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Abstract

The successful execution of any contact task fundamen-
tally requires the application of wrenches (forces and mo-
ments) consistent with the task. We develop an algorithm
for computing the entire set of wrenches consistent with
achieving a givenaugmented contact mode(e.g., sliding
at contact 1, rolling at contact 2, and approaching poten-
tial contact 3) for one fixed and one moving part in the
plane.

1 Introduction

One of the most basic operations in robotic manufacturing
is workpiece insertion. Consider the planar assembly task
depicted in figure 1. The workpiece (a ratchet pawl) is
to be fixtured for assembly. The goal is to achieve all
three desired contacts (or fixels), so that the position and
orientation of the workpiece will be uniquely determined.
If the workpiece slides to the right across fixels 2 and 3
while maintaining contact with each, then the workpiece
will eventually contact fixel 1.

This plan requires a device that applies specified
wrenches. If the workpiece is positioned on a tray that is
tilted to achieve the desired workpiece motion, then grav-
ity provides the external wrench. If a spring is used to
push the workpiece, then the deformation of the spring
provides the wrench.

Regardless of the method used to apply the force, it
is fundamental to the above plan that the set of external
wrenches consistent with the desired contact mode (in this
case,sliding right over fixels 2 and 3) be known. In this
paper, we present an algorithm to determine the sets of
external wrenches consistent with each possible contact
mode.
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Figure 1: A workpiece nearly seated in a fixture.

Unfortunately, due to the nonuniqueness problem in-
herent in most mathematical models of dynamic rigid
body systems (see [7], for example), it is possible that the
wrenches in the calculated sets may be consistent not only
with the desired mode, but also with another, undesireable
mode. The companion paper [1] shows how unions and
intersections of the sets of consistent external wrenches
may be used to find wrenches consistentonlywith desired
contact modes.

Relation to previous work

Our approach is based on previous theoretical results in
rigid body mechanics [9, 11] and complementarity the-
ory [2]. In Pang and Trinkle [9], examples are presented in
which the polyhedral convex cones of external wrenches
consistent with particular contact modes are calculated.
We develop and extend their method into an algorithm
that works with all contact modes. We represent poly-
hedral convex cones by matrices; our primary reference
for operations on cones is Goldman and Tucker [5].

Mason [8] provides a good survey of previous work
on manipulation planning from the perspective of rigid
body dynamics with Coulomb friction. Erdmann’s work
on generalized friction cones in configuration space [3, 4]
provided one of the first methods for computing the pos-
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Figure 2: A local frame attached to fixeli.

sible motions of contacting rigid bodies under an applied
wrench.

Apart from Pang and Trinkle [9], the work most simi-
lar to that presented here is probably Mason [8]. Mason
describes a graphical method for finding the set of accel-
eration centers (and thus wrenches) consistent with a par-
ticular contact mode. The primary advantage of our algo-
rithm is ease of implementation: the core of our sample
implementation is less than one hundred lines of simple C
code, not counting software by Hirai [6] used for conver-
sion between representations of polyhedral convex cones.
Our algorithm is also very flexible. For example, the set
of external wrenches consistent with maintaining contact
at some point can be found, without specifying whether
the mode involves sliding right, sliding left, or rolling.

2 Mathematical model

The instantaneous dynamic model of a system of rigid
bodies with unilateral, frictional contacts can be formu-
lated and solved as a linear complementarity problem
(LCP) [11]. Our problem may be seen as an inverse LCP.
Given the rigid body configurations and a set of con-
straints on contact forces and accelerations imposed by
the choice of contact mode, we want to find the set of
consistent external wrenches. The derivation of our math-
ematical model therefore parallels that derived for LCP
formulations. We assume that the workpiece is initially
not moving, and either touching or infinitesimally distant
from each fixel.

Variables and definitions

Let fi be the location of fixeli. Let pi be the unique clos-
est point on the workpiece tofi, with signed distance func-
tion, or gap function, defined as〈ni(t), (pi − fi)〉. We at-
tach a right handed frame(ni(t), ti(t)) to each fixel such
that the first axis points atpi (see figure 2).

Let vin(t) andvit(t) denote the components of the ve-
locity of p(i) in framei:

vin(t) = 〈ṗi(t),ni(t)〉 (1)

vit(t) = 〈ṗi(t), ti(t)〉. (2)

We now state four definitions. Acontact stateis the
set of indices of fixels where contact has been achieved.
A contact interactionis the relative motion at a point of
contact: separating, rolling, sliding left, sliding right. A
contact modeis the set of interactions at all the contacts.
For the purpose of considering insertion tasks, we define
an additional contact interaction: ‘approach’. We also ex-
tend the definition of a contact mode: anaugmented con-
tact modeis the extension of a contact mode that allows
specification that the workpiece is approaching a nearby
point of interest on the fixture. For example: the work-
piece separates from fixel 1 and approaches fixel 2.

We may enumerate the possible contact interactions at
fixel i based on the distance of the fixel from the work-
piece, and the normal and tangential components of the
velocity of the closest point on the workpiece. For exam-
ple, if the interaction at fixeli is left sliding, then the gap
is zero,vin = 0 andvit > 0. Table 1 enumerates the
cases.

Interaction Abbrev. gap vin vit

left sliding l 0 0 > 0
right sliding r 0 0 < 0

rolling n 0 0 0
approaching a > 0 < 0 -
separating s = 0 > 0 -

> 0 ≥ 0 -

Table 1: Contact interactions.

Right sliding, left sliding, androlling can occur only if
contact has been achieved.Approachingcan only occur if
there is no contact, and would correspond to penetrating if
contact had already been achieved.Separatingmay occur
regardless of whether or not contact has been made.

We assume that the fixels have been ordered, and de-
scribe the augmented contact mode by a string, using the
abbreviations from table 1. For example, the string ‘als’
should be read: the workpiece is approaching fixel 1, slid-
ing left over fixel 2, and separating from fixel 3.

Newton-Euler equations

The Newton-Euler equations describe the dynamics of the
system regardless of the contact mode. In this section we
re-arrange the Newton-Euler equations into a form that
will be useful in later sections.

The resultant wrenchw applied to the workpiece and
the generalized accelerationν̇ of the workpiece are related
through the three-by-three inertia matrixM:

w = Mν̇. (3)
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Let cin andcit be the normal and tangential components
of the force applied to the workpiece by contacti. Assume
there aren contacts, and definec = [c1n...cnn c1t...cnt]T .

We partition the resultant wrenchw into the contribu-
tion of the contact forcesJ c and that of external loads
g, and solve for the generalized acceleration of the work-
piece:

ν̇ = M−1(J c + g), (4)

whereJ is the Jacobian matrix (also known as the wrench
matrix) that transforms the contact forces into the inertial
frame and sums their moments about the center of mass
of the workpiece.

Let v = [v1n...vnn v1t...vnt]T = J T ν be the vector of
normal and tangential components of the contact veloci-
ties. Then the contact acceleration vector can be written
as:

a =
d

dt
v =

d

dt
(J T ν) = J̇ T ν + J T ν̇. (5)

Premultiplying equation 4 byJ T , assuming velocity
product terms are negligible, and combining with equa-
tion 5 yields the Newton-Euler equations mapped into the
contact frames:

a = Ac + Bg, (6)

whereA = J TM−1J andB = J TM−1.
We rearrange equation 6 to find a relation between ex-

ternal wrenches and the accelerations and forces at the
contacts:

Cy = Bg, (7)

where C = [I2n×2n −A] is (2n× 4n) and y =
[aT cT ]T has4n elements. Equation 7 will be the starting
point for our algorithm to find the set of external wrenches
consistent with a given contact mode.

Constraints due to contact modes

In this section we will discuss how the current contact
state and the contact mode to be achieved imply a set of
constraints ony, the vector of contact accelerations and
forces.

Non-penetration If there is contact at fixeli, thenain ≥
0; otherwise the fixel and the workpiece would interpen-
etrate.

Unilateral force The force exerted by the fixel is unilat-
eral: cin ≥ 0.

Coulomb friction Let µ be the coefficient of friction. If
the workpiece is sliding to the right over the fixel, then
the frictional force will be on the left edge of the friction
cone:cit = µcin. If the workpiece is sliding to the left,
then the frictional force will be on the right edge of the
friction cone: cit = −µcin. If the workpiece is rolling
over the fixel, then the friction force may fall anywhere
in the friction cone:|cit| ≤ µcin.

Separation If there is no contact at fixeli, thencin =
cit = 0. If there is contact butain > 0, contact is break-
ing. The fixel cannot exert a force on the workpiece:
cin = cit = 0.

Since we assume the workpiece is initially at rest, there
are also constraints on the contact accelerations imposed
by the choice of desired contact interaction at a fixel. If
contact has been achieved, and we want the interaction
to be left sliding, then we should chooseain = 0 and
ait < 0.

We have collected constraints ony implied by a contact
interaction in table 2. For simplicity, we do not distinguish
between static and kinetic coefficients of friction.

Interaction ain ait cin cit

a < 0 − 0 0
s ≥ 0 − 0 0
l 0 > 0 ≥ 0 −µcin
r 0 < 0 ≥ 0 µcin
n 0 0 ≥ 0 |cit| ≤ µcin

Table 2: Constraints on elements ofy due to contact in-
teraction.

3 Matrix representations of polyhe-
dral convex cones

In this section, we review matrix representations of poly-
hedral convex cones. Our discussion is based on Goldman
and Tucker [5].

Assume matrixF is given. Thepolar of F is defined as
the set of solutions to the matrix inequalityFg ≤ 0.

polar(F) = {g : Fg ≤ 0} (8)

Any g ∈ polar(F ) makes a non-positive dot product with
each row ofF. Each row ofF may be interpreted as a
normal describing a half-space; solutions lie in the inter-
section of the half-spaces.polar(F) is therefore a polyhe-
dral convex cone, and we say that the inequality is aface
normal representationof the cone.

Similarly, assume matrixG is given and define the pos-
itive linear span ofG:

pos(G) = {g : g = Gz for somez ≥ 0} (9)

Any vectorg ∈ pos(G) is in thepositive linear spanof
the columns ofG, and we say that the inequality is aspan
representationof a polyhedral cone. The columns ofG
are referred to asgenerators.
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Converting between representations

According to [5], Minkowski and Farkas first showed that
for any face normal representation of a polyhedral con-
vex cone, there is a corresponding span representation,
and Weyl showed that the converse is true. IfF or G is
square and non-singular, then conversion between the two
representations is easy and may be accomplished by ma-
trix inversion. Goldman and Tucker [5] and Hirai [6] de-
scribe methods for performing the conversion in the gen-
eral case. We introduce some new notation, and use the
superscriptF to denote conversion from a span represen-
tation of a cone to a face normal representation. If we are
given a matrixH, thenHF refers to a matrix such that
pos(H) = polar(HF ).

The following theorem makes use of the notation intro-
duced above.

Theorem 1 Assume we have a matrix equation and a set
of constraints of the form

Kz = Pg

z ≥ k

whereK andP are constant matrices, andk is a constant
vector. For a given vectorg, there existsz satisfying the
equation and the inequality if and only if

KFPg ≤ KFKk

Proof: Define a change of variablesx = z− k. Then

z = x + k

K(x + k) = Pg

Pg −Kk = Kx

x ≥ 0.

The last two lines tell us thatPg −Kk lies in a convex
cone; this is the span representation of the cone. There-
fore, we may convert to the face normal representation:

KF (Pg −Kk) ≤ 0
KFPg ≤ KFKk

Verification of the ‘only if’ condition is similar.ut

4 A simple example

Before presenting the complete algorithm, we present a
simple example. Consider a disc-shaped workpiece (see
figure 3) with unit radius, and inertia matrixM equal to
the identity matrix. Fixel 1 is at the position(0,−1),
touching the workpiece, and fixel 2 is slightly to the right
of (1, 0), not quite touching the workpiece. We want the

Figure 3: A simple example.

workpiece to roll on fixel 1, and approach fixel 2; that
is, the contact mode is ‘na’. What external wrenches are
consistent with this mode?

We first construct the JacobianJ . Each column ofJ
may be thought of as the wrench corresponding to a unit
force applied to the workpiece at a point near a fixel, in a
local coordinate direction.

J =
[

n1 n2 t1 t2

p1 × n1 p2 × n2 p1 × t1 p2 × t2

]

=

 0 −1 −1 0
1 0 0 −1
0 0 −1 −1


We may calculateC andB and rewrite equation 7:

1 0 0 0 −1 0 0 1
0 1 0 0 0 −1 −1 0
0 0 1 0 0 −1 −2 −1
0 0 0 1 1 0 −1 −2

y =


0 1 0
−1 0 0
−1 0 −1
0 −1 −1

g

(10)

We now turn to the constraints ony. The contact in-
teractions arerolling at fixel 1 andapproachingat fixel 2.
Table 2 gives constraints on four elements ofy for each
interaction; we collect the constraints in table 3.

y uncon ineq roll slide zero
a1n = 0
a2n < 0
a1t = 0
a2t x
c1n ≥ 0
c2n = 0
|c1t| ≤ µc1n

c2t = 0

Table 3: Constraints ony for contact mode ‘na’.

We will take equation 10, together with the constraints
listed in table 3, and find a new equation and simpler con-
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straints of the form:

Gz = g, z ≥ 0

1. Sincea1n = a1t = c2n = c2t = 0, we may remove
these elements fromy, and we remove the first, third,
sixth, and eighth columns ofC.

2. Sincea2n is constrained to be less than zero, we may
change the signs of the elements of the second col-
umn ofC, replacea2n by −a2n in y, and constrain
−a2n ≥ 0. (For now, we ignore the issue posed by
the strict inequality.)

3. We may replace the constraints|c1t| ≤ µc1n by two
equivalent constraints:(µc1n + c1t)/2µ ≥ 0 and
(µc1n−c1t)/2µ ≥ 0. (We takeµ > 0, so this is well-
defined.) We make a variable substitution iny, and
take the appropriate linear combinations of columns
five and seven ofC.

4. Sincea2t is unconstrained, we may drop the equa-
tion involving it; we remove the fourth row ofC and
B. Once this has been done, the fourth column ofC
is comprised only of zeros; we remove the column
from C anda2t from y.

After applying the above steps to equation 10, we have
a new equation and set of constraints in the form used in
theorem 1: 0 −1 −1
−1 µ −µ
0 2µ −2µ

 −a2n

(µc1n + c1t)/2µ
(µc1n − c1t)/2µ

 =

 0 1 0
−1 0 0
−1 0 −1

g

 −a2n

(µc1n + c1t)/2µ
(µc1n − c1t)/2µ

 ≥ 0

where the matrices on the left and right sides of the equa-
tion areK andP, respectively, and the vector on the left
hand side isz. If we chooseµ = .2 and solve forg by
invertingP and premultiplying both sides of the equation,
we arrive at the desired form: 1 −.2 .2

0 −1 −1
−1 −.2 .2

 z = g

z ≥ 0.

This result is recognizable as a span representation of
a polyhedral convex cone. A geometric interpretation is
shown in figure 3. The generators ofG (its columns)
will be denoted byg1, g2, andg3. Each generator cor-
responds to a wrench, which we may view as a directed
line of force. The lines of force corresponding tog2 and
g3 lie on the edges of the friction cone of fixel 1; the posi-
tive linear combinations of these generators are the exter-
nal wrenches that may be balanced by the contact force
at fixel 1. The line of force corresponding tog3 points to
the right and is at the top of the disc; forces along this line
will cause the disc to approach fixel 2, without breaking
contact or causing a load at fixel 1.

5 The algorithm

We may generalize the procedure used in the example into
an algorithm that works for any contact mode. First, we
calculate the matricesC andB. Once a contact mode has
been chosen, table 2 may be used to determine the set of
constraints ony. We then build a series of matrices that
may be used to transform the equation and constraints into
a face representation of a polyhedral convex cone.

Eliminate equations (Matrix E)

Some elements ofy may be unconstrained by the choice
of augmented contact mode. We may eliminate the equa-
tions involving these variables by premultiplyingC and
B by a row selection matrixE.

Let E be the set of indices of unconstrained elements
of y. We formE by removing the rows ofI2n×2n corre-
sponding to elements ofE .

For the example problem discussed above, we exam-
ine the first column of table 3; the fourth variablea2t is
unconstrained. Therefore,E = {4}, and we formE by
removing the fourth row ofI4×4.

Negative variables (Matrix N)

The choice of augmented contact mode may constrain
some elements ofy to be negative. We change the sign
of columns ofC so that all inequalities may be expressed
using> or≥.

LetN be the indices of the elements ofy constrained
to be negative, and letiij be the(i, j) element of an ap-
propriately sized identity matrix. We postmultiplyC by
the diagonal4n× 4n matrixN defined as follows:

nij = −1 if i = j andi ∈ N
nij = iij otherwise

For the example, we examine the second column of ta-
ble 3, and see thatN = {2}, since onlya2n < 0. We form
N by changing the sign on the second diagonal element
of I8×8.

Rolling friction (Matrix R)

If the augmented contact mode involves ‘rolling’ interac-
tions, some elements ofy must satisfy constraints of the
form |cit| ≤ µcin. We replace the variablescin andcit by
(µc1n + c1t)/2µ and(µc1n − c1t)/2µ, both of which are
constrained to be nonnegative. The variable substitution
requires that we take appropriate linear combinations of
columns ofC. We take the linear combination by post-
multiplying C by a square matrixR.
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LetR be the indices of the elementscit of y that must
satisfy rolling friction constraints. DefineR to be the4n×
4n matrix with:

rij = µ if i ∈ R andi = j
rij = 1 if j ∈ R andi = j − n
rij = −µ if i ∈ R andi = j + n
rij = iij otherwise

For our example, we examine the third column of ta-
ble 3, and find that the seventh element is subject to a
rolling friction constraint. We buildR from an8×8 iden-
tity matrix, but setr75 = −.2, r57 = 1, andr77 = .2.

Sliding friction (Matrix S)

If the augmented contact mode involves ‘sliding’ interac-
tions, some elements ofy must satisfy constraints of the
form cit = ±µcin. We may eliminatecit by replacing
a column ofC by an appropriate linear combination of
columns, and removing a column ofC. These operations
may be accomplished by postmultiplying by a square ma-
trix S and a column selection matrixV defined below.

Let Sr be the indices of the elements ofy constrained
to be a positive multiple of another element. LetSl be the
indices of the elements ofy constrained to be a negative
multiple of another element. DefineS to be the4n × 4n
matrix with:

sij = µ if i ∈ Sl andi = j + n
sij = −µ if i ∈ Sr andi = j + n
sij = iij otherwise

For our example, we examine the fourth column of ta-
ble 3, and find that there are no sliding friction constraints,
soS = I8×8.

Eliminate variables (Matrix V)

We need to remove the columns ofC corresponding to the
variablescit subject to sliding friction constraints. Sim-
ilarly, some elements ofy will be constrained to be0,
and we may remove the corresponding columns ofC. Fi-
nally, since the unconstrained variables are accelerations
appearing only in equations removed by the matrixE, we
may eliminate them. We may eliminate variables by post-
multiplying by a column selection matrixV.

Let Z be the indices of the elements ofy constrained
to be zero. Then defineV = Z ∪ Sr ∪ Sl ∪ E . We form
V by removing any columns ofI4nx4n that have an index
contained inV.

For our example, we examine the first column of ta-
ble 3, and find that the fourth element ofy is uncon-
strained and may be eliminated. The fourth column of
the table tells us that there are no sliding constraints, and

the fifth column tells us that elements one, three, six, and
eight constrained to be zero and may be eliminated. We
build V by removing the first, third, fourth, sixth, and
eighth columns ofI8×8.

Cone form

We apply all of the above matrices in sequence to equa-
tion 7 and find that

Kz = Pg (11)

z ≥ 0 (12)

where

K = ECNRSV (13)

z = VTS−1R−1N−1y (14)

P = EB. (15)

We may calculateK andP; then equation 11 and in-
equality 12 ‘almost’ give the cone containing the external
wrench. In special cases, we may either take an inverse or
pseudoinverse to find a cone form, as we did in the simple
example. In general, we apply theorem 1, choosek = 0
and defineF = KFP. Then

Fg ≤ 0. (16)

This is the face normal representation of the polyhedral
convex cone containing the external wrenchg.

The careful reader will have noticed that we ignored
the distinction between inequality constraints and strict
inequality constraints which should be made in inequal-
ity 12. Although this approximation seems reasonable,
we point out that it may be removed by choosingk to have
small positive elements, and considering limits ask→ 0.

We summarize the algorithm as follows:

1. Calculate the JacobianJ and the matricesC andB.

2. Determine the constraints ony implied by the mode.

3. Calculate the matricesE, N, S, R, andV.

4. Calculate the matricesK andP.

5. FindKF , as discussed in Section 3.

6. CalculateF = KFP.

A given wrenchg is consistent with the contact mode
if it satisfiesFg ≤ 0.

6 Implementation and examples

We implemented the algorithm in C, and used software
described in Hirai [6] for the conversion between face nor-
mal and span reprentations of convex cones. Four exam-
ples problems are shown in figure 4. For each example,
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Figure 4: Four examples.

the output of the algorithm was a matrixF of the form
described above. We used Hirai’s software to convert to
span form so that we could display the wrench cone gen-
erators.

Figure 4a shows an example for the contact mode ‘lla’.
The goal is to achieve contact at fixel 3, while maintaining
contact at fixels 1 and 2.g1 andg2 saturate the right edges
of the friction cones, andg3 provides the negative torque
about the center of rotation to cause contact to be achieved
at fixel 3. This example suggests how our algorithm might
be used as part of a manipulation planner; the companion
paper [1] describes one approach.

Figure 4b illustrates the problem of determining where
a frictionless finger should be placed to achieve force clo-
sure. The problem can be solved using Reuleaux’s graph-
ical method [10]. Our algorithm finds the solution if we
choose the contact mode ‘nnn’. The thick black line on
the surface of the workpiece shows places where the fin-
ger could be placed.

Figures 4c and 4d show an example of the frictional in-
determinacy problem that arises in a peg-in-hole insertion.
There is a cone of wrenches consistent with seating the
workpiece through mode ‘lra’, but all of these wrenches
are also consistent with the mode ‘nn’, in which jamming
occurs. (Note that the wrench cone for figure 4d has six
generators. The two that are pure moments are drawn as
arcs about the center of gravity.)

7 Conclusion

We developed an aglorithm to find the polyhedral convex
cone of external wrenches consistent with a contact mode
between two rigid bodies, one moving and one motion-
less. The formulation of the model closely follows the for-
mulation of the rigid body dynamics problem as a linear
complementarity problem, and we also used results from
the theory of polyhedral convex cones. We implemented
the algorithm, and presented some example results.

The authors wish to thank Jong-Shi Pang and Matthew
T. Mason for their technical guidance and suggestions.
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