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Abstract

Previous work [3, 6, 9, 8, 7, 1] has presented the time opti-
mal trajectories for three classes of non-holonomic mobile
robots: steered cars that can only go forwards, steered cars
that go forwards or backwards, and differential drives.
Each of the vehicles is modelled as a rigid body in the
plane with velocity and angular velocity controls. The
systems are differentiated only by the bounds on the con-
trols, but the optimal trajectories are qualitatively different
for each system. We explore this difference by consider-
ing the effect that control bounds have on theextremal
trajectories of bounded velocity vehicles, where theex-
tremal trajectories are defined to be the set of trajectories
that satisfy Pontryagin’s Maximum Principle, a necessary
condition for optimality.

1 Introduction and previous work

We use the termbounded velocity vehicleto describe any
system that can be modelled as a rigid body in the plane,
with velocity and angular velocity controls. For these sys-
tems, the instantaneous rotation center is constrained to
a line rigidly fixed to the robot. Dubins [3], Reeds and
Shepp [6], and Balkcom and Mason [1] first derived the
time optimal trajectories for various models of steered
cars and differential drives. For the steered car, the bounds
on velocity and angular velocity are derived from con-
straints on steering angle and speed; for the diff drive the
bounds are derived from a constraint on wheel speed.

The time optimal trajectories for bounded velocity ve-
hicles must satisfy Pontryagin’s Maximum Principle. In
this paper, we present some geometric interpretations of
the Maximum Principle that yield some insight into the
structure of the time optimal trajectories of bounded ve-
locity vehicles.

The primary result of the paper is a geometric method
for constructinglevel sets of the Hamiltonianfor bounded
velocity vehicles. These level sets provide a convenient
way to classify the optimal trajectories of many bounded
velocity systems. The level sets also provide geometric
information about the optimal trajectories even in situa-
tions where the differential equations describing the op-
timal trajectories may not be analytically integrated. An

Figure 1: Notation.

additional result of the paper is that the time optimal tra-
jectories for bounded velocity mobile robots may be in-
terpreted as maximizing power along a line of force in the
plane.

The results presented depend heavily on work by Du-
bins [3], Reeds and Shepp [6], Sussman and Tang [9],
Soùeres and Laumond [8], Souères and Boissonat [7], and
Balkcom and Mason [1]. Laumond [4] and Balkcom and
Mason [2] would be good starting points for those unfa-
miliar with previous work on time optimal trajectories for
steered cars and differential drive vehicles.

2 System model

We model all of the vehicles as rigid bodies in the plane.
The state of the system isq(t) = (x(t), y(t), θ(t)). We
will consider the controls to beu(t) = (v(t), ω(t)), the
velocity and angular velocity of the vehicle. (See fig-
ure 1.) The system equations are

q̇ = vfv + ωfω (1)

wherefv andfω are the vector fields

fv =

 cos θ
sin θ

0

 fω =

 0
0
1

 (2)

Vector fieldfv corresponds to driving forward and andfω

corresponds to rotation about the reference point. Geo-
metrically, these equations express the constraint that the
robot cannot move sideways.
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Figure 2: Control regions for steered cars and differential
drives.

Figure 3: Other control bounds.

The set of admissable controls determines the optimal
trajectories for a bounded velocity mobile robot. Admissi-
ble controls are bounded Lebesgue measurable functions
from time interval[0, T ] to R2. We assume that there ex-
ists some regionU such that

(v(t), ω(t)) ⊂ U , for all t ∈ [0, T ] (3)

Figure 2 shows the control regions for the Dubins car,
the Reeds and Shepp car, and the differential drive. Fig-
ures 3 and 4 show control regions for some systems for
which the time optimal trajectories are not known. In the
definitions that follow, we assume units have been chosen
appropriately, and the reference frame has been affixed to
an appropriate place on the robot.

Dubins The car can only drive at one speed, and the
steering angle is bounded.

U = {(v, ω) : v = 1, |ω| ≤ 1} (4)

Reeds and SheppThis car is similar, but we permit the
velocity to be positive or negative.

U = {(v, ω) : |v| = 1, |ω| ≤ 1} (5)

Differential Drive If b is the distance from the center of
the axle to either wheel, and we bound the wheel angular
velocities, it turns out that

U = {(v, ω) : |v| ≤ 1, |ω| ≤ 1− |v|
b

} (6)

Figure 4: Quasistatically stable rotation centers and con-
trol bounds for a differential drive pushing a block.

In this case,U is a diamond. If the maximum speeds of
the wheels are different, then the shape of this diamond
may be warped, as shown in figure 3.

Fast stable pushing by a mobile robotThere is a poly-
gon of quasistatically stable rotation centers for a polyg-
onal object being pushed by a polygonal robot. (See
Lynch and Mason [5], for example.) We may combine
this constraint with the bounded velocity constraint to
find U . Figure 4 shows the construction of a control re-
gion for a differential drive pushing a block.

Bounded control effort Constraints on maximum ki-
netic energy or on the maximum speed of a camera or
effector attached to the robot might give bounds of the
form

U = {(v, ω) : ∃ s s.t.v ≤ cos(s)/α, ω ≤ sin(s)} (7)

where α is a positive constant relating the maximum
angular rate and the maximum forwards or backwards
speed.U is an ellipse, as shown in figure 3.

3 Pontryagin’s Maximum Principle.
Extremal controls.

Time optimal trajectories have been shown to exist for the
Reeds and Shepp car. The other control regions described
above are convex, and thus the conditions of Sussmann
and Tang’s Theorem 6 in [9] may be easily verified to
prove existence of optimal trajectories.

We now summarize the results of applying Pontryagin’s
Maximum Principle to vehicles satisfying system equa-
tion 1. For details, the reader is referred to Balkcom and
Mason [2].

1. TheHamiltonianfor the system is

H(q, u) = v(c1 cos θ+c2 sin θ)+ω(c1y−c2x+c3)
(8)

wherec1, c2, andc3 are arbitrary constants satisfying
c2
1 + c2

2 + c2
3 > 0.

2



2. We defineλ0(t) to be the negative of the minimum
attained for the Hamiltonian.λ0 is constant in time
and non-negative.

3. The controlu(t) minimizes the Hamiltonian at al-
most everyt.

We say that a trajectory is extremal (satisfies the Max-
imum Principle) if there exist constantsc1, c2, and c3,
such thatc2

1 + c2
2 + c2

3 > 0, the controlu(t) minimizes
the Hamiltonian at almost everyt, andλ0 ≥ 0. All time
optimal trajectories are extremal, but not all extremal tra-
jectories are time optimal. For a differential drive, a spin
in place through an angle of2π is extremal, but not time
optimal!

If c1 = c2 = 0, then equation 8 reduces to

H = c3ω (9)

Sincec3 must be non-zero,ω(t) must be either maximized
or minimized at almost everyt. With the exception of the
Reeds and Shepp car, there is a unique control minimiz-
ing ω and a unique control maximizingω for each of the
example systems. So optimal trajectories corresponding
to the casec1 = c2 = 0 have constant controls.

If c2
1 + c2

2 > 0, we may assume without loss of gen-
erality thatc2

1 + c2
2 = 1. (Notice that equation 8 can be

scaled by arbitrary postive constants without changing the
set of controls satisfying the minimization condition.) If
we define

η(x, y) = c1y − c2x + c3 (10)

β(θ) = θ − atan(−c2, c1) (11)

then equation 8 can be written

−H = v cos β + ωη (12)

Geometry of the Hamiltonian

There is a geometric interpretation ofη andβ. There is
a line of points satisfyingη(x, y) = 0. The position of
the line is determined by the arbitrary constantsc1, c2,
andc3. We will call this line theη-line. If c2

1 + c2
2 = 1,

thenη(x, y) is the signed distance of the reference point
of the robot from theη-line. If we associate a direction
with theη-line consistent with this signed distance,β(θ)
is the heading of the robot relative to theη-line.

It is interesting that the right hand side of equation 12
is a dot product between a generalized velocity and vector
dependent on the location of the robot relative to some
line. Consider a line of force coincident with theη-line,
but with opposite direction. Assume a force of1 is applied
against the robot, pushing on the robot in the direction
opposite theη-line. With a suitable choice of units, the

time derivative of the work done by the robot against this
force is

v cos β + ωη (13)

This expression and the right hand side of equation 12 are
the same. So informally, the Maximum Principle tells us
that the time optimal trajectories for bounded velocity ve-
hicles maximize power along a line of force in the plane;
theη-line is this line of force.

4 Level sets of the Hamiltonian

The right hand side of equation 12 is a dot product be-
tween the controlu and another vector. Define

d = (cos β, η) (14)

We calld the characteristic vector. From the Maximum
Principle,

λ0 = max(−H(t)) (15)

〈u, d〉 = λ0 (16)

That is, the controlu must minimize the dot product, and
the dot product is constant.

Equations 15 and 16 lead to a useful geometric con-
struction. We first consider the differential drive. Choose
a small but nonzero value forλ0 (0 < λ0 < 1), and con-
sider the pointu1 = (1, 0) on the control boundary, cor-
responding to the robot driving in a straight line. (See
figure 5). There is a line of values for the characteristic
vector that make a constant dot product withu1, labelled
“line 1” in figure 5. Similarly, consider the other three
vertices of the control boundary and construct three cor-
responding lines. Ifd falls along one of the lines, the dot
product in 16 will be equal toλ0 for at least one of the
controlsu1, u2, u3, or u4.

The Maximum Principle gives an additional constraint,
described by equation 15. The fact that the control must
be maximizing restricts the possible values of the charac-
teristic vector to the rectangle formed by the four lines,
shown in figure 5. No new points are added to or removed
from the rectangle when we consider the remaining ad-
missable controls.

If we consider the Hamiltonian as a function of the
characteristic vector

H(d) = −〈u(d), d〉 (17)

then the constructed rectangle is a level set of the Hamil-
tonian:

d ∈ H−1(−λ0) (18)

We may find other level sets of the Hamiltonian by scal-
ing λ0. Geometrically, increasingλ0 uniformly scales the
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Figure 5: Geometric construction of level sets of the
Hamiltonian for the differential drive.

constructed rectangle. However, there is one additional
constraint: the first element of the characteristic vectord
is cos β ≤ 1. If λ0 is large, then parts of the constructed
rectangle must be clipped to satisfy this constraint. Fig-
ure 5 shows some level sets of the Hamiltonian for the
differential drive in gray.

The procedure carried out for the differential drive can
be applied to the Dubins car, the Reeds and Shepp car, and
some variations. For control regionsU with polygonal
boundaries, we observe that vertices of the boundary map
to edges of level sets of the Hamiltonian, and edges of the
boundary map to vertices of level sets.

In order to satisfy the Maximum Principle, the char-
acteristic vectord must fall on a single level set of the
Hamiltonian. Furthermore, the characteristic vector is a
continuous function of time. If the level set of the Hamil-
tonian is comprised of disjoint sections (λ0 large), then
the characteristic vector will be restricted to one of the
sections.

Since the level sets of the Hamiltonian are qualitatively
different for large and smallλ0, we expect the extremal
trajectories to be qualitatively different for large and small
λ0. In fact, the value ofλ0 provides a convenient way
to distinguish classes of trajectories for bounded velocity
vehicles.

As an example, we construct the level sets of the Hamil-
tonian for the steered car. For smallλ0, the level sets of
the Hamiltonian are diamonds in the control region. For
largeλ0, we clip the diamonds to satisfy the constraint
that | cos β| ≤ 1. Figure 6 shows the result. Once the
level sets are constructed, we may classify the trajectories
by the value ofλ0:

λ0 > 1: The robot is far from theη-line, and the maxi-
mizing control will either always maximize or minimize
















Figure 6: Reeds and Shepp car: level sets of the Hamilto-
nian and extremals.

ω. The robot follows successive half-circles, switching
driving direction but maintaining a constant angular ve-
locity. The second row of figure 6 shows an example.

λ0 = 1: The robot is always either following aπ/2 arc
of a circle with an endpoint on theη-line, or driving in
a straight line along theη-line. See the third row of fig-
ure 6.

λ0 < 1: The robot is near theη-line, and makes a sharp
angle with theη-line. The extremal trajectory resembles
a parallel parking maneuver. See the fourth row of fig-
ure 6.

The extremals for differential drives and steered cars
are already well understood. However, the level sets of the
Hamiltonian can also quickly give some geometric infor-
mation and allow the extremals to be constructed for other
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Figure 7: Some level sets of the Hamiltonian and cor-
responding extremals for a differential drive pushing a
block.

systems. Figure 7 shows the level sets of the Hamiltonian
for a differential drive pushing a block. The extremals fall
into three classes: extremals for whichλ0 is small, singu-
lar extremals, and extremals for whichλ0 large. Figure 7
shows some geometrically contructed extremals for each
class.

Strictly convex smooth boundary

The examples considered so far assumed a polygonal
boundary ofU . We now turn to the case where the bound-
ary is smooth and strictly convex. We parameterize the
boundary ofU by a functionγ:

γ(s) =
(

v(s)
ω(s)

)
(19)

We will find the level sets of the Hamiltonian by con-
structing a family of curves.Dλ0 will be a curve contain-
ing the level set of the Hamiltonian, for each value ofλ0.
We will decribeDλ0 by a parameterization(d1(s), d2(s)).
From equation 16,

〈γ(s), d(s)〉 = v(s)d1(s) + ω(s)d2(s) = λ0 (20)

Since the boundary is smooth and strictly convex, the
maximization condition (equation 15) becomes

〈γ̇(s), d(s)〉 = v̇(s)d1(s) + ω̇(s)d2(s) = 0 (21)

Combining equations 20 and 21 and dropping thes for
notational convenience,

d1(s) =
λ0ω̇

vω̇ − v̇ω
(22)

d2(s) = − λ0v̇

vω̇ − v̇ω
(23)

These equations are only defined if the denominator is
non-zero. It is interesting to note that the denominator is

Figure 8: Some level sets of the Hamiltonian and cor-
responding extremals for a vehicle with a control region
bounded by an ellipse.

theWronskianof v(s) andω(s). The Wronskian is only
zero over some interval if the two functions are linearly
dependent over the interval. Therefore, there is a large
class of control regions for which equations 22 and 23
hold almost everywhere.

As an example, we may use equations 22 and 23 to
construct the level sets of the Hamiltonian for the control
region with elliptical boundary described by equation 7.
The control boundary can be parameterized by

γ(s) =
(

v(s)
ω(s)

)
=

(
cos(s)/α
sin(s)

)
(24)

for α > 0 ands ∈ [0, 2π).

v̇(s) =
− sin(s)

α
ω̇(s) = cos(s) (25)

Substituting into equations 22 and 23:

d1(s) = αλ0 cos(s) (26)

d2(s) = λ0 sin(s) (27)

So in fact, the level sets of the Hamiltonian must be el-
lipses, or subsections of ellipses. Although it seems likely
that the extremals for this system can only be described
by differential equations that cannot be integrated analyt-
ically, the level sets still give useful geometric informa-
tion. Figure 8 shows the constructed level sets and four
numerically generated extremals. We may again classify
the extremals by the value ofλ0:

λ0 < α: The level set is an ellipse, and| cos β| < 1.
Thereforeβ ∈ (0, π) or θ ∈ (π, 2π) over the entire
trajectory. The control smoothly varies as(cos β, η)
moves around the ellipse, in either a clockwise or coun-
terclockwise direction.v changes sign whenβ = π/2 or
β = −π/2, andω changes sign when the robot crosses
theη-line.

λ0 = α: The level set is an ellipse. Ifβ = 0 or β = π,
then the robot will drive either forwards or backwards
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along theη-line. Otherwise, the robot will follow a tra-
jectory asymptotically approaching theη-line.

λ0 > α: The characteristic vectord takes values from a
section of the ellipse, either above or below the horizon-
tal axis. Assume the robot starts above theη-line. Then
the controls smoothly vary, butω is always positive. If
the robot starts below theη-line, ω is always negative.
Robots following trajectories of this class are are always
turning to the right or to the left. Ifλ0 is very large, then
the control will have large values forω and small values
for |v|. If theη-line is at infinity (c1 = c2 = 0), the robot
will spin in place.

5 Other results

The level sets of the Hamiltonian allow the classification
of extremals and the identification of critical values ofλ0.
In fact, the level sets of the Hamiltonian can provide a
wealth of other geometric information about extremal tra-
jectories. In this section, we briefly summarize some uses
of the level sets of the Hamiltonian.

Construction of extremals If the boundary of the con-
trol region is polygonal, we may use level sets of the
Hamiltonian to construct extremal trajectories. For each
edge of the level set there is a corresponding constant
control which will cause the robot to follow a line seg-
ment, an arc of a circle, or to spin in place. From the
length of the edge we may determine the duration for
which the control may be executed.

If the boundary of the control region is smooth, we are
unlikely to be able to explicitly integrate the differential
equations describing the trajectory. However, the con-
straint that the characteristic vector must lie on a single
level set over an extremal can be used to either reduce
the number of variables or to guide the numerical inte-
gration.

Bounding tubes The level sets of the Hamiltonian may
also permit useful geometric observations even if explicit
integration is not possible. For example, we may calcu-
late an upper bound on the size of a corridor or tube in
the plane that contains all optimal trajectories between
some start and goal configuration. If there are no obsta-
cles in the tube, the time optimal trajectory exists and is
collision free.

Locating the η-line Finally, this paper describes the ex-
tremal trajectories relative to some line in the plane, the
η-line. However, what we really want is the set of time
optimal trajectories between every pair of start and goal
configurations. One approach to this problem is to de-
rive the location of theη-line as a function of the start
and goal configurations. The level sets can be used to

provide a constraint on the location of theη-line, based
on the observation that the start and the goal must fall on
the same contiguous section of a level set.

6 Conclusion

The optimal trajectories for mobile robots with velocity
and angular velocity controls can be described as maxi-
mizing power along a line of force. The power over any
trajectory must be constant. Finally, the level sets of the
Hamiltonian provide additional useful geometric informa-
tion, even if the extremal trajectories may not be explicitly
constructed.
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