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Abstract

The successful execution of any contact task fundamen-
tally requires the application of wrenches (forces and mo-
ments) consistent with the task. We develop an algorithm
for computing the entire set of wrenches consistent with
achieving a giveraugmented contact mode.g, sliding

at contact 1, rolling at contact 2, and approaching poten-
tial contact 3) for one fixed and one moving part in the
plane.

Fixture

1 Introduction Figure 1. A workpiece nearly seated in a fixture.

One of the most basic operations in robotic manufacturing

is workpiece insertion. Consider the planar assembly task

depicted in figure 1. The workpiece (a ratchet pawl) is Unfortunately, due to the nonuniqueness problem in-
to be fixtured for assembly. The goal is to achieve dlerent in most mathematical models of dynamic rigid
three desired contacts (or fixels), so that the position dpRdY systems (see [7], for example), it is possible that the
orientation of the workpiece will be uniquely determinedvrenches in the calculated sets may be consistent not only
|f the Workpiece S”des to the nght across ﬁxe|s 2 andvgth the desired mode, but aISO W|th another, Undesireable

while maintaining contact with each, then the workpiedgode. The companion paper [1] shows how unions and

will eventually contact fixel 1. intersections of the sets of consistent external wrenches
This plan requires a device that applies specifiéd@Y be used to find wrenches consistamly with desired

wrenches. If the workpiece is positioned on a tray that¢@ntact modes.

tilted to achieve the desired workpiece motion, then grav-

ity provides the external wrench. If a spring is used : :

push the workpiece, then the deformation of the spri??gelatlon to previous work

provides the wrench. Our approach is based on previous theoretical results in
Regardless of the method used to apply the force riijid body mechanics [9, 11] and complementarity the-

is fundamental to the above plan that the set of exter@ay [2]. In Pang and Trinkle [9], examples are presented in

wrenches consistent with the desired contact mode (in tiisich the polyhedral convex cones of external wrenches

case sliding right over fixels 2 and)3ve known. In this consistent with particular contact modes are calculated.

paper, we present an algorithm to determine the setsvaé develop and extend their method into an algorithm

external wrenches consistent with each possible contaeit works with all contact modes. We represent poly-

mode. hedral convex cones by matrices; our primary reference
*The work of this author was supported by a Department of Ener{ﬁr operations on ?Ones is Goldman and TUCke_r [5]
Computational Sciences Graduate Fellowship. Mason [8] provides a good survey of previous work

TThe work of these authors was supported by the Laboratory Direcigg| manipulation planning from the perspective of rigid

Research and Development program of Sandia National Laborator'ﬁady dynamics with Coulomb friction. Erdmann’s work
Sandia is a multi-program laboratory operated by Sandia Corporation, a ’

Lockheed Martin Company, for the United States Department of Enefg{} g_eneralized frictio_n conesin Conﬁguration_Space (3, 4]
under Contract DE-AC04-94AL85000. provided one of the first methods for computing the pos-



We now state four definitions. A&ontact stateas the
set of indices of fixels where contact has been achieved.
A contact interactioris the relative motion at a point of
contact: separating, rolling, sliding left, sliding right. A
contact modes the set of interactions at all the contacts.
For the purpose of considering insertion tasks, we define

Fixture an additional contact interaction: ‘approach’. We also ex-
_ _ tend the definition of a contact mode: angmented con-
Figure 2: A local frame attached to fixel tact modeis the extension of a contact mode that allows

specification that the workpiece is approaching a nearby

sible motions of contacting rigid bodies under an applid@®iNt of interest on the fixture. For example: the work-
wrench. piece separates from fixel 1 and approaches fixel 2.

Apart from Pang and Trinkle [9], the work most simi- e may enumerate the possible contact interactions at
lar to that presented here is probably Mason [8]. MasH?ﬁe' 1 based on the distance of the_ fixel from the work-
describes a graphical method for finding the set of accBi€ce, and the normal and tangential components of the
eration centers (and thus wrenches) consistent with a p&.City of the closest point on the workpiece. For exam-
ticular contact mode. The primary advantage of our aIgB'—e' if the interaction at fixel is left sliding then the gap
rithm is ease of implementation: the core of our sampfe 2€70,vin = 0 andwv;; > 0. Table 1 enumerates the
implementation is less than one hundred lines of simplef@Ses-
code, not counting software by Hirai [6] used for conver-
sion between representations of polyhedral convex cones.

| Interaction | Abbrev.| gap | vin [ vit |

Our algorithm is also very flexible. For example, the set left sliding | 0 0 >0
of external wrenches consistent with maintaining contact | right sliding r 0 0 | <0
at some point can be found, without specifying whether rolling n 0 0 10
the mode involves sliding right, sliding left, or rolling. approaching  a >0 | <0] -
separating s =0|>0] -
>01]2>0 -

2 Mathematical model
Table 1: Contact interactions.

The instantaneous dynamic model of a system of rigid

bodies with unilateral, frictional contacts can be formu-

lated and solved as a linear complementarity problemRight sliding left sliding, androlling can occur only if

(LCP) [11]. Our problem may be seen as an inverse LGfdntact has been achievelpproachingcan only occur if

Given the rigid body configurations and a set of comkere is no contact, and would correspond to penetrating if

straints on contact forces and accelerations imposeddaytact had already been achiev8eéparatingmay occur

the choice of contact mode, we want to find the set gfgardless of whether or not contact has been made.

consistent external wrenches. The derivation of our mathyye assume that the fixels have been ordered, and de-

ematical model therefore parallels that derived for LC&ribe the augmented contact mode by a string, using the

formulations. We assume that the workpiece is initialiybbreviations from table 1. For example, the striats”

not moving, and either touching or infinitesimally distar$hould be read: the workpiece is approaching fixel 1, slid-

from each fixel. ing left over fixel 2, and separating from fixel 3.

Variables and definitions )
Newton-Euler equations

Let f; be the location of fixel. Letp; be the unique clos- _ _ _
est point onthe Workpiece ﬁ;)’ with signed distance func-The Newton-Euler equatlonS describe the dynam|CS of the
tion, or gap function, defined ds;(t), (p; — f;)). We at- System regardless of the contact mode. In this section we

tach a right handed frane, (¢), t;(¢)) to each fixel such re-arrange the Newton-Euler equations into a form that

that the first axis points at; (see figure 2). will be useful in later sections. _
Let v;, (t) anduv;, (t) denote the components of the ve- The resultant wrenclw applied to the workpiece and
locity of p(i) in framei: the generalized acceleratiorof the workpiece are related

. through the three-by-three inertia math4:
vin(t) = (Pi(t),ni(?))

valt) = (Bilt).ti(t). @ w = M. ©)



Let ¢;, andc;;, be the normal and tangential componentS&eparation If there is no contact at fixel, thenc;, =

of the force applied to the workpiece by contachssume ¢;; = 0. If there is contact but;,, > 0, contact is break-

there aren contacts, and define= [c1y,...cnn clt...cm]T. ing. The fixel cannot exert a force on the workpiece:
We partition the resultant wrenck into the contribu- ¢;, = ¢;y = 0.

tion of the contact forceg/c and that of external loads

g, and solve for the generalized acceleration of the work-Since we assume the workpiece is initially at rest, there
piece: are also constraints on the contact accelerations imposed

b =M (Jc+g), @) by the choice of desired contact interaction at a fixel. If

) ) ) contact has been achieved, and we want the interaction
whereJ is the Jacobian matrix (also known as the wrengh) pe |eft sliding then we should choose, = 0 and

matrix) that transforms the contact forces into the inerti@lt < 0.

frame and sums their moments about the center of maéwe have collected constraints grimplied by a contact

of the workpiece. interaction in table 2. For simplicity, we do not distinguish

— T _ 7T . S - _
Letv = [Uin.Vpn V1g.Une]” = T v D€ the vector of heyyeen static and kinetic coefficients of friction.
normal and tangential components of the contact veloci-

ties. Then the contact acceleration vector can be written| Interaction || Qin ‘ it || Cin ‘ Cit ‘
as. i d . o , a <0[ - J o 0
I 0 >0 >0 —lCin

Premultiplying equation 4 by7”, assuming velocity =
g - . r 0 | <0 =0 HCin

product terms are negligible, and combining with equa- 0 0 >0 < e

tion 5 yields the Newton-Euler equations mapped into the d = lowl < pcin

contact frames:

Table 2: Constraints on elementsyfue to contact in-
a= Ac+ Bg, ®) teraction.
whereA = 7"M~17 andB = 7M.

We rearrange equation 6 to find a relation between ex-
ternal wrenches and the accelerations and forces at the
contacts:

Cy = Bg, 7 3 Matrix representations of polyhe-

where C = [Ipnx2, — Al is (2nx4n) andy = dral convex cones
[a” cT|T has4n elements. Equation 7 will be the starting

point for our algorithm to find the set of external wrenchap this section, we review matrix representations of poly-

consistent with a given contact mode. hedral convex cones. Our discussion is based on Goldman
and Tucker [5].
Constraints due to contact modes Assume matrid¥' is given. Thepolar of F is defined as

) ) o the set of solutions to the matrix inequaliig < 0.
In this section we will discuss how the current contact

state and the contact mode to be achieved imply a set of polar(F) = {g : Fg < 0} 8)
constraints ory, the vector of contact accelerations and -
forces. Any g € polar(F') makes a non-positive dot product with

Non-penetration If there is contact at fixel, thena;, > €ach row ofF. Each row ofF may be interpreted as a

0; otherwise the fixel and the workpiece would interpeformal describing a half-space; solutions lie in the inter-
etrate. section of the half-spacepolar(F) is therefore a polyhe-

dral convex cone, and we say that the inequality fiace
normal representationf the cone.

Similarly, assume matri& is given and define the pos-
Coulomb friction Let x be the coefficient of friction. If jtive linear span ofG:

the workpiece is sliding to the right over the fixel, then

the frictional force will be on the left edge of the friction pos(G) = {g : g = Gz for somez > 0} 9)
cone:cy = ey, If the workpiece is sliding to the left,

then the frictional force will be on the right edge of thény vectorg € pos(G) is in thepositive linear sparof

Unilateral force The force exerted by the fixel is unilat
eral:¢;, > 0.

friction cone: ¢;; = —puciy. If the workpiece is rolling the columns of, and we say that the inequality ispan
over the fixel, then the friction force may fall anywherespresentatiorof a polyhedral cone. The columns &f
in the friction conec;i| < pcin. are referred to agenerators.



Converting between representations &

According to [5], Minkowski and Farkas first showed that Workpiece
for any face normal representation of a polyhedral con- P
vex cone, there is a corresponding span representation, g\ e,
and Weyl showed that the converse is trueFlbr G is X j
square and non-singular, then conversion between the two

representations is easy and may be accomplished by ma- ixture
trix inversion. Goldman and Tucker [5] and Hirai [6] de-
scribe methods for performing the conversion in the gen-
eral case. We introduce some new notation, and use the Figure 3: A simple example.

superscriptF’ to denote conversion from a span represen-

tation of a cone to a face normal representation. If we are

given a matrixH, then H” refers to a matrix such thatworkpiece to roll on fixel 1, and approach fixel 2; that

pos(H) = polar(H). is, the contact mode is\a’. What external wrenches are
The following theorem makes use of the notation intrg¢onsistent with this mode?
duced above. We first construct the Jacobigh. Each column of7

_ _ may be thought of as the wrench corresponding to a unit
Theorem 1 Assume we have a matrix equation and a sefrce applied to the workpiece at a point near a fixel, in a

of constraints of the form local coordinate direction.
KZ = Pg J . n; o tl t2
z > k P1X1n; pz2xXng p1 Xty p2 Xty
. _ 0 -1 -1 0
whereK andP are constant matrices, arklis a constant -1 0o 0o -1
vector. For a given vectog, there exist% satisfying the 0 0 -1 -1

equation and the inequality if and only if

P P We may calculat€C andB and rewrite equation 7:
K"Pg < K"Kk

) . 1000-10 0 1 0 1 0
Proof: Define a change of variables= z — k. Then 0100 0 —1 -1 0 10 0
00100 —1-2-1 (Y| -1 0 —1
z = x+tk 0001 1 0 —1 —2 0 —1 -1
K(x+k) = Pg (10)
Pg—-Kk = Kx . )
_— We now turn to the constraints gn The contact in-
X > .

teractions areolling at fixel 1 andapproachingat fixel 2.
Table 2 gives constraints on four elementsydfor each

The last two lines tell us thdg — Kk lies in a convex . o
pieraction; we collect the constraints in table 3.

cone; this is the span representation of the cone. Thé
fore, we may convert to the face normal representation:

y uncon | ineq roll slide | zero
Kf(Pg-Kk) < 0 41n =0
K'Pg < KFIKk d2n <0
aig =0
Verification of the ‘only if’ condition is similarC a2t X
Cin Z 0
. Con =0
4 A simple example 1ol < jiein
Cot =0

Before presenting the complete algorithm, we present a
simple example. Consider a disc-shaped workpiece (see
figure 3) with unit radius, and inertia matrd equal to Table 3: Constraints ogp for contact modena’.

the identity matrix. Fixel 1 is at the positiof0, —1),

touching the workpiece, and fixel 2 is slightly to the right We will take equation 10, together with the constraints
of (1,0), not quite touching the workpiece. We want thisted in table 3, and find a new equation and simpler con-



straints of the form: 5 The algorithm
Gz =g 220 We may generalize the procedure used in the example into
1. Sincea;, = ai; = con = coy = 0, We may remove an algorithm that works for any contact mode. First, we
these elements frog, and we remove the first, third,calculate the matrice§ andB. Once a contact mode has
sixth, and eighth columns &F. been chosen, table 2 may be used to determine the set of
2. Sinceusy, is constrained to be less than zero, we maynstraints ory. We then build a series of matrices that
change the signs of the elements of the second awlay be used to transform the equation and constraints into
umn of C, replaceus, by —aoy in y, and constrain a face representation of a polyhedral convex cone.
—aoy, > 0. (For now, we ignore the issue posed by
the strict inequality.)
3. We may replace the constraitits;| < pci, by two

equivalent constraints(ucin + c1¢)/21 > 0 and  gome elements of may be unconstrained by the choice
(nein—cii)/2p = 0. (We taken > 0, sothisis well- of augmented contact mode. We may eliminate the equa-
defined.) We make a variable substitutionyinand  tions involving these variables by premultiplying and
take the appropriate linear combinations of columigs by a row selection matrik.
five and seven oC. Let £ be the set of indices of unconstrained elements
4. Sinceay, is unconstrained, we may drop the equasf y. We formE by removing the rows ofs,, 2, corre-
tion involving it; we remove the fourth row & and sponding to elements &F.
B. Once this has been done, the fourth colum®of  For the example problem discussed above, we exam-
is comprised only of zeros; we remove the columRe the first column of table 3; the fourth variahlg, is
from C anda, fromy. unconstrained. Thereforé€, = {4}, and we formE by
After applying the above steps to equation 10, we hak@mnoving the fourth row ol 4.
a new equation and set of constraints in the form used in

theorem 1:
0 -1 -1 —0a2n
*01 2/‘ *2“ (uc1n *C“)/gl‘ The choice of augmented contact mode may constrain
po=2p ] \(new =) /2p some elements of to be negative. We change the sign
( —az2n ) of columns ofC so that all inequalities may be expressed

Eliminate equations (Matrix E)

-10 0

010 Negative variables (Matrix N)
—-10 -1

A%
=

(pein + c10)/2p using> or >.
. (pen — c1e)/2p . . Let \ be the indices of the elements pfconstrained
where the matrices on the left and right sides of the equa-be negative, and let; be the(i, j) element of an ap-
tion areK andP, respectively, and the vector on the |ef;§ropriately sized identity matrix. We postmultip@ by

hand side is. If we chooseu = .2 and solve forg by {he diagonalin x 4n matrix N defined as follows:
invertingP and premultiplying both sides of the equation,

we arrive at the desired form: ng =—1 ifi=jandieN

1 -2 .2 n;; =1;; otherwise
0 -1 -1z = g
-1-2 2 For the example, we examine the second column of ta-

%

z 0. ble 3, and see that” = {2}, since onlyas, < 0. We form

This result is recognizable as a span representation™bffy changing the sign on the second diagonal element

a polyhedral convex cone. A geometric interpretation Isxs.

shown in figure 3. The generators &f (its columns)

will be denoted byg;, g-, andgs. Each generator Cor'RoIIing friction (Matrix R)

responds to a wrench, which we may view as a directed

line of force. The lines of force correspondingge and If the augmented contact mode involves ‘rolling’ interac-
g3 lie on the edges of the friction cone of fixel 1; the postions, some elements gf must satisfy constraints of the
tive linear combinations of these generators are the extlerm |¢;;| < pc,. We replace the variables, andc;; by

nal wrenches that may be balanced by the contact fofge1,, + c1¢)/2p and(ucin — c1t)/2u, both of which are

at fixel 1. The line of force corresponding g@ points to constrained to be nonnegative. The variable substitution
the right and is at the top of the disc; forces along this limequires that we take appropriate linear combinations of
will cause the disc to approach fixel 2, without breakingplumns ofC. We take the linear combination by post-
contact or causing a load at fixel 1. multiplying C by a square matriR.



Let R be the indices of the elementg of y that must the fifth column tells us that elements one, three, six, and
satisfy rolling friction constraints. Defirflg to be theinx eight constrained to be zero and may be eliminated. We
4n matrix with: build V by removing the first, third, fourth, sixth, and

. S eighth columns ofgs.
Tij = W if i e Randi =j
ri; =1 if jeRandi=j —n
rij=—p ifieRandi=j+n Cone form
rij = 4ij  Otherwise We apply all of the above matrices in sequence to equa-

For our example, we examine the third column of tg_on 7 and find that

ble 3, and find that the seventh element is subject to a Kz = Pg (11)
rolling friction constraint. We buil® from an8 x 8 iden-

. . z > 0 (12)
tity matrix, but setr;s = —.2, r57 = 1, andry; = .2.

where

Sliding friction (Matrix S) K — ECNRSV (13)
If the augmented contact mode involves ‘sliding’ interac- z = VISTIRIN"ly (14)
tions, some elements ¢f must satisfy constraints of the P — EB (15)

form ¢;y = +uc;,,. We may eliminatez;; by replacing

a column ofC by an appropriate linear combination of We may calculatd andP; then equation 11 and in-

columns, and removing a column @f. These operationsequality 12 ‘almost’ give the cone containing the external

may be accomplished by postmultiplying by a square mgrench. In special cases, we may either take an inverse or

trix S and a column selection matrK defined below.  pseudoinverse to find a cone form, as we did in the simple
Let S, be the indices of the elements pfconstrained example. In general, we apply theorem 1, chdkse 0

to be a positive multiple of another element. Ibe the and defind® = Kf'P. Then

indices of the elements gf constrained to be a negative

multiple of another element. Defirfto be thein x 4n Fg <0. (16)
matrix with: This is the face normal representation of the polyhedral
Sij = b ificSandi=j+n convex cone containing the external wrergch
sij=—p ifieSandi=j+n The careful reader will have noticed that we ignored
s;j =1;;  otherwise the distinction between inequality constraints and strict

inequality constraints which should be made in inequal-
For our example, we examine the fourth column of tity 12. Although this approximation seems reasonable,
ble 3, and find that there are no sliding friction constrainige point out that it may be removed by chooslkntp have

S0S = Igxs- small positive elements, and considering limitkas- 0.
We summarize the algorithm as follows:
Eliminate variables (Matrix V) 1. Calculate the Jacobiafi and the matrice€ andB.

We need to remove the columns@fcorresponding to the 2. Determine the constraints gnimplied by the mode.
variablesc;; subject to sliding friction constraints. Sim- 3. Calculate the matricég, N, S, R, andV.

ilarly, some elements of will be cqnstrained to b@, 4. Calculate the matricds andP.

and we may remove the corresponding column€ofi-

nally, since the unconstrained variables are acceleration%
appearing only in equations removed by the maitjwe 6. CalculateF = K"P.

may eliminate them. We may eliminate variables by post-» given wrenchg is consistent with the contact mode
multiplying by a.col'umn selection matrix. . if it satisfiesFg < 0.

Let Z be the indices of the elements pfconstrained
to be zero. Then defing = ZU S, U S U E. We form
V by removing any columns dfj,.4, that have an index 6 Implementation and exam ples
contained iny.

For our example, we examine the first column of t&/e implemented the algorithm in C, and used software
ble 3, and find that the fourth element gfis uncon- described in Hirai [6] for the conversion between face nor-
strained and may be eliminated. The fourth column afal and span reprentations of convex cones. Four exam-
the table tells us that there are no sliding constraints, grids problems are shown in figure 4. For each example,

FindK*, as discussed in Section 3.
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Figure 4: Four examples.

the output of the algorithm was a matx of the form

7

Conclusion

We developed an aglorithm to find the polyhedral convex
cone of external wrenches consistent with a contact mode
between two rigid bodies, one moving and one motion-
less. The formulation of the model closely follows the for-
mulation of the rigid body dynamics problem as a linear
complementarity problem, and we also used results from
the theory of polyhedral convex cones. We implemented
the algorithm, and presented some example results.

The authors wish to thank Jong-Shi Pang and Matthew
T. Mason for their technical guidance and suggestions.
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