
The Missing Models: A Data-Driven Approach for Learning
How Networks Grow

Rob Patro
˚

Department of Computer
Science

University of Maryland
College Park, MD 20742

rob@cs.umd.edu

Geet Duggal
˚

Department of Computer
Science

University of Maryland
College Park, MD 20742
geet@cs.umd.edu

Emre Sefer
Department of Computer

Science
University of Maryland

College Park, MD 20742
esefer@cs.umd.edu

Hao Wang
Department of Electrical and

Computer Engineering
University of Maryland

College Park, MD 20742
hwang825@umd.edu

Darya Filippova
Department of Computer

Science
University of Maryland

College Park, MD 20742
dfilippo@cs.umd.edu

Carl Kingsford
:

Department of Computer
Science

University of Maryland
College Park, MD 20742
carlk@cs.umd.edu

ABSTRACT
Probabilistic models of network growth have been extensively stud-
ied as idealized representations of network evolution. Models, such
as the Kronecker model, duplication-based models, and preferen-
tial attachment models, have been used for tasks such as represent-
ing null models, detecting anomalies, algorithm testing, and devel-
oping an understanding of various mechanistic growth processes.
However, developing a new growth model to fit observed proper-
ties of a network is a difficult task, and as new networks are stud-
ied, new models must constantly be developed. Here, we present a
framework, called GrowCode, for the automatic discovery of novel
growth models that match user-specified topological features in
undirected graphs. GrowCode introduces a set of basic commands
that are general enough to encode several previously developed
models. Coupling this formal representation with an optimization
approach, we show that GrowCode is able to discover models for
protein interaction networks, autonomous systems networks, and
scientific collaboration networks that closely match properties such
as the degree distribution, the clustering coefficient, and assortativ-
ity that are observed in real networks of these classes. Additional
tests on simulated networks show that the models learned by Grow-
Code generate distributions of graphs with similar variance as ex-
isting models for these classes.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing

˚Authors contributed equally.
:To whom correspondence should be addressed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$10.00.

Keywords
network growth models, algorithms, graph mining

1. INTRODUCTION
The study of the processes by which biological, social, and tech-

nological networks have evolved over time has become increas-
ingly central to gaining insight into how these networks function.
Of particular importance is understanding the emergence of topo-
logical characteristics such as shrinking diameter, assortativity or
disassortativity, and modularity as networks grow. One successful
approach to understanding how these properties arise is the creation
of idealized network models such as the forest fire model [17], the
Kronecker model [16], duplication/mutation models [3, 12, 24, 26,
27], preferential attachment models [e.g. 2], and others [6, 9, 14,
15, 23]. These provide a probabilistic and mechanistic way to de-
scribe growth of particular classes of networks, generally in terms
of combinations of simple operations such as node and edge cre-
ation and deletion, node duplication, node expansion (replacing a
node by a subgraph), or influence propagation.

In addition to providing an idealized simulation of real-world
growth, network models have a number of other uses—some of
which do not even require that the programs themselves are in-
terpretable. For example, they can serve as null models for the
detection of statistically surprising topological features in a graph,
can be used for large-scale performance testing for time-consuming
graph algorithms, can aid in reconstructing ancient networks [21],
and can help with anonymization [16].

Early theoretical work on network models began in 1960 with the
Erdős-Rényi model [10]. Subsequent work identified a scale-free
degree distribution [2] and small-world property [28] as common
features of real-world networks and produced models that gener-
ated them. Later models incorporated other network properties
as objectives in various domains, such as shrinking diameter of
a growing social network [17] (the forest fire model) and clus-
tering coefficient for biological protein interaction networks [27]
(the duplication, mutation, with complementarity or DMC model).
Subsequent efforts [e.g. 1, 22] have attempted to manually design
models that fit various additional features simultaneously in order
to produce more realistic networks. Recently, there has also been

work on models that attempt to match not only the topology of real
networks, but also richer features such as node attributes [25, 13].
The creation of a parsimonious, plausible, and well-fitting growth
model is typically a challenging task, and as more varied, large-
scale networks are studied, new important properties will be identi-
fied, requiring new models to be developed. However, hand-crafted
models can match desired topological properties only as well as the
creativity and persistence of the model designer allow.

Here, we introduce a formal representation that can encode many
of the most commonly studied growth models, as well as many
other models yet to be discovered. We also present an optimization
framework that allows for the automatic discovery of new models
fitting desired properties within this formal representation. These
learned models can be used to generate large classes of exemplar
networks that match input features well. They are also interpretable
(with some amount of effort). Often, because the framework can
generally find many distinct models that match the desired proper-
ties, the set of models itself can be minded for motifs that are effec-
tive at generating a particular property. Additionally, the ease with
which good-fitting models can be found can be used as a measure of
the ubiquity of that feature among graph growth mechanisms. Fi-
nally, in many cases, the computationally optimized models match
real-world properties better than hand-crafted models.

Very little previous work has addressed the challenge of auto-
matic design of network models. Some previous frameworks are
capable of adapting known models to new data by re-estimating
parameters that govern the network growth process. For example,
the Kronecker graph model [16] can be combined with a Markov
Chain Monte Carlo method (KronFit [16]) to estimate its parame-
ters in order to fit some properties for very large networks. Sim-
ilar parameter estimation has been done for other recursive net-
work models [1]. These approaches, however, are limited to pa-
rameter estimation only and cannot generate truly novel network
growth mechanisms. Middendorf et al. [19, 20] address the model-
selection problem of choosing from among a small number of ex-
isting models, for example, they found that protein-protein inter-
action networks were best fit by the DMC [27] model. However,
their procedure neither generates new models nor fits parameters
for existing models.

The framework we propose, GrowCode, addresses these defi-
ciencies by representing basic random graph operations and other
natural building blocks of models as instructions that operate in a
register-based virtual machine. The intuitive motivation behind our
framework is to provide a general and effective set of atomic oper-
ations or building blocks of network growth. A sequence of such
operations defines an iteration of the network growth process, and
repeated iterations of this sequence of operations evolve a network
over time. We show that a small set of instructions — only 4 of
which have parameters — are sufficient to describe preferential at-
tachment, a forest-fire-like model, and a duplication model (and
intuitively many other models as well). Because, additionally, the
instructions operate on a simple machine with only 3 registers, this
formal representation limits the search space of possible programs,
allowing a genetic algorithm to search the space effectively.

We show that it is possible to quickly and automatically learn
network growth models that satisfy key properties of social, techno-
logical, and biological networks using the GrowCode framework.
The fit of these models to the basic topological properties of degree
distribution, assortativity, and clustering coefficient is often supe-
rior to hand-crafted models. In particular, we learn a model for
yeast protein interaction networks [30] that generates graphs with
far better agreement to the observed values of the clustering coeffi-
cient and degree distribution than the popular duplication/mutation

with complementary (DMC) model often used to simulate these
networks. For a recent scientific co-authorship network [5], we
are able to better match assortativity and degree distribution than
graphs produced by the Kronecker model with optimized parame-
ters [17]. Finally, for an autonomous systems internet graph, we
are able to find a model that is simultaneously a much better match
than a Kronecker model for clustering coefficient, assortativity, and
degree distribution. The models we learn in all these settings pro-
duce graphs that are at least as diverse as those produced by the
competing hand-crafted models, indicating that we are producing
truly random graph models.

Although the framework we present here applies to undirected
and unattributed graphs, the GrowCode approach is general, and
can be easily extended to other classes of graphs as well. Grow-
Code also points the way to new techniques for more systematic
and automatic study of network growth models themselves.

2. THE GROWCODE FRAMEWORK
We describe a novel framework, GrowCode, in which growth

models may be expressed concisely and programmatically. We de-
fine a simple register machine and a set of 15 instructions that exe-
cute on it. Every sequence of instructions is a syntactically correct
program that encodes some network growth model in a compact
form. The instruction set contains instructions that represent spe-
cific, basic operations affecting the graph topology. There are also
few instructions to manage registers and control the program flow.
The instructions were selected because they are natural building
blocks of growth models capable of representing a variety of extant
and unknown models.

As the GrowCode machine executes a program, it modifies the
topology of a growing graph. Each pass through a GrowCode pro-
gram defines a single step of the growth procedure. To grow a
network for t steps using the GrowCode program, the program is
executed from start to finish t times. Thus, the model described by
every GrowCode program is implicitly parameterized on t, which
is related to the desired size of the output graph. Between subse-
quent growth steps (i.e. between subsequent invocations of a pro-
gram), the registers of the GrowCode machine are populated ran-
domly with nodes from the current graph. In addition to several
randomized instructions, this helps GrowCode programs encode
non-deterministic growth models, and different runs of the same
program nearly always produce different graphs.

2.1 A register machine
GrowCode runs on a virtual machine with three registers r0, r1,
r2 that can store positive integers. The positive integer values in
the registers usually correspond to vertex IDs in the graph, although
they sometimes hold implicit parameters used by some instructions.
The special value NIL in a register means that the register is empty.

The machine maintains a program counter, PC, indicating the
currently executing instruction. After an instruction is executed,
PC is incremented so that the program is executed sequentially un-
less one of the instructions responsible for control flow manipulates
the PC. Programs can be self-modifying in a very limited way to
support looping (see the Rewind instruction below). Program exe-
cution terminates once the location of PC has exceeds the length of
the program.

Additionally, the machine has a limited memory L : V Ñ V that
can store a single vertex ID associated with each vertex in V , the set
of vertices in the growing graph. The value Lpvq on node v need not
be the vertex ID of v, but rather can be the ID of some other node in
V . This allows programs to mark nodes with IDs of arbitrary other
nodes in the graph, which is how programs can spread the influence

Table 1: Complete GrowCode instruction set
Name Description

New node create new node
Create edge create new edge
Random node pick random node
Random edge pick random edge
Influence neighbors(p) label neighbors with u
Attach to influenced add edges to neighbors labeled u
Detach from influenced remove edges to neighbors labeled u
Clear influenced clear all labels from L
Rewind(r, i) jump back r positions i times
Skip instruction(p) skip next instruction
Set(i) copy node ID to r2
Save copy r0 to r2
Load copy r2 to r0
Swap swap r0 and r1
Clear r2 set r2 to NIL

of a node in the graph (see section 2.2). If Lpvq “ NIL, then v is
considered to have no label. Other, more sophisticated memories
or influence instructions are possible, but the experiments below
indicate that this minimal scheme is all that is required to achieve
good agreement in several settings.

2.2 An instruction set

Instruction set design.
Design of instruction sets for physical and virtual processors is

a difficult, long-standing problem. Operations in the GrowCode
instruction set were selected so that they are representative of the
basic network operations. Individual instructions are easily inter-
pretable and are similar to those used by the hand-created growth
models. Intuitively, combinations of these instructions can produce
growth models that can generate networks with the desired prop-
erties. The combination of instructions used here is but one exam-
ple among many possible instruction sets. This set of instructions
can be extended to include other instructions to accommodate new
growth processes. A good set of instructions makes it much easier
to optimize a difficult objective [4]; however, it is out of the scope
of this paper to completely resolve the problem of instruction set
design. Rather we provide evidence that one instruction set (Ta-
ble 1) works well for several common classes of graphs.

GrowCode instructions.
The GrowCode instructions (Table 1) can be subdivided into 4

categories: (1) graph operations, (2) influence operations, (3) con-
trol flow operations, and (4) register manipulation operations. The
first two sets of operations deal with modifying the topology of
the growing graph while the 3rd and 4th sets of operations deal
with managing the control flow of the GrowCode program and the
state of the GrowCode machine. See Table 1 for a complete list
of instructions. Below, we describe how each of these affects the
state of the GrowCode machine and the graph being generated. In
section 3, we show how several network growth models can be ex-
pressed with these instructions.

Graph operations. The graph operations perform basic modifi-
cations of graph topology. The New node operation creates a new
node in the growing graph with a unique ID that is placed in regis-
ter r0. The Create edge operation is used to introduce a single new
edge in the graph. The machine first fetches the nodes from r0 (u)

u
r0 r1

k
r2

u
v

v

L(v)=u

v

k=2

4 main categories, simple graph operations, graph influence opera-
tions, control flow operations and register manipulation operations.
We introduce the groups of instructions in this order and describe
how each of them affects the state of the GrowCode machine and
the graph being generated.

The first category of instructions deals with simple modifications
of graph topology. The New node operation introduces a new
node to the growing graph. The new node is guaranteed to have
a unique name, and the name of this node is placed in r0. The
Create edge operation is used to introduce a single new edge to
the graph. The machine first fetches the nodes from r0 (u) and r1
(v) and then creates a new edge u, v in the graph. The state of
the registers after a Create edge operation remains unchanged, so
if such an edge already existed, the operation has no effect. The
Random node operation selects a node uniformly at random from
the current graph and places this node into r0. Finally, the Random
edge operation selects an edge u, v uniformly at random from the
current graph, and places u in r0 and v in r1.

New node
� Create edge

Random node
� Random edge

The second class of operations in the GrowCode 1.0 instruction set
allow for nodes to exert an influence on other nodes in the graph.
We say that a node v is under the influence of node u if L v u.
This concept of influence is important to produce graphs with prop-
erties such as homophily where, to varying degrees, topological
neighborhoods are shared by connected nodes. The core influence
operation is Influence neighbors(p) , which allows a node to influ-
ence its neighborhood out to a specific distance. Though Influence
neighbors(p) takes only 1 parameter, p, its effect relies upon the
contents of r0 and r2. To execute the Influence neighbors(p) op-
eration, the machine fetches the contents of r0; this node, u, is the
central or influential node. The contents, k, of r2 are also fetched,
and k is set as the maximum topological radius of the influence op-
eration. That is, only nodes v such that d u, v k can potentially
be affected by the influence operation. The influence operation as-
signs the label u to every neighbor of u with probability p. Each
labeled node, v, in turn labels its neighbors with u with probability
pd u,v unless d u, v k. This process continues until no more
nodes are chosen to be labeled with u.

The Influence neighbors(p) operation works in conjunction with
3 other operations. The first is the Attach to influenced operation.
Attach to influenced attaches a node u to all nodes labeled with
the name of another node v. This provides a general mechanism to
make the neighborhoods of two nodes more similar to each other.
More specifically, Attach to influenced fetches the contents u
from r0, and v from r1, and adds edges u,w to the graph w
s.t. L w v. The Detach from influenced operation is, in many
ways, an inverse to Attach to influenced . It fetches a node u from
r0 and removes all edges u,w from the graph where L w u.
Finally, the Clear influenced operation erases the contents of L
so that future operations can work with a clear label memory.

��(p) Influence neighbors(p)
� Attach to influenced❝ � Detach from influenced

Clear influenced

The preceding sets of operations dealt with modifying the topology
of the growing graph. The final two sets of operations deal instead
with managing the control flow of the actual GrowCode program
and the state of the GrowCode machine. The control flow opera-
tions are Loop(i) , Repeat , and Skip instruction(p) .

The Loop(i) and Repeat nstructions work in tandem and allow
for the definition of loops in a GrowCode program. The Loop(i)
operation denotes the beginning of a programmatic loop while its
argument, i, is a natural number that specifies how many times the
loop should be executed. Each time a loop is executed, its loop
counter is decremented by 1 and when this counter reaches 0 we say
that the loop has been exhausted. Each Repeat is paired with the
nearest preceding (and non-exhausted) Loop(i) instruction. The
Repeat instruction sets the PC to the location of its currently paired
loop instruction. The last of the control flow operations is Skip
instruction(p) . This instruction advances the PC by a value of
2 with probability p; thus allowing proceeding instruction to be
conditionally executed with probability 1 p.

i Loop(i)
Repeat
p Skip instruction(p)

The final, and possibly simplest set of operations allow one to man-
age the state of the GrowCode machine by manipulating its 3 reg-
isters directly. The Set(i) operation takes a single argument i, the
identifier of an existing node, and places this node in r2. The Save
operation places the contents of r0 into r2 and the Load opera-
tion places the contents of r2 into r0. The Swap operation swaps
the contents of r0 and r1. Finally, the Clear registers operation
clears the contents of all registers. Specifically, it sets the state of
r0, r1 and r2 to a NIL value that is not a legal identifier for any
node.

Clear registers
Save
Load
Swap

i Set(i)

3. LEARNING GROWTH MODELS WITH
GROWCODE

The GrowCode framework introduced in section 2 is a novel and in-
teresting way to view the process of network growth. It allows one
to encode network growth models in a specific and often concise
way by a providing a simple language whose primitive instructions
relate to topological graph operations. In fact, in section 4, we show
how a few popular network growth models can be expressed in the
GrowCode 1.0 language.

One of the most interesting benefits of expressing growth models
in an explicit and fixed language, however, is that we can now for-
mally frame the problem of learning an accurate growth model as
an optimization problem over the space of GrowCode programs.
Specifically, we describe how the process of learning a GrowCode
program that grows graphs having specific static or dynamic prop-
erties can be framed as a non-linear optimization problem, and ap-
proached successfully using genetic programming techniques.

A major benefit of framing the search for a growth model this way
is that very specific and often difficult to express graph properties
can easily be encoded into the fitness function used during the opti-

p

p2

w
r0

u
r1 r2

w

4 main categories, simple graph operations, graph influence opera-
tions, control flow operations and register manipulation operations.
We introduce the groups of instructions in this order and describe
how each of them affects the state of the GrowCode machine and
the graph being generated.

The first category of instructions deals with simple modifications
of graph topology. The New node operation introduces a new
node to the growing graph. The new node is guaranteed to have
a unique name, and the name of this node is placed in r0. The
Create edge operation is used to introduce a single new edge to
the graph. The machine first fetches the nodes from r0 (u) and r1
(v) and then creates a new edge u, v in the graph. The state of
the registers after a Create edge operation remains unchanged, so
if such an edge already existed, the operation has no effect. The
Random node operation selects a node uniformly at random from
the current graph and places this node into r0. Finally, the Random
edge operation selects an edge u, v uniformly at random from the
current graph, and places u in r0 and v in r1.

New node
� Create edge

Random node
� Random edge

The second class of operations in the GrowCode 1.0 instruction set
allow for nodes to exert an influence on other nodes in the graph.
We say that a node v is under the influence of node u if L v u.
This concept of influence is important to produce graphs with prop-
erties such as homophily where, to varying degrees, topological
neighborhoods are shared by connected nodes. The core influence
operation is Influence neighbors(p) , which allows a node to influ-
ence its neighborhood out to a specific distance. Though Influence
neighbors(p) takes only 1 parameter, p, its effect relies upon the
contents of r0 and r2. To execute the Influence neighbors(p) op-
eration, the machine fetches the contents of r0; this node, u, is the
central or influential node. The contents, k, of r2 are also fetched if
r2 is not NIL, and k is set as the maximum topological radius of the
influence operation. That is, only nodes v such that d u, v k can
potentially be affected by the influence operation. The influence
operation assigns the label u to every neighbor of u with probabil-
ity p. Each labeled node, v, in turn labels its neighbors with u with
probability pd u,v unless d u, v k. This process continues until
no more nodes are chosen to be labeled with u.

The Influence neighbors(p) operation works in conjunction with
3 other operations. The first is the Attach to influenced operation.
Attach to influenced attaches a node w to all nodes labeled with
the name of another node u. This provides a general mechanism to
make the neighborhoods of two nodes more similar to each other.
More specifically, Attach to influenced fetches the contents w
from r0, and u from r1, and adds edges w, v to the graph v s.t.
L v u. The Detach from influenced operation fetches a node
u from r0 and removes all edges u, v from the graph where L v

u. Finally, the Clear influenced operation erases the contents
of L so that future operations can work with a clear label memory.

��(p) Influence neighbors(p)
� Attach to influenced❝ � Detach from influenced

Clear influenced

The preceding sets of operations dealt with modifying the topology
of the growing graph. The final two sets of operations deal instead
with managing the control flow of the actual GrowCode program
and the state of the GrowCode machine. The control flow opera-
tions are Loop(i) , Repeat , and Skip instruction(p) .

The Loop(i) and Repeat nstructions work in tandem and allow
for the definition of loops in a GrowCode program. The Loop(i)
operation denotes the beginning of a programmatic loop while its
argument, i, is a natural number that specifies how many times the
loop should be executed. Each time a loop is executed, its loop
counter is decremented by 1 and when this counter reaches 0 we say
that the loop has been exhausted. Each Repeat is paired with the
nearest preceding (and non-exhausted) Loop(i) instruction. The
Repeat instruction sets the PC to the location of its currently paired
loop instruction. The last of the control flow operations is Skip
instruction(p) . This instruction advances the PC by a value of
2 with probability p; thus allowing proceeding instruction to be
conditionally executed with probability 1 p.

i Loop(i)
Repeat
p Skip instruction(p)

The final, and possibly simplest set of operations allow one to man-
age the state of the GrowCode machine by manipulating its 3 reg-
isters directly. The Set(i) operation takes a single argument i, the
identifier of an existing node, and places this node in r2. The Save
operation places the contents of r0 into r2 and the Load opera-
tion places the contents of r2 into r0. The Swap operation swaps
the contents of r0 and r1. Finally, the Clear registers operation
clears the contents of all registers. Specifically, it sets the state of
r0, r1 and r2 to a NIL value that is not a legal identifier for any
node.

Clear registers
Save
Load
Swap

i Set(i)

3. LEARNING GROWTH MODELS WITH
GROWCODE

The GrowCode framework introduced in section 2 is a novel and in-
teresting way to view the process of network growth. It allows one
to encode network growth models in a specific and often concise
way by a providing a simple language whose primitive instructions
relate to topological graph operations. In fact, in section 4, we show
how a few popular network growth models can be expressed in the
GrowCode 1.0 language.

One of the most interesting benefits of expressing growth models
in an explicit and fixed language, however, is that we can now for-
mally frame the problem of learning an accurate growth model as
an optimization problem over the space of GrowCode programs.
Specifically, we describe how the process of learning a GrowCode
program that grows graphs having specific static or dynamic prop-
erties can be framed as a non-linear optimization problem, and ap-
proached successfully using genetic programming techniques.

A major benefit of framing the search for a growth model this way
is that very specific and often difficult to express graph properties
can easily be encoded into the fitness function used during the opti-

4 main categories, simple graph operations, graph influence opera-
tions, control flow operations and register manipulation operations.
We introduce the groups of instructions in this order and describe
how each of them affects the state of the GrowCode machine and
the graph being generated.

The first category of instructions deals with simple modifications
of graph topology. The New node operation introduces a new
node to the growing graph. The new node is guaranteed to have
a unique name, and the name of this node is placed in r0. The
Create edge operation is used to introduce a single new edge to
the graph. The machine first fetches the nodes from r0 (u) and r1
(v) and then creates a new edge u, v in the graph. The state of
the registers after a Create edge operation remains unchanged, so
if such an edge already existed, the operation has no effect. The
Random node operation selects a node uniformly at random from
the current graph and places this node into r0. Finally, the Random
edge operation selects an edge u, v uniformly at random from the
current graph, and places u in r0 and v in r1.

New node
� Create edge

Random node
� Random edge

The second class of operations in the GrowCode 1.0 instruction set
allow for nodes to exert an influence on other nodes in the graph.
We say that a node v is under the influence of node u if L v u.
This concept of influence is important to produce graphs with prop-
erties such as homophily where, to varying degrees, topological
neighborhoods are shared by connected nodes. The core influence
operation is Influence neighbors(p) , which allows a node to influ-
ence its neighborhood out to a specific distance. Though Influence
neighbors(p) takes only 1 parameter, p, its effect relies upon the
contents of r0 and r2. To execute the Influence neighbors(p) op-
eration, the machine fetches the contents of r0; this node, u, is the
central or influential node. The contents, k, of r2 are also fetched if
r2 is not NIL, and k is set as the maximum topological radius of the
influence operation. That is, only nodes v such that d u, v k can
potentially be affected by the influence operation. The influence
operation assigns the label u to every neighbor of u with probabil-
ity p. Each labeled node, v, in turn labels its neighbors with u with
probability pd u,v unless d u, v k. This process continues until
no more nodes are chosen to be labeled with u.

The Influence neighbors(p) operation works in conjunction with
3 other operations. The first is the Attach to influenced operation.
Attach to influenced attaches a node w to all nodes labeled with
the name of another node u. This provides a general mechanism to
make the neighborhoods of two nodes more similar to each other.
More specifically, Attach to influenced fetches the contents w
from r0, and u from r1, and adds edges w, v to the graph v s.t.
L v u. The Detach from influenced operation fetches a node
u from r0 and removes all edges u, v from the graph where L v

u. Finally, the Clear influenced operation erases the contents
of L so that future operations can work with a clear label memory.

��(p) Influence neighbors(p)
� Attach to influenced❝ � Detach from influenced

Clear influenced

The preceding sets of operations dealt with modifying the topology
of the growing graph. The final two sets of operations deal instead
with managing the control flow of the actual GrowCode program
and the state of the GrowCode machine. The control flow opera-
tions are Loop(i) , Repeat , and Skip instruction(p) .

The Loop(i) and Repeat nstructions work in tandem and allow
for the definition of loops in a GrowCode program. The Loop(i)
operation denotes the beginning of a programmatic loop while its
argument, i, is a natural number that specifies how many times the
loop should be executed. Each time a loop is executed, its loop
counter is decremented by 1 and when this counter reaches 0 we say
that the loop has been exhausted. Each Repeat is paired with the
nearest preceding (and non-exhausted) Loop(i) instruction. The
Repeat instruction sets the PC to the location of its currently paired
loop instruction. The last of the control flow operations is Skip
instruction(p) . This instruction advances the PC by a value of
2 with probability p; thus allowing proceeding instruction to be
conditionally executed with probability 1 p.

i Loop(i)
Repeat
p Skip instruction(p)

The final, and possibly simplest set of operations allow one to man-
age the state of the GrowCode machine by manipulating its 3 reg-
isters directly. The Set(i) operation takes a single argument i, the
identifier of an existing node, and places this node in r2. The Save
operation places the contents of r0 into r2 and the Load opera-
tion places the contents of r2 into r0. The Swap operation swaps
the contents of r0 and r1. Finally, the Clear registers operation
clears the contents of all registers. Specifically, it sets the state of
r0, r1 and r2 to a NIL value that is not a legal identifier for any
node.

Clear registers
Save
Load
Swap

i Set(i)

3. LEARNING GROWTH MODELS WITH
GROWCODE

The GrowCode framework introduced in section 2 is a novel and in-
teresting way to view the process of network growth. It allows one
to encode network growth models in a specific and often concise
way by a providing a simple language whose primitive instructions
relate to topological graph operations. In fact, in section 4, we show
how a few popular network growth models can be expressed in the
GrowCode 1.0 language.

One of the most interesting benefits of expressing growth models
in an explicit and fixed language, however, is that we can now for-
mally frame the problem of learning an accurate growth model as
an optimization problem over the space of GrowCode programs.
Specifically, we describe how the process of learning a GrowCode
program that grows graphs having specific static or dynamic prop-
erties can be framed as a non-linear optimization problem, and ap-
proached successfully using genetic programming techniques.

A major benefit of framing the search for a growth model this way
is that very specific and often difficult to express graph properties
can easily be encoded into the fitness function used during the opti-

Figure 1: Schematic of the three influence operations. First
node u influences its neighbors with probability p, then the in-
fluenced neighbors v influence their neighbors with probability
p2. If u were to detach from its influenced neighbors the two
edges indicated by the gray arrows would be removed from the
graph. Finally, w can attach to all nodes influenced by u.

and r1 (v) and then creates a new edge tu, vu in the graph. The state
of the registers after a Create edge operation remains unchanged,
so if such an edge already exists, the operation has no effect. The
Random node operation selects a node uniformly at random from
the current graph and places this node into r0. Finally, the Random
edge operation selects an edge tu, vu uniformly at random from the
current graph, and places u in r0 and v in r1.

Influence operations. The influence operations allow nodes to
exert an influence on other nodes in the graph. We say that a node v
is influenced by u if Lpvq “ u. This concept of influence is impor-
tant to produce graphs with properties such as homophily where,
to varying degrees, connected nodes share topological neighbor-
hoods. The core influence operation, Influence neighbors(p), al-
lows a node to influence a subset of its neighborhood. To execute
the Influence neighbors(p) operation, the machine fetches the node
ID from r0; this node, u, becomes the central, or influential node. It
then assigns the mark u to every neighbor v of u by setting Lpvq “ u
independently with probability p. Each newly marked node, v, in
turn marks its neighbors with the value u with probability pdpu,vq,
where dpu, vq is the shortest path distance between u and v. If r2
is not NIL, only nodes v such that dpu, vq ă r2 can potentially be
affected by the influence operation. If r2 “ NIL, the influence
operation continues until the probabilistic process dies out and no
more nodes are marked.

The Influence neighbors(p) operation works in conjunction with
three other influence operations. Attach to influenced creates edges
between the node in r0, w, and all nodes in the graph marked with
the value in r1 “ u. That is, it creates edges tw, vu for all v such
that Lpvq “ u. This provides a general mechanism to make the
neighborhoods of two nodes more similar to each other. The De-
tach from influenced operation fetches a node u from r0 and re-
moves all edges tu, vu from the graph where Lpvq “ u. Finally, the
Clear influenced operation erases the contents of L so that future
operations can work with a clear memory. Figure 1 illustrates these
influence operations.

Control flow operations. The control flow operations alter the
order of execution of GrowCode instructions. The Rewind(r, i)
instruction allows for loop-like structures in GrowCode programs.
The first argument r is a natural number specifying the number of
times PC should be decremented when the instruction is executed

Algorithm 1 Barabási-Albert
1: New node Ź Create a new node, u
2: Save
3: Random edge Ź Choose a random edge, e
4: Skip instruction(0.5) Ź Choose random endpoint v of e
5: Swap
6: Load
7: Create edge Ź Create an edge between v and u
8: Rewind(5, i) Ź Attach it to i random nodes

(i.e. how far the PC should jump backwards). The second argument
i specifies the number of times the instruction should be executed.
Each time the instruction is executed, the instruction is modified
by decrementing the value of i by 1. When i “ 0, the instruction
will no longer be executed and the value of PC will not be rewound.
The parameters of the rewind instruction are reset between consec-
utive program executions. The other instruction in this group, Skip
instruction(p), advances the PC by a value of 2 with probability p.
This allows the next instruction to be conditionally executed with
probability 1´ p.

Register operations. Finally, the register operations allow one
to manipulate the 3 registers directly. The Set(i) instruction assigns
integer i to r2. The Save operation copies the contents of r0 into
r2. Conversely, Load places the contents of r2 into r0. The Swap
operation swaps the contents of r0 and r1. Finally, the Clear r2
sets the contents of r2 to NIL.

3. REPRESENTING EXISTING MODELS
To demonstrate the generality of the GrowCode instruction set,

we show how it can be used to express three existing network
growth models, Barabási-Albert (B-A) [2], duplication and muta-
tion with complementarity (DMC) [27], and forest fire (FF) [17] by
writing hand-coded GrowCode programs that match the properties
of these models. These growth models match different classes of
real-world networks, and they exhibit different topological quali-
ties. For example, the DMC model (with the appropriate param-
eters) produces graphs with a range of clustering coefficients that
match those observed in protein-protein interaction networks, while
the FF model produces graphs that exhibit shrinking diameter and a
densification power law property as they grow. Despite significant
differences in the mechanisms they model and the graph properties
they produce, there are fairly simple GrowCode programs capa-
ble of representing each of these models while using the same set
of primitive instructions. The instructions are re-used in different
models which indicates their overall utility in expressing different
network growth behavior.

3.1 Barabási-Albert
In the B-A model, new nodes added to the growing network are

more likely to connect to existing high-degree nodes [2]. This pro-
cess reproduces the scale-free degree distribution often found in
real-world networks, where there are relatively few nodes having a
very high degree and a long tail of low-degree nodes.

The GrowCode program in Algorithm 1 closely simulates the
B-A model. While there are subtle differences between the pro-
gram and the model, the graphs generated by the program match
those produced by B-A closely. The essence of the B-A model
is encoded in lines 3–5. The Random edge instruction (line 3)
picks an edge that is likely to have a high-degree node as one
of its endpoints. The probability that a randomly chosen edge e
contains the node u is directly proportional to the degree of u:

Algorithm 2 DMC
1: Random node Ź Put a random node v in r0
2: Set(1) Ź Set r2 (k-hop for influence) to 1
3: Influence neighbors(1.0) Ź Influence v’s neighbors
4: Swap Ź Swap r0 and r1
5: New node Ź Create a new node u and put it in r0
6: Attach to influenced Ź Connect u to influenced nodes
7: Clear influenced
8: Influence neighbors(qmod{2) Ź Influence u’s neighbors
9: Swap

10: Influence neighbors(qmod{2) Ź Influence v’s neighbors
11: Detach from influenced Ź Actually delete edges from v
12: Swap
13: Detach from influenced Ź Do the same for u
14: Clear influenced
15: Skip instruction(1.0´ qcon) Ź Skip adding tu, vu
16: Create edge Ź with probability qcon

dpuq{ |E| “ 2dpuq{
ř

vPV dpvq. Once e is selected, instructions 4
and 5 choose an endpoint for this edge at random to ensure that
there is no bias when selecting a node within the edge. This pro-
cess selects nodes proportional to their degree as desired with the
minor difference that the degrees dpuq are changed as the program
executes, in contrast to B-A . The newly added node is then con-
nected to u (line 7) completing the preferential attachment of the
new node. The rewind on line 8 iterates this procedure so that we
connect the new node to i existing nodes.

3.2 Duplication and Divergence
The duplication and mutation with complementarity model [27]

(abbreviated DMC) aims to reproduce the topological character-
istics of protein interaction networks. Under the DMC model, the
driving mechanism of network growth is the duplication of existing
nodes. The model has two parameters, qmod and qcon, that govern
the process as follows. Each new node u chooses an anchor v and
attaches to all of v’s neighbors. Then, for each node w now ad-
jacent to both u and v, an edge is randomly chosen that connects
w either to u or v, and the edge is removed with probability qmod.
Finally, the edge tu, vu is added with probability qcon. This mecha-
nism of growth is motivated by the common occurrence of gene du-
plication, wherein genes, the precursors of proteins, are commonly
copied within the genome. Initially, the copied genes are exact du-
plicates, and therefore the resultant proteins maintain the same set
of interactions as the original protein. However, after duplication,
evolutionary pressure on genes to maintain the interactions is re-
duced, and the interaction patterns between the original and copied
genes start to diverge. Algorithm 2 gives a close approximation to
the DMC model in GrowCode.

The DMC model presented in Algorithm 2 differs slightly from
that introduced by Vazquez et al. [27] in that we cannot precisely
mimic the procedure of selecting shared neighbors of u and v with
probability qcon and then deleting the edge to one or the other. How-
ever, to achieve a similar effect, we can influence the shared neigh-
bors of each node with probability qmod{2 (lines 8 and 10) after we
have copied v’s neighborhood to u. If the set of influenced neigh-
bors is disjoint, then the influence instruction has exactly the same
effect as the traditional DMC operation. It is possible that a neigh-
boring node will be influenced by both u and v. Complementarity
(the fact that only the edge to u or v is removed, and not both) is
maintained in this case as well since the mark on the shared node
will be overwritten, ensuring that only one of tu,wu and tv,wu can
be deleted. This procedure can result in values of qmod having a

Algorithm 3 FF
1: Random node Ź Put a random node in r0
2: Clear r2 Ź Clear r2 to allow full graph influence
3: Influence neighbors(b) Ź Breadth-first recursive influence
4: Swap ŹMove the random node into r1
5: New node Ź Create a new node, u
6: Create edge
7: Attach to influenced Ź Connect u to influenced nodes

slightly different effect in the GrowCode program as compared to
the original DMC model. However, we have verified that graphs
generated by GrowCode DMC and the original DMC have simi-
lar Zipf plots (through visual inspection) and clustering coefficients
(section 5.3), which are the two features on which the authors of the
DMC model focused. Further, Algorithm 2 produces graphs with
similar Zipf plots and clustering coefficients as those observed in
the yeast protein interaction network. Thus, despite the subtle dif-
ferences, the GrowCode algorithm 2 maintains the essential char-
acteristics of the original growth model.

3.3 Forest fire
The forest fire (FF) model [17] was first introduced to model

scale-free degree distributions (of both in-degree and out-degree) as
well as shrinking diameter and densification over time (under cer-
tain parameter regimes). The FF model is very intuitive and easy
to explain from the perspective of network growth. We present
a model that has been slightly altered to apply to undirected net-
works. When a new node u enters the network, it chooses an exist-
ing node v uniformly at random to act as an ambassador, and the
edge tu, vu is added to the network. Next, a number n is drawn
from a geometric distribution with probability b of success, and n
neighbors of v are chosen to be burned. An edge is added from u
to each of these burned nodes, and the process of selecting a set of
neighbors and burning them is repeated recursively.

Algorithm 3 shows a GrowCode program that encodes the forest
fire model. We observe that it produces networks with the same
essential characteristics as those produced via the forest fire model.
In particular, the networks produced by algorithm 3 exhibit (for
certain parameter ranges of b) shrinking diameter and densification
power law during network growth.

4. LEARNING GROWCODE MODELS
One of the benefits of expressing growth models as a set of in-

structions is that we can now formalize the problem of learning a
growth model as an optimization problem over the space of Grow-
Code programs. Given a set of graph features, we use genetic pro-
gramming techniques to learn a GrowCode program that produces
graphs closely approximating these features. These graph proper-
ties are encoded into the fitness function of an individual Grow-
Code program. The goal of our learning procedure is not to re-
cover previously proposed growth models, but rather to learn pro-
grams that grow graphs that are representative of a particular class
of graphs as measured under specific similarity measures.

4.1 Constructing a fitness function
We define a feature collection x “ rx1, x2, . . . , xms to be a m-long

vector of features where each property xi may be a scalar (such as
clustering coefficient) or a vector (such as a sampling of the graph’s
effective diameter during its growth process). The goal of the fea-
ture collection is to represent the essential graph characteristics
that we want our growth model to match. We define a (possibly
weighted) similarity measure between any two feature collections

spxi, x jq, which are of the same size, as:

spxi, x jq “

m
ÿ

`“1

w`s`pxi
`, x

j
`q, (1)

where s`p¨, ¨q is a user-defined measure of similarity between the
`th features of the collections. This measure of similarity can be
as simple as the inverse of the difference between the two features
(e.g. for scalar features), or it could be as complex as a measure
of the similarity of distributions (for more complex features). The
only requirement on s`pxi

`, x
j
`q is that it should be a monotonically

non-decreasing function of similarity between the two features, and
it should achieve its maximum value when xi

` “ x j
`. The w` allow

one to weight each feature differently, forcing the optimization pro-
cedure to prefer some features over the others. In the experiments
reported here, w` “ 1 for all `.

We define the fitness of a GrowCode program based on eq. (1).
Let xT be a target feature collection and let xP be a random vari-
able representing the feature collection for the graph generated by
the randomized program P. Then we can define our problem as the
search for P˚ such that:

P˚ “ arg max
P
ErspxP, xTqs, (2)

where the expectation is taken over various runs of P. That is, we
seek the program P˚ such that the graph generated by P˚ are ex-
pected to have features most similar to those given by xT as mea-
sured by the similarity function sp¨, ¨q. This optimization prob-
lem is difficult given the size of the space of potential programs.
To tackle this problem effectively, we adopt genetic programming
techniques which have proven effective in similarly difficult opti-
mization scenarios.

4.2 Optimization with genetic algorithms
We use the ECJ package [18] to perform the optimization, and

we use its abilities to evaluate individuals within a generation in
parallel, customize the selection methods and breeding architecture
for multiple sub-populations, perform NSGA-II multi-objective op-
timization [8], and handle arbitrary representations of fixed and
variable length genomes.

Each individual encodes a program. At each generation, we eval-
uate the fitness for all individuals in the fixed-size population. Each
program’s fitness is calculated by running it for k iterations, and
comparing its feature vector xP against the target set of features.
This is repeated some number M times, and the results are aver-
aged, so that the fitness of program P is:

F pPq “ avg spxP, xTq. (3)

Alternatively, we can average each s`pxi
`, x

j
`q in eq. (1) as a separate

objective, and employ a multi-objective optimization strategy (e.g.
NSGA-II) [8].

When breeding individual programs, a two-point crossover op-
eration allows the programs to mix with each other thus varying
their contents and length. At the end of each generation, individ-
uals compete in a tournament of successive comparisons of two
randomly chosen individuals, where winners are chosen determin-
istically based on the higher fitness value. Winners of the tourna-
ment become members of the subsequent population. Individuals
are drawn with replacement and can thus be replicated in the sub-
sequent population. More fit individuals are more likely to win
tournaments, making “elite” members more likely to survive into
the next generation.

5. APPLICATIONS TO SYNTHETIC AND
REAL NETWORKS

We demonstrate the use of our framework to learn GrowCode
programs that produce networks matching specified properties of
both synthetic and real networks. Unless specified otherwise, we
use the following parameters in our optimization procedures. All
programs in the first generation of an optimization are initialized
randomly with 10 instructions. Each generation consists of 100
programs that are evaluated on the basis of a single-objective (sec-
tion 5.1) or multi-objective (sections 5.2 to 5.4) fitness function.
Individuals are chosen to advance to successive generations using
tournament-selection. At the start of each generation, the popula-
tion of individuals is bred from the selected individuals from the
previous generation using two-point list crossover breeding. This
produces new individuals, potentially with programs of different
length, which are then subject to mutation (we use a mutation rate
of 0.1). The optimization procedure is carried out for 15 genera-
tions, and we select the most fit individual from the final gener-
ation as the representative GrowCode program against which we
compare other models.

5.1 Learning scale-free graphs
Scale-free distributions are the key network property that mo-

tivated the B-A growth model, and we show that GrowCode can
learn models that produce scale-free distributions. Given the large
space of models defined by the instruction set and their parame-
ters, it is unclear at first if effectively exploring this space is even
possible.

We measure the similarity of two degree distributions via a shape
function. Although one straightforward option is to choose the
goodness of fit to a scale-free distribution as one of our features,
this approach is specific to scale-free distributions, and in general,
we would like to generate graphs that match the shape of any speci-
fied degree distribution, not only scale-free distributions. We define
the shape ψshape of a graph to be the cumulative distribution of node
degrees where the support of the distribution (the degrees of the
nodes) is normalized between 0 and 1. This normalization allows
for the comparison of the degree distribution of graphs of different
sizes. We define the similarity metric for the shape feature to be:

sshapepψ
i
shape,ψ

j
shapeq “

1

}ψi
shape ´ ψ j

shape}1
` ε

, (4)

where ε is a small positive constant to assure that the fitness is de-
fined (as a large value) when the shapes coincide exactly.

The B-A model is parameterized on i, the number of vertices
to which a new vertex connects. To get the target degree distri-
bution shape for various i, we generate graphs for i “ 3, 4, 5, 6
and obtain maximum-likelihood estimates of scale-free exponents
of α “ 2.61, 2.71, 2.73, 2.92, respectively. We then use sshape

in eq. (3) to define the fitness of a program as the difference in
degree-distribution shape between the graphs produced by the pro-
gram and the estimated target shape.

With this fitness, GrowCode learns many non-identical programs
that are scale free. Algorithm 4 shows one of the effective scale free
GrowCode programs learned during the optimization process. To
test for the plausibility of a scale-free distribution, we use statistical
tests specific to that distribution as described in [7]. We find that
even though the α parameter was not directly used in the fitness
function, the networks instantiated from the learned models that
pass the scale-free test have an average α value of 2.69, which is
reasonably close to that of the target graphs.

In fact, we posit that it is quite easy for our optimization proce-

Algorithm 4 Example Learned Scale-Free Model
1: New node
2: Random node
3: Attach to influenced
4: Clear r2
5: Set(1)
6: Random edge
7: Detach from influenced
8: Random node
9: Create edge

10: Influence neighbors(0.692)

0 2 4 6 8 10 12 14
Generation

0

2

4

6

8

10

12

T
o
ta
l
fi
tn
e
ss

fo
r
sh
a
p
e
(s
sh
a
p
e) Scale free individuals

Remaining population

Figure 2: Total fitness for shape (sshape) at each generation. The
total fitness for those individuals that pass the scale-free plau-
sibility test is drawn in red, while the total fitness for the rest
of the individuals in the generation is drawn in blue. After just
the fifth generation, the total fitness of scale-free individuals is
approximately twice as large as the remaining population.

dure to discover a GrowCode program that produces networks with
a scale-free degree distribution. Figure 2 shows a trace of one of the
optimization runs when attempting to fit a degree-distribution gen-
erated from the B-A model with i “ 4. Scale-free models are dis-
covered in the first generation of the optimization procedure, even
before fitness selection has had an opportunity to affect the popu-
lation. The total fitness of the scale-free individuals grows quickly,
and by generation 6, is already substantially greater than the total
fitness of the non-scale-free individuals (fig. 2). These observations
have two implications. First, the shape function seems to correlate
well with the scale-free plausibility of the graph. Second, discov-
ering a scale-free model is not difficult.

5.2 Performance on a social network
We apply GrowCode to a recent network of co-authorship of

genome-wide association studies (GWAS) [5]. Specifically, we
consider the social network of “repeated co-authorship” where pairs
of scientists are linked if they published together more than once.
This network is associated with a high assortativity (0.19), which
implies that scientists who collaborate prolifically tend to connect
with scientists who also collaborate with many other researchers.
We simultaneously optimize for the shape distribution feature com-
monly studied in social networks [7] and assortativity using the
multi-objective scheme of section 4.2.

We compare graphs generated by GrowCode programs to graphs

-0.06 -0.02 0.02 0.06 0.1
∆ Assortat ivity

5

0

5

10

15

20

25

30

35
∆
S
h
a
p
e

KronGen w/ MLE Params

GrowCode Model

Figure 3: GWAS target network. Each point represents a sin-
gle generated graph from a model. The x axis represents the
difference between the assortativity of a graph and the tar-
get co-authorship graph. The y axis represents the difference
between the shape of a learned graph and the co-authorship
graph. The green dot represents a perfect match to the co-
authorship graph.

generated by the Kronecker model [16], a fast, recursive graph gen-
eration model that has been shown to reproduce many characteris-
tics of real-world networks. The Kronecker model requires param-
eters to generate random graphs with the desired properties, and
we use the KronFit maximum-likelihood algorithm on the GWAS
graph to estimate these parameters. We compare the features of 100
graphs generated by each model to the real GWAS network.

The learned GrowCode model better matches the assortativity of
the original graph as well as the shape of the degree distribution
(Figure 3) than the best-fit Kronecker model. The average shape
difference of the GrowCode model (mean 8.47, std. dev 2.24) is
closer to the shape of the co-authorship network than that for the
Kronecker model (mean 16.6, std. dev 3.09). The mean assortativ-
ity for the GrowCode graphs is 0.206 while the mean for the Kro-
necker graphs is 0.165. However, in this case, different graphs pro-
duced by the GrowCode model are associated with a wider range
of assortativity values (std. dev 0.0208) than the Kronecker graphs
(std. dev 0.00629).

5.3 Performance on a biological network
We demonstrate the ability of GrowCode to learn a program that

generates graphs similar to a high-quality and recent yeast pro-
tein interaction network compiled by Gibson et al. [11]. We op-
timize for both the shape distribution and the clustering coefficient,
both shown to be biologically relevant in protein interaction net-
works [27]. We follow a similar procedure as in section 5.2, but
instead of the Kronecker model, we use the DMC model as the
baseline comparison. We determined the best parameters for DMC
(qmod “ 0.55 and qcon “ 0.37) via a grid search over the param-
eter space, and we selected the pair of parameters for which the
graphs produced by the model closely match the number of edges,
clustering coefficient, and diameter of the input PPI network.

The networks generated by the learned GrowCode program match
the target characteristics of the real network substantially better

-0.05 0.05 0.15
∆ Avg. Clustering

5

0

5

10

15

20

25

30

35

∆
S
h
a
p
e

DMC(0.54,0.37)

GrowCode Model

Figure 4: PPI target network. Each point represents a single
generated graph. The x axis gives the difference between the
average clustering coefficients of a graph and the protein inter-
action graph. The y axis gives the difference between the shape
of a learned graph and the protein interaction graph. The green
dot represents the origin and the protein interaction graph.

than the networks produced by the DMC model (Figure 4). The
mean average clustering coefficient produced by the GrowCode
program is 0.091 (std. dev 0.006), which matches the average clus-
tering coefficient (0.099) of the protein interaction network very
well. Conversely, the mean average clustering coefficient produced
by DMC is 0.227 (std. dev 0.013) which is quite far from the true
value. The results for the shape distribution yield a similar conclu-
sion (fig. 4). Over the random networks generated by the Grow-
Code program, the average shape distribution distance is 4.58 (std.
dev 1.69) while the average distance among the DMC-generated
networks is 15.48 (std. dev 6.29). The GrowCode program not only
produces graphs that match the target better but also that exhibit
greater parametric stability (i.e. less variance) with regard to these
metrics.

5.4 Performance on a technological network
Above, we showed that GrowCode performs well when learning

models for pairs of network properties. In each case, the particu-
lar pair of properties were chosen because they had been studied in
the context of the corresponding class of network. The GrowCode
framework is not restricted to only two target features, and here, we
provide evidence that it is possible to extend the learning process to
more attributes. Using the Autonomous Systems (AS) Route View
graph discussed in [16] as a target, we learn a GrowCode program
by simultaneously optimizing for all three of the previously con-
sidered features (shape, assortativity, and average clustering coef-
ficient). In this case, 150 individuals were evolved for 25 gener-
ations. As in Section 5.2, we compare graphs generated by the
learned GrowCode program to those generated by the Kronecker
model.

The three plots in Figure 5 show that for all pairs of properties,
graphs generated by GrowCode are close to the real world network
and, in fact, match the AS graph better than those generated by the
Kronecker model. Note that the plots show only two dimensions at
a time, but a single learned GrowCode program was optimized for

0.0 0.01 0.02 0.03 0.04
∆ Assortativity

0
.2
5

0
.2
0

0
.1
5

0
.1
0

0
.0
5

0
.0
0

0
.0
5

∆
A
v
g
.
C
lu
st
e
ri
n
g

KronGen w/ MLE Params

GrowCode Model

0.0 0.01 0.02 0.03 0.04
∆ Assortativity

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

∆
S
h
a
p
e

KronGen w/ MLE Params

GrowCode Model

-0.25 -0.15 -0.05 0.05
∆ Avg. Clustering

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

∆
S
h
a
p
e

KronGen w/ MLE Params

GrowCode Model

Figure 5: AS target network. Each point represents a single generated graph. The difference between the coefficients of a graph and
the AS graph are plotted for three pairs of network properties: average clustering vs. assortativity, shape vs. assortativity, and shape
vs. average clustering. The green dot represents the origin and the AS graph.

Table 2: Mean and standard deviation pµ ˘ σq of spectral dis-
tance between all graphs generated by the B-A model and by
GrowCode programs.

i 3 4 5 6

B-A 0.0086˘ 0.0058 0.0034˘ 0.0007 0.0029˘ 0.0006 0.0026˘ 0.0005
GC 0.0141˘ 0.0115 0.0252˘ 0.0206 0.0288˘ 0.0228 0.0182˘ 0.0152

all three features at once. As with the biological network in Sec-
tion 5.3, the GrowCode program produces graphs that have low
variance with respect to the target topological properties.

5.5 GrowCode generates random models
To ensure that the diversity of the graphs produced by Grow-

Code matches that of those produced by hand-coded models, we
computed the mean and standard deviation of the spectral distance
between 100 graphs generated by both the traditional B-A model
and the GrowCode program that best fit a scale-free graph. The
spectral distance is a reasonable, efficiently-computable measure of
graph similarity that correlates well with graph edit distance [29].
In order to estimate spectral distances between graphs, we used a
discretized histogram of the normalized Laplacian eigenvalue dis-
tribution (100 bins). The spectral distance is then the Euclidean
distance between such histograms.

As Table 2 shows, GrowCode does not produce deterministic
models, and in fact the models learned by GrowCode generate an
ensemble of graphs that has higher diversity than the ensemble pro-
duced by the B-A model, despite matching the target properties bet-
ter. Similar diversity is also observed when this experiment is re-
peated to compare graphs generated by the optimal model learned
by GrowCode to fit the yeast PPI network and the graphs generated
by DMC (data not shown).

6. CONCLUSIONS AND FUTURE WORK
We have introduced a novel framework, GrowCode, for repre-

senting network growth models as programs composed from a short
and descriptive set of instructions. We demonstrate that this repre-
sentation is sufficiently general to reproduce close approximations
to several existing growth models. Additionally, this formal encod-
ing allows for an effective search procedure to find models with
desired properties. In representative social, biological, and techno-
logical networks, a fairly fast optimization procedure (no run took

more than 30 minutes for two objectives and no more than 4 hours
for three objectives) is able to produce GrowCode programs that are
competitive with recent network growth models designed to match
properties of graphs in these domains.

We are also able to match scale-free graphs with several different
attachment parameters i, and we are able to learn GrowCode pro-
grams that pass rigorous statistical tests for scale-free plausibility.
Indeed, our optimization procedure comes across scale-free Grow-
Code programs quickly, and by the end yields a large number of
non-identical programs that produce graphs passing the scale-free
plausibility test. Additionally, we show that the graphs produced
by these GrowCode programs are at least as diverse as graphs gen-
erated by the B-A model. This indicates that the scale-free property
is quite ubiquitous among possible growth models.

The framework presented here applies to both undirected and
unattributed networks, yet we believe it can be extended to han-
dle directed networks and networks with node and edge attributes.
Certain generalizations may be achieved by extending the instruc-
tion set, for example, by incorporating instructions that create and
modify directed edges, allow node attributes to spread throughout
the network, or that encode a more complex and general influence
mechanism. Others may require enhancements to the machine. For
example, handling edge attributes may require the addition of an
edge memory akin to the label memory of the current machine.
Such modifications, however, are not conceptually difficult, though
their careful design is important.

Finally, although the instructions used in GrowCode programs
are individually interpretable, the optimization procedure may pro-
duce programs whose overall growth mechanisms are sometimes,
though not always, opaque. In the future, we plan to explore how
ensembles of learned programs can be analyzed to extract from
them interpretable mechanisms of growth by finding commonly oc-
curring instruction patterns (motifs). For example, on further anal-
ysis of programs like Algorithm 4, we have noticed certain repeated
patterns of instructions that are often used to match scale-free net-
works and to create edges to existing nodes proportional to their
degrees. These patterns show up with New node and Create edge
instructions as well as the influence operations. Mining GrowCode
programs for repeated patterns could reveal sets of instructions that
are interpretable as a unit.

Acknowledgements
This work was partially supported by the National Science Founda-
tion [CCF-1053918, EF-0849899, and IIS-0812111], the National
Institutes of Health [1R21AI085376], and a University of Mary-
land Institute for Advanced Studies New Frontiers Award. C.K.
received support as an Alfred P. Sloan Research Fellow.

References
[1] L. Akoglu and C. Faloutsos. RTG: a recursive realistic graph

generator using random typing. Data Mining and Knowledge
Discovery, 19(2):194–209, July 2009.

[2] A. Barabási. Emergence of Scaling in Random Networks.
Science, 286(5439):509–512, Oct. 1999.

[3] A. Bhan, D. Galas, and T. Dewey. A duplication
growth model of gene expression networks. Bioinformatics,
18:1486–1493, 2002.

[4] M. Brameier. On Linear genetic programming. PhD thesis,
University of Hamburg, 2004.

[5] B. K. Bulik-Sullivan and P. F. Sullivan. The authorship net-
work of genome-wide association studies. Nature Genetics,
44(2):113–113, Jan. 2012.

[6] D. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. Newman,
and S. H. Strogatz. Are randomly grown graphs really ran-
dom? Phys. Rev. E, 64:041902—041908, 2001.

[7] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-Law
Distributions in Empirical Data. SIAM Review, 51(4):661,
2009.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197,
Apr. 2002.

[9] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin.
Structure of growing networks with preferential linking. Phys.
Rev. Lett., 85(21), 2000.

[10] P. Erdős and A. Rényi. On the evolution of random graphs.
Evolution, 5(1):17–61, 1960.

[11] T. A. Gibson and D. S. Goldberg. Improving evolution-
ary models of protein interaction networks. Bioinformatics,
27(3):376–382, 2011.

[12] I. Ispolatov, P. L. Krapivsky, and A. Yuryev. Duplication-
divergence model of protein interaction network. Phys. Rev.
E, 71(6 Pt 1):061911, 2005.

[13] M. Kim and J. Leskovec. Multiplicative attribute graph model
of real-world networks. Internet Mathematics, 8(1-2):113–
160, 2012.

[14] W. K. Kim and E. M. Marcotte. Age-dependent evolution
of the yeast protein interaction network suggests a limited
role of gene duplication and divergence. PLoS Comput. Biol.,
4(11):e1000232, 2008.

[15] R. Kumar, J. Novak, and A. Tomkins. Structure and evolu-
tion of online social networks. In Proceedings of KDD, pages
611–617, 2006.

[16] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani. Kronecker Graphs: An Approach to Model-
ing Networks. The Journal of Machine Learning Research,
11:985–1042, Mar. 2010.

[17] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time.
In Proceeding of KDD, page 177, New York, New York, USA,
Aug. 2005. ACM Press.

[18] S. Luke. Issues in Scaling Genetic Programming: Breeding
Strategies, Tree Generation, and Code Bloat. PhD thesis, Uni-
versity of Maryland, College Park, 2000.

[19] M. Middendorf, E. Ziv, C. Adams, J. Hom, R. Koytcheff,
C. Levovitz, G. Woods, L. Chen, and C. Wiggins. Discrimi-
native topological features reveal biological network mecha-
nisms. BMC Bioinformatics, 5:181, 2004.

[20] M. Middendorf, E. Ziv, and C. Wiggins. Inferring network
mechanisms: The Drosophila melanogaster protein interac-
tion network. Proc. Natl. Acad. Sci. USA, 102:3192–3197,
2005.

[21] S. Navlakha and C. Kingsford. Network archaeology: Uncov-
ering ancient networks from present-day interactions. PLoS
Computational Biology, 7(4):e1001119, 2011.

[22] G. Palla, L. Lovász, and T. Vicsek. Multifractal network gen-
erator. Proc. Natl. Acad. Sci. USA, 107:7640–7645, 2010.

[23] N. Przulj, O. Kuchaiev, A. Stevanovic, and W. Hayes. Geo-
metric evolutionary dynamics of protein interaction networks.
Pac. Symp. Biocomput., 15:178–189, 2010.

[24] R. Solé, R. Pastor-Satorras, E. Smith, and T. B. Kepler. A
model of large-scale proteome evolution. Adv. Complex Syst.,
5(1):43–54, 2002.

[25] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of hetero-
geneous information networks with star network schema. In
Proceedings of KDD, KDD ’09, pages 797–806, New York,
NY, USA, 2009. ACM.

[26] S. A. Teichmann and M. M. Babu. Gene regulatory network
growth by duplication. Nat. Genet., 36:492–496, 2004.

[27] A. Vazquez, A. Flammini, A. Maritan, and A. Vespig-
nani. Modeling of protein interaction networks. Complexus,
1(38):9, Aug. 2001.

[28] D. Watts and S. Strogatz. Collective dynamics of ‘small-
world’ networks. Nature, 363:202–204, 1998.

[29] R. C. Wilson and P. Zhu. A study of graph spectra for com-
paring graphs and trees. Pattern Recognition, 41:2833–2841,
2008.

[30] H. Yu, P. Braun, M. A. Yildirim, I. Lemmens, K. Venkatesan,
J. Sahalie, T. Hirozane-Kishikawa, F. Gebreab, N. Li, N. Si-
monis, T. Hao, J.-F. Rual, A. Dricot, A. Vazquez, R. R. Mur-
ray, C. Simon, L. Tardivo, S. Tam, N. Svrzikapa, C. Fan, A.-
S. De Smet, A. Motyl, M. E. Hudson, J. Park, X. Xin, M. E.
Cusick, T. Moore, C. Boone, M. Snyder, F. P. Roth, A.-L.
Barabási, J. Tavernier, D. E. Hill, and M. Vidal. High-quality
binary protein interaction map of the yeast interactome net-
work. Science, 322(5898):104–110, 2008.

