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Abstract. Recent chromosome conformation capture (3C) experiments
produce pairwise interactions between fragments of DNA that are spa-
tially close in the nucleus of a cell. Visualizing 3C data on the scale of the
whole genome allows scientists to gain insight into chromosomal packing
in the nucleus of a cell and to generate hypotheses about what kinds
of genomic features (e.g. gene locations, DNA accessibility, GC content)
correlate with spatial proximity. We introduce the chromosome layout
problem which seeks a two-dimensional layout of a chromosome confor-
mation graph such that: (1) an entire chromosome can be visualized
as a strand of DNA together with its genomic features, and (2) pairwise
spatial constraints obtained from biological experiments are respected as
much as possible. Our approach treats the chromosome as a self-avoiding
string or polymer while attempting to satisfy the constraints. The lay-
outs we produce accurately depict spatial proximities observed in 3C
experiments while avoiding undesirable occlusions and minimizing edge
crossings.

Keywords: chromosome conformation capture, network layout, genetic
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1 Introduction

The DNA of eukaryotic organisms is efficiently packed in the cell’s nucleus
allowing long strands of DNA to fit in a very small volume. The spatial or-
ganization of the packed chromatin has been shown to play an important role
in modulating gene expression and facilitating long-range gene regulation [3].
This organization has also been implicated in rearrangement mutations that are
associated with some cancers [6].

Recently, the experimental techniques of chromosome conformation capture
(3C; [10]) and its subsequent refinements have been applied to determine the
three-dimensional shape of the genome in several organisms. In a 3C experiment,
proteins on chromosomes that are close to each other in their natural folded
state are glued together by formaldehyde treatment. Pieces of DNA that are not
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linked are cleaved and washed away while DNA pieces that were bonded are
retained. The remaining pairs are sequenced and their location in the original
genome recorded. This procedure is repeated in parallel over millions of cells
thus providing a quantitative measure of how often the two parts of DNA were
close to each other.

The result of a 3C experiment is a chromosome conformation capture, or
3C, graph G = (V, E) where nodes V represent fragments of the chromosomes
(similar in size), and edges in E connect two nodes u;,u; € V, i # j, if the
pair of chromosome fragments represented by u;, u; were spatially close. Each
3C edge has a weight w(e;;) that equals the number of times the interaction
between u; and u; was observed in the experiment.

Aided by the new experimental protocols, the study of three-dimensional
genome structure will continue to assist in identifying additional examples of
long-range gene regulation, drive the development of better models of chromo-
some packing and its folding principles, and lead to a better understanding of the
relationships between spatial location, DNA accessibility, and gene expression.
However, the recent increase in the volume of genomic structural information
has created a need for intuitive, information-rich visualizations of both spatial
proximity encoded in 3C graphs and genomic annotations (e.g. genes, regulatory
signals, sequence composition). Displaying both the geometric structure and the
genomic annotations will help users develop an intuition about the relationship
between these two classes of features and will help them pose hypotheses about
how spatial position affects the functioning of the genome.

Correlating genome structure with other biological data is a difficult task.
The nodes in the graph G have tens and hundreds of annotations: the genes
located on that piece of DNA, how often and when those genes are active, what
other genes get turned on if the gene becomes active, presence of specific enzymes
or binding activity, and so on. These categorical, numerical, and relational data
are associated with a genomic coordinate along a chromosome and plotting them
against the chromosomal address helps the user develop a mental model when
studying these data (see Fig. 1 for an example). In this paper, we discuss visual
features desirable for chromosome conformation graph visualization and develop
a novel approach to visualizing spatial data along with the linear annotations
on the chromosomes. [XXX - expand more on how we solve the problem)]

2 Related Work

Traditionally, genomic data is visualized in a linear fashion with chromosomal
coordinates along the X axis, as in the widely used UCSC Genome Tracks [7]
and Galaxy Browser [9] (see Fig.1b). However, the linear coordinates make it
hard to incorporate any type of relational information where two separate pieces
of a genome are joined by an edge. An edge may represent the fact that a gene
BRCAT1 at position 10000 regulates gene BRCA2 at position 20000, or that a
sequence of nucleotides at [30000, 45000] loops around and is spatially close to
a sequence [100000, 110000] affecting its function, or that a protein produced
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Fig.1. A. A three-dimensional model of a yeast genome based on 3C data [20]. B.
Linear chromosome visualization in Genome Broswer with multiple annotations (genes
and regulatory elements) [7].

by gene BRCA1 catalyzes a protein produced by gene BRCA2 to activate a
chemical process.

Another visualization approach to viewing genomic graph data employs a
circular layout (Fig. 2a) where the chromosome is laid out along the circum-
ference and 3C edges connect parts of the chromosome that are spatially close.
Circos [11] is a widely used tool for such analyses and provides features that has
made this layout commonly used for plotting 3C data. The primary drawback of
a circular layout is that it provides little infromation about higher-order struc-
tural relationships beyond pairwise proximity (e.g. cliques, paths, long-range
chromosome looping). Recent work focusing on visualizing matrices of 3C in-
teractions [17, 23] suffer from a similar drawback. In addition, along with other
traditional graph layouts [18, 5, 15], graphs with large number of edges become
cluttered easily.

A seemingly natural approach for visualizing chromosomal structure is to
embed models of the chromasomes into three dimensions. In this approach, chro-
mosomes are represented by a simplified model (such as beads on a string) and
the positions of the segments are optimized to avoid overly stretching or com-
pressing the chromatin while attempting to respect distance constraints derived
from measured pairwise distances [4, 2, 16]. The various methods for performing
these embeddings have been quite successful in producing data-driven models
of chromatin structure and have resulted in a number of interactively viewable
three-dimensional structures. However, these 3D viewers [1], while useful, have a
number of deficiencies as aids to visualization and exploration. The most signif-
icant fault is that big portions of the data are occluded from most viewpoints,
and the strands of chromosomes in the center of the model (see Fig. la) are
completely obscured by the strands on the surface. This makes it impossible to
quickly grasp correlations between a genomic feature and its spatial location.
Interactive exploration of 3D models requires complex, non-intuitive user inter-
action to support rotation, zoom, translation, and slicing with standard input
hardware (i.e., keyboard and mouse).
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3 Chromosome layout problem

Circular Force Atlas Frutchterman-Reingold

Fig. 2. Three layouts for human chromosome 20 from algorithms available in the Gephi

The most appealing feature of linear and circular representations of the ge-
nomic data is that users can see the whole chromosome and zoom in on any part
of it at an arbitrary level of detail. The ability to trace the chromosome and
gain an overview, then to “zoom and filter” on demand adheres to the widely
accepted visualization mantra by Shneiderman [19]. However, tracing the chro-
mosome from the beginning to end is much more difficult when chromosomal
edges are not explicitly included in the visualization [17,18]. To address this
issue, we define an augmented 3C graph as a 3C graph with additional chromo-
somal edges linking consecutive genomic segments (Fig. 3):

Definition 1. We call G = (V, E. U E;) an augmented 3C graph where E. are
chromosomal edges connecting nodes u; and u; 11, 1 < i < |V|, and Es are 3C
edges that encode spatial prozimity of genomically distant fragments u;, uj, © # j
of a chromosome.

Edges F. represent the chromosome by linking nodes in V' according to their
genomic order. If one were to start at u; € V and follow E,. edges to w1, from
uy1 to ug and so on, they would trace the chromosome and end up at the last
vertex uy (N = |V]) that corresponds to the last genomic fragment of that
chromosome C. Edges in E; represent weighted 3C edges. Given such a graph,
we desire a layout that makes it is easy to trace the chromosome from start to
end, affords plotting the annotations along the chromosome, and displays spatial
relationships in a clear way. We formalize our criteria for the layout below:

Problem 1. Chromosome layout problem. Given an augmented 3C graph
G = (V, E.UE) representing a single chromosome C, and a set of T annotations
on this chromosome, find the layout L = {(z;,y;) | w; € V,1 < i < N} for C
satisfying the following conditions and assuming that C' must be displayed with
a thickness large enough to account for all annotations in T — we denote this
thickness as wy:
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Fig. 3. Augmented 3C graph consists of nodes that represent equally spaced cuts of the
chromosome (light gray), E. edges that connect these cuts and represent the chromo-
some (dark gray curved edges), and E, edges that indicate spatial proximity (dashed
edges).

— Self-avoiding: Let r(e,wa) be the rectangle representing edge e in the Eu-
clidean plane of width w4. We require that r(ej,ws) Nr(ez,ws) = 0 for all
e1,e2 € E. that are not adjacent;

— Fixed-segment-lengths: All edges in E. have uniform length;

— 3C edge distortion: For every 3C edge e;; € E; connecting nodes u; and
u;, the distance between nodes u;, u; is minimized and is inversly propor-
tional to w(e;;)

— 3C-avoiding: Crossings between edges in F; and those in E, are minimized;

— Bounding box: The layout is completely contained in a circle of radius R.

The self-avoiding constraint ensures that a chromosome does not fold onto
itself, occluding the data, and that chromosomal edges F¢ are given enough
space to afford the drawing of multiple annotation tracks of total width w,. We
require that all chromosomal edges are of the same length to ensure that annota-
tion features plotted along every chromosomal edge are comparable. By requiring
that 3C edges are shorter if the frequency of interaction between its endpoints
is higher, we are attempting to force certain regions of the chromosome closer
together in the layout. Augmented 3C graphs for every human chromosome (ex-
cept chromosome 4) contained significantly more 3C edges than chromosomal
edges (u = 69.7% of all edges with o = 14.7%) resulting in multiple crossings
between 3C edges and the chromosomal backbone justifying an additional con-
straint to minimize such occurrences. Finally, to achieve more compact drawings,
we enforce a bounding circle constraint that rewards points for being close to
the centroid and penalizes points that are at a distance greater than R from the
centroid. To determine the radius of a bounding circle, we use a lenient bound
R = (N — 1)D/2r that in the extreme allows the chromosome to be stretched
along the circumference of a circle of radius R.
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We reformulate Problem 1 as an optimization problem:

maximize f(Es x E.,0) + g(Es) ) (1)

subject to ||u; — u;—1|| = D where u; € V,0 <i <N, (2)
1
max|| | =— Z u; | —ul| <R for all u; € V, (3)
4 et
f(€,wa) =0, (4)

where € = {(e;,¢e;) | €;,e; € E.and i < j — 1} and f(F,w) is a function that
penalizes intersections between pairs of rectangles r(ej,w), r(es,w) for (e1,e9) €
E. We take f(F,w) to be:

Ew) =g X b)), (5)

(e1,e2)EE

where

o(r(er,w),r(ez,w)) =

{1 if r(e1, w) Nr(ez,w) =0 . (6)

—1 otherwise

The function f(F,«a) achieves its maximum value of 1 when no bounding rect-
angles for pairs of edges in F intersect. When w = 0, we set e(e,0) to be a line
segment.

The function g(E;) measures the total distortion of the set of 3C edges in-
duced by the current layout, and is given by:

By =1+ Y L) (7)

en, €le)
where
€(eij) = min(0,(es;) — [lus — ) (8)
and
é(eij) = min(0,t(es;) — D |i — jl) (9)

and we consider €(e;;)/€(e;;) = 0 when €(e;;) = é(e;;) = 0. Above, t(e;;) de-
notes the maximum desirable distance for a 3C edge e;; (i.e. the ideal maximum
separation between the endpoints of this edge). The maximum distance achiev-
able in the layout between two genomic fragments f; and f; occurs when the
chromosome is laid out as a straight line segment between these fragments, and
so this maximum attainable distance is simply D |i — j|. Thus, equation (7) is a
measure of the total normalized distortion over all 3C edges given the current
layout. Here, we choose only to penalize fragments that are placed farther apart
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than t(e;;); the fragments may be closer than this target distance without de-
tracting from the objective. Thus, g(FEs) achieves its maximum value, 1, when
the endpoints of every 3C edge e;; are separated in the layout by a distance less
than or equal to t(e;;). We set the maximum desirable distance for an edge to
t(eij) = x/w(e;;), where z, a user-provided parameter, is the maximum desired
distance between the endpoints of a 3C fragment with a weight of 1 (we set
x = 1500). This target distance function then varies directly as the inverse of
the edge weight.

Non-linear constraints (1) and (4) place this problem outside of the class
of linear and quadratic problems; additionally, considering that crossing mini-
mization is an NP-hard problem [8], we suspect that Eqns. (1)—(4) are hard to
optimize.

4 ChromoVis

4.1 Solving the optimization problem

We used a genetic computation approach to find layouts satisfying objec-
tives in a relaxed version of Problem 1, where all objectives are normalized and
summed together into a single objective. We used the ECJ [13] package to run
the optimization and implemented our objectives in Java. We use tournament
selection to select the 15 best individuals from each generation to carry over
to the next generation. The remaining population for each new generation is
generated by breeding the previously selected individuals using a multi-point
crossover procedure with the probability of crossover set to 0.25. In each gen-
eration, the population contained 30 individuals, and the optimization was run
for 500 generations on each chromosome.

In ECJ, every individual is associated with a genome that can mutate with
some probability. For Problem 1, we encode a genome as a series of rotation an-
gles A = (0y,...,0n_1) where each angle ; determines the rotation for a chro-
mosomal edge e; ;41 relative to a chromosomal edge preceeding it (see Fig. 4).
Given A, we reconstructed the Cartesian coordinates for every node u; in the
chain by computing coordinates for all the preceeding nodes, with node u; al-
ways positioned at the origin. By construction, all chromosomal edges e; 11,
1 <4 < N, have fixed length, thus satisfying constraint (2). To help satisfy
the self-avoiding objective, we also restrict the angles 6; in the rotating chain
to be —7/3 < 6; < w/3. This results in a smoother drawing that avoids self-
intersections and sharp transitions. This approach is similar in spirit to freely
rotating chains and self-avoiding random walks [21]. However, our version of the
problem additionally attempts to satisfy as many spatial constraints as possible
while minimizing crossings between chromosomal and 3C edges with width w.

When two individuals from the same generation are selected for crossover,
their genomes are split at a random location ¢ and the two individuals exchange
subsequences of angles from 1 to 4 retaining a;y1,...,an_1 values. Since the
angles are relative, crossover changes the first i angles in the genome and indi-
rectly affects all nodes past i since the Cartesian coordinates for nodes u;1, . ..
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Ui+1

Fig. 4. The genome of an individual contains a series of angles where each angle «;
determines a rotation angle of the chromosomal edge e; ;41 relative to the chromosomal
edge e;—1,; preceeding it.

depend on the series of angles up to «;. However, this change keeps the structure
of the subchain [u; 1, ux] intact (except for rotating and translating to the new
coordinates of the node u;). Our implementation allows multi-point crossover
that splits the genome at several locations allowing for greater population diver-
sity. Each angle is mutated independently with probability 0.15 and individual
mutations have a similar effect to that of a pivot move in the freely rotating
chain simulations [14].

4.2 Drawing chromosomes

To make the chromosome the most pronounced feature in the drawing, we
weave a splined thick curve through the nodes in G. Interpolation also makes
the drawing visually appealing and more organic — appropriately so in this
biological context. The backbone of the chromosome is easy to point out and
makes it easy to trace the chromosome from one end to another (Fig. 5).

5 Results and Discussion

5.1 3C data

We obtained HiC data (a genome-wide 3C experiment) from Lieberman-
Aiden et al. [12] and normalized for experimental biases by the method of Yaffe
and Tanay [22]. Since HiC frequencies are inversely related to genomic distance,
we further normalized the frequency of an interaction e;; derived from the Yaffe
and Tanay method by the mean frequency at the genomic distance for a given e;;.
The resulting weight w(e;;) represents the frequency of observing an interaction
e;; as compared to the average interaction frequency for all 3C edges at that
genomic distance. We discarded edges with w(e;;) < 1.5 for all chromosomes.

5.2 Annotations on chromosomes

As proof of concept, we display three annotations along the chromosome:
gene locations, DNA accessibility clusters (DNasel), and GC content. These an-
notations are all available from Genome Browser [7]. Each annotation is placed
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Fig. 5. ChromoVis layouts for human (a) Chromosome 1 (b) Chromosome 20 (c) Chro-
mosome 10. 3C edges are shown in gray.
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along the chromosome on their separate tracks (Fig. 5e). More annotations can
be plotted, however, this may change the layout by trying to accomodate for a
thicker chromosomal strand. Continuous annotations, sucj as GC content, are
shown as heatmaps, however, their tracks can be made wider to afford the plot-
ting of line or bar charts.

5.3 Performance of objectives

a b
1 =] 1 —_— =
= ——_—

0. 0.

o | o

0 0.4

0 0.

0 0.

Self-Avoiding 3C Edge 3C-Avoiding  Bounding Self-Avoiding 3C Edge  3C-Avoiding  Bounding
Distortion Box Distortion Box

Fig. 6. Box plots for the distributions of four of the five objectives for (a) the initial
population of layouts (b) and the final optimized population. (The the fixed-length
segment objective is satisfied via our representation of a chromosome as a vector of
angles on fixed-length segments.)

Our approach combining the rotating chain with the optimization yields near-
optimal objective values for all objectives (Fig. 6). The optimization primarily
improves the 3C edge distortion while fitting the chromosome in the bounding
box. The self-avoiding objective and 3C-avoiding objectives are largely acheived
by the rotating chain choosing angles in the range [—m/3, —pi/3] since their
values are similar in the initial and final populations of the genetic program.
The distribution of objectives for the remaining three objectives indicates that
the population is heterogeneous, and that the optimization produced several
distinct layouts that satisfy our criteria of quality.

5.4 Visual identification of spatially close regions

Chromosomal regions that are near each other as determiend by the 3C ex-
periment are also near each other in ChromoVis layouts. For example, all three
chromosomes in Figure 5 coil and turn in a way that allows placing densely inter-
acting regions next to one another. At the same time, areas of the chromosomes
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not constrained by the 3C edges, are further away from the rest of the chro-
mosome making it easy to differentiate between the packed and unconstrained
regions. These examples illustrate ChromoVis’s ability to capture higher-order
structures while maintaining the readability of the drawing.

6 Conclusions

We presented ChromoVis: a new two-dimensional layout for chromosome
conformation capture data that simultaneously clearly displays the chromosome
and the spatial proximity of chromosomal segments as well as rich genome an-
notations. Our genetic programming approach, which relaxes the desired opti-
mization objective, achieves good individual objective values while allowing for
efficient computation of the layout (usually within [XXX - running] minutes
for the largest chromosome on a MacBookPro machine with 2.3 GHz Intel i5
processor with 4Gb of RAM). ChromoVis produces images suitable for publi-
cations, large displays or educational posters, and for interactive exploration.
While ChromoVis can be directly applied to 3C graphs, the approach is gener-
ally applicable to any graph with weighted constraints on a string-like structure:
other pairwise associations between parts of the chromosomes, a protein chain
with physical contacts, or even a series of correlated point events on a timeline.
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