. 
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To estimate a model in the presence of outliers, Random Sample Consensus 
(RANSAC) [4] employs  the strategies of random sampling and validating 
models by their consensus set size. The consensus set of a model is defined as 
the set of data points with error with respect to that model below some inlier 
threshold ε . Informally, it is the set of points that fit a model. RANSAC aims to 
find a model that maximizes this rather than minimize an error function over 
all data points. 

To accomplish this, RANSAC randomly draws minimum sample sets (MSS), or 
sets with the minimum number of points required to estimate a model (e.g., 
two points for a line), and fits models to the points. 
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RANSAC is not guaranteed to succeed, since its sampling strategy might not 
draw an MSS that captures a model present. An approach that increases the 
chance of drawing a coherent MSS ascribed to Kanazawa et al. [6] is often 
used: one point is selected uniformly and subsequent points are selected 
nearby. Further, RANSAC requires a-priori knowledge of the scale of the noise 
and a threshold on consensus set size to distinguish valid models.

RANSAC as originally proposed is incapable of estimating multiple models, 
but a simple extension named Sequential RANSAC, depicted below, permits it:
Subject to a stopping condition RANSAC is repeatedly performed; after each 
iteration, the consensus set of the detected model is removed from the data.

Left: the points in the consensus 
set of the red line are colored red; 
the region included in the 
consensus set is bounded with blue 
lines.

Right: four randomly drawn 
minimum sample sets. The size of 
the consensus set is indicated for 
each.
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A depiction of Sequential RANSAC: stopping conditions aim to detect the absence of valid 
models in the data, as in the far right image. 

Starting in 2005, a number of approaches, aiming to perform better than Sequential 
RANSAC, have been proposed:
● MultiRANSAC  [12] iteratively updates a collection of consensus sets by repeatedly 
drawing a collection of MSSs.
● Residual Histogram Analysis  (RHA) [11] examines the histogram of the residuals of 
each point with respect to a collection of models fitted to MSSs. RHA requires no a-priori 
knowledge of the data set.
● J-linkage [9] defines the preference set of a point as the set of models that a point fits 
well enough (i.e., the consensus set with the role of models and points reversed), and 
the preference set of a set of points as the set of models that every point fits well 
enough. Beginning with each data point in its own cluster, clusters with minimum 
Jaccard distance between their preference sets are merged, until no two clusters prefer 
a model in common.

● Merging J-linkage [5] aims to correct J-linkage's tendency to fragment models, which 
was observed in [5,8]. It continues merging clusters with a distance defined by the 
average error under the least-squares fit, until the minimum average error exceeds ε.
● Kernel Fitting  [1] clusters points by computing the Ordered Residual Kernel between 
pairs of data points, inducing a feature space that represents data points saliently. 
Linear algebra techniques are used to remove outliers and cluster data points to find 
models. Kernel fitting requires no a-priori knowledge of the data set.

Workshops, 2006.
[12] M. Zuliani, C.S. Kenney, and B.S. Manjunath. The multiRANSAC 
algorithm and its application to detect planar homographies. In Proc.
 ICIP 2005.

A depiction of J-linkage. Left: MSSs are drawn and models (Green, Blue, Yellow) are 
fitted. Right: clusters of points are merged. Each cluster is represented by a box: the 
left compartment contains the clusters' points; the right, its preference set.

(a) (b) (c) (d) (e)

Some steps of Kernel Fitting: (a) the input data; (b) A visualization of the kernel matrix; the kernel function 
evaluates to high values for data points belonging to the same structure; (c) outlier detection is accomplished 
by thresholding the norm of the data points projected onto a subspace; (d) The result of outlier removal; (e) 
the final result, detected by clustering in a salient subspace.

Given the range of approaches for multi-model estimations, one might be 
curious which to use on a particular task. One considers the a-priori 
knowledge required; the efficiency; and the accuracy of an algorithm in 
selecting it. The first two are simple to characterize; we developed a novel 
quantitative approach to evaluate the latter.

We evaluated algorithms on two geometric figure fitting tasks (finding lines 
and circles in 2D data points) and a plane fitting task. We use standard 
synthetic data for figure-fitting, and real correspondence data for plane-
fitting.
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Some of our data sets. Left to right: stairs4, star7, circles5, planes3, planes2

We generate test sets with a range of noise and outlier levels and run each 
algorithm on each test set 15 times. We then compare the algorithm's 
estimated models with the ground-truth, and quantify the accuracy with an 
automatic scoring metrics. Developing these metrics is challenging since a 
metric must establish correspondences between estimated and ground-truth 
models and produce accurate results for a wide range of degenerate 
configurations, some of which are depicted below.

We both manually analyzed the output and characterized it in the aggregate 
using automatic scoring metrics. We observed that Sequential RANSAC was 
fast and often sufficient, but that in some cases, one might need a more 
complicated algorithm. J-linkage offers increased performance at the cost of 
increased runtime, and Kernel Fitting offers increased performance and no 
requirement of a-priori knowledge at the cost of difficult implementation and 
increased runtime. In the future, we hope to include more algorithms, as well as 
a motion-segmentation task and real-world geometric figure-fitting.

A selection of common degenerate configurations
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