
CoPhy: Automated Physical Design with
Quality Guarantees

Debabrata Dash∗ Anastasia Ailamaki†

June 20, 2010
CMU-CS-10-109

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
†Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

This work was partially supported by Sloan research fellowship, NSF grants CCR-0205544, IIS-0133686, and
IIS-0713409, an ESF EurYI award, and SNF funds.

Keywords: Convex Programming, Physical Design, Quality Guarantees

Abstract

Physical design requires the selection of an optimal set of design features from a vast search space.
The existing tool landscape is dominated by application specific heuristic algorithms, which prune
the search space heavily to arrive at a “locally” optimum solution, which may be far from the
“globally” optimum. As a result, although the tool runtime is kept at manageable levels, there
is no guarantee of the distance of the proposed solution from the optimal. Mature combinatorial
optimization tools, on the other hand, provide close to “globally” optimal solutions without pruning
the search space, provided that the problem is convex. Inspired from the potential of such tools, we
develop a combinatorial optimization formulation for the physical design problem, showing that
there exists a convex formulation which does not require heuristic pruning of the problem space.
Using this formulation, we develop CoPhy, an automated physical design tool which suggests
near-optimal solutions for physical design problems. We solve the combinatorial problem with an
efficient and scalable lagrangian relaxation method, which predicts as well as controls the quality
of the final solution. Experiments using TPC-H-like workloads on two commercial systems show
that, (a) CoPhy is portable across multiple DBMS (b) CoPhy’s suggested indexes yield from 20% to
100% better workload speedup compared to greedy approaches, and (c) CoPhy scales to workloads
composed from thousands of queries.

1 Introduction
Automated physical design is a major challenge in building self-tuning database management sys-
tems. The complexity of physical design emanates from the requirement of searching through a
potentially huge space containing many design features, such as, indexes, partitions, and material-
ized views. To make matters worse, each design feature interacts with other features to add a new
dimension to the search space. Furthermore, in the real world, the search algorithm needs to satisfy
several user-specified constraints, such as requiring the solutions to occupy less than a certain disk
budget or requiring low maintenance cost.

Existing commercial physical design tools provide suggestions in a reasonable time by heuristic
pruning of the solution space, and limiting interaction between the design features. This, however,
prevents them from satisfying two important requirements: predictability and generality. Since the
physical design problem is NP-Hard [8], finding the exact optimal solution may require exponential
time for any reasonable sized workload. Therefore, the selection tool must predict the quality
of the solution, i.e., the distance of the proposed solution from the optimal, allowing the DBA
to accept the non-optimal solution in exchange for efficiency. By using simple regression, the
DBA can even estimate the execution time required to arrive at a solution of certain quality. This
ability to predict the quality of the solution also helps detect infeasible constraints set by the DBA.
Therefore, predicting the quality of the solution is an essential requirement in the presence of
complex workloads and constraints. The existing approaches lack this quality, since they prune
the search space heuristically–limiting their knowledge of the solution quality w.r.t. the globally
optimal solution.

Similarly, the physical design tools need to handle multitudes of real-life constraints. The tool
must be generic enough to handle new constraint types without a complete rewrite from the ground
up. Since the pruning mechanism of the greedy algorithms need to be redesigned to address new
constraint types, they are not general.

In the area of Operations Research, the combinatorial optimization problem (COP) formula-
tions and their solvers have been used for efficiently and scalably solving problems where the
underlying features interact with each other. They also provide feedback on the distance of the
solution from the optimal, thereby allowing the user to terminate the optimization process upon
reaching a certain quality guarantee. Unlike the greedy algorithms, COP solvers are generic, i.e.
they solve multitudes of new constraint types without changing the code. The usefulness of this
approach, however, depends on the “convexity” (Section 3.1) property of the COP formulation. If
the COP formulation doesn’t satisfy this crucial property, the solvers cannot use polynomial time
algorithms to solve the sub-problems and gradually arrive at the globally optimal solution.

Modeling the physical design problem as a COP is not straightforward because of the convexity
requirement. The state-of-the-art formulations for database physical design achieve the convexity
property by enumerating all possible combinations of the candidate indexes–making it impossible
to scale without heavy pruning. Any pruning before the actual search process reduces the pre-
dictability and efficiency, as the solver can only predict and find solutions only inside the pruned
sub-space. The efficiency is also affected, since before pruning away a feature combination, one
needs to evaluate its benefits.
Our Approach and Contributions: In this paper, we propose a COP-based tool called CoPhy

1

(Combinatorial Optimization for Physical Design), which does not prune the search space heuris-
tically, thus allows it to provide quality guarantees. CoPhy uses a novel COP formulation to scale
the problem size linearly with the candidate features. It then solves the problem efficiently using
mature techniques, such as lagrangian relaxation. In this paper, we focus on indexes as the design
features, since they are the most commonly used by the DBAs and preserve the difficulty of the
complete physical design problem.

The intellectual contribution of the paper is: there exists a compact convex COP formulation
for the physical problem, thereby making the problem amenable to the sophisticated and mature
combinatorial optimization solvers.

From the point of view of system design, the paper contributes: 1) An efficient and scalable
solver for the COP, which combines the existing state-of-the-art techniques from the combinatorial
optimization area to achieve its performance goals. It also allows the DBAs to reduce the execution
time by trading off quality of the expected solution. For example by allowing 1% difference
from the optimal solution, the solver execution time is reduced by an order of magnitude. 2)
Demonstrates the design of a portable physical designer. The system achieves its portability by
using only a very thin layer of interaction between the optimizer and the physical designer. Our
experimental results demonstrate the system’s superior performance on two different commercial
DBMS.

Organization: The rest of the paper is organized as follows: We discuss the related work in
Section 2. Section 3 builds the COP for plan selection on a workload and Section 4 adds constraints
to the COP. Section 5 details the architecture of CoPhy and the optimization methods. We discuss
the experimental results in Section 6, and finally, conclude in Section 7.

2 Related Work
Proposed physical design solutions depend heavily on the plan selection mechanism used in the
query optimizers. Early research models the query optimizer mathematically, and then suggests
the design features. Since early optimizers typically use simple cost models [19], it is relatively
straightforward to model the entire optimization process and select appropriate design features
accurately. Lum et al. model the selection of secondary indexes as an optimization problem [15].
Esiner et al. improve on that by mapping the index-selection problem to an equivalent network flow
problem [11]. Researchers also propose various integer linear program formulations for vertical
partitioning of tables [3, 16, 10]. These techniques assume simple cost models for using vertical
partitions and build their optimization problem on those models. Modern optimizers, however, use
more elaborate cost models which render most previous cost formulations obsolete. Recent work
decouples the optimizer design from the problem formulation by modeling the optimizer as the
black box and reusing past optimization results [18]. Modeling the optimizer as a black box forces
the physical designer to compute the cost of every possible index combination, which is a very
expensive process, as such combinations can be exponential in number. We use the same caching
approach to model the optimizer, but exploit the internal details of the cache. Our approach allows
us to identify useful index combinations without actually enumerating them.

Existing commercial techniques use greedy pruning algorithms to suggest the physical de-
sign [12, 1], and use the optimizer directly, there by reducing their efficiency and predictability.

2

Caprara et al. were the first to propose a COP approach to the index-selection problem, by model-
ing it as an extension of the facility-location problem (FLP) [7], enabling it to exhaustively search
the features, instead of greedily searching them. Their formulation, however, assumes that a query
can use only a single index. Papadomanolakis et al. extended the formulation to account for queries
using more than one indexes and also model index update costs [17]. Kormilitsin et al. propose
lagrangian relaxation techniques to solve the FLP formulation [14]. Heeren et al. describe an ap-
proximation solution based on randomized rounding, assuming a single index per query [13]. Their
solution has optimal performance but requires a bounded amount of additional storage. Zohreh et
al. extend the FLP formulation to use views and then provide heuristics to find optimal physical
design in OLAP setting [20]. Their algorithm is tuned towards materializing data-cube views and
small number of indexes on them. Our approach scales to an index set two orders of magnitude
larger than reported in their work. Since these techniques use FLP formulation, they use heuristic
pruning to reduce the problem size to a practical level, a limitation we avoid by proposing a new
problem formulation.

3 Index Selection As A COP
Formulating the index selection problem to a COP allows us to use the sophisticated combinatorial
optimizers. This section briefly discusses the necessary background before deriving the COP for
the index selection problem. This is the basis upon which complex physical design constraints are
applied and solved efficiently.

3.1 Optimization Programs
Typically an optimization program minimizes or maximizes an objective function, while satisfying
some constraints. Mathematically the programs can be written as:

minimizef(x)

such that: g(x) ≤ b , x ∈ Rn

Here f is the objective function and g defines constraints. In general such functions are very hard
to optimize. If, however, the function f is a convex function and g defines a convex area, the
problem can be solved in polynomial time using well-established techniques [4]. A function f is
called convex if the following condition holds:

∀x1, x2 ∈ Rn, 0 ≤ λ ≤ 1

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2)

The constraint g(x) ≥ b defines a convex set if:

∃x1, x2 ∈ Rn, 0 ≤ λ ≤ 1

g(x1) ≥ b and g(x2) ≥ b⇒ g(λx1 + (1− λ)x2) ≥ b

Note that the linear programs, where both f and g are linear functions w.r.t. x, are also convex
programs. Figure 1 shows prototypical examples of the linear and convex programs.

3

Figure 1: Example of convex and linear programs in 2-D space. The shaded region is defined by
the constraint g(x) ≥ b and the thick line defines the function f(x).

3.2 Cache-based Query Cost Model
The physical design tools need to determine the cost of the queries, in the presence of the design
features. Building a complete white-box model of the optimizer is prohibitively complex, and
using the optimizer as a black-box model is prohibitively expensive. We use the optimizer cache
model of INUM [18], which takes the middle path, by invoking the optimizer for a few key plans
and modeling the complete optimizer using those plans. C-PQO [6] is a similar approach that
caches the plans inside the optimizer. We use INUM’s model to build the COP, since it caches
outside the optimizer; hence, it is portable across DBMSs.

INUM postulates that, although selection tools must examine a large number of alternative
designs, the number of different optimal query plans and, thus, the range of different optimizer
outputs, is much smaller. Therefore, it makes sense to reuse the optimizer output, instead of calling
the optimizer to generate similar looking plans. INUM works by first performing a small number
of key optimizer calls per query in a precomputation phase and caching the optimizer output (query
plans along with statistics and costs for the individual operators). During normal operation, query
costs are derived exclusively from the precomputed information without any further optimizer
invocation. The derivation involves simple numerical calculations and is significantly faster than
the complex query optimization code. To explain INUM’s postulations, we borrow the following
definitions from the literature:

Definition 1 “Configuration” is a set of indexes. A configuration is called “atomic” with respect
to a query, if for each table in the query, at most one index is present in the configuration [9].

Definition 2 An “interesting order” is a tuple ordering specified by the columns in a query’s join,
group-by or order-by clause [19].

Definition 3 An “interesting order combination” for a query is the set of interesting orders, where
there is at most one interesting order for each table involved in the query [18].

Definition 4 An index “covers” an interesting order, if the interesting order is the first column in
the index. Similarly an atomic configuration covers an interesting order combination [18].

4

An interesting order of a table is a column, which, if ordered, reduces the query cost. For
instance, in the query “select A, B from T order by A”, A is an interesting order for
table T . If there are two tables T1 and T2, and their interesting orders are A, C respectively, then
possible interesting order combinations are (A, φ), (A,C), (φ,C), and (φ, φ). We denote lack of
interesting order on a table as φ. The atomic configuration {T1(A), T2(C)}, consisting of indexes
on A and C, covers the interesting order combination (A,C). Let D be a non-interesting order
column in T2, the atomic configurations (T1(A)) and (T1(A), T2(D)), cover the interesting order
combination (A, φ).

Using these definitions, the most important observations from INUM are:

1. If a query involves only Merge-Join and Hash-Join plans, the cost of join and aggregation
does not depend on the cost of accessing data from the table or indexes. The total cost of the
query depends linearly on the cost of accessing data for each table. The cost of accessing
data includes the cost of accessing all required rows and columns from indexes, tables, or a
combination of them.

2. If a query involves only Merge-Join and Hash-Join plans, then caching one plan per interest-
ing order combination is sufficient to find the plans for all possible atomic configurations.

3. For queries involving all join methods including Nested-Loop Joins, it caches more than one
plan per interesting order combination and achieves reasonable cost approximation for the
optimal plan cost.

INUM separates the total cost of the query into “internal” join-aggregation costs, and the “leaf”
data access costs. The internal costs, determined by join methods and join orders, are only al-
lowed to change between different cached plans. In a given cached plan, the internal cost remains
constant, and the variations in the query cost comes from the variation of the data access costs.
Therefore, the cost of the plan is linearly dependent on the data access costs, which allows easy
determination of the optimal plans and the optimal cost of a query in the presence of atomic con-
figurations. Currently INUM supports only atomic configurations, which excludes plans involving
index intersections. Anecdotal evidence suggests that such index intersection plans do not im-
prove the workload performance substantially, while increasing the complexity of the physical
designer [6].

We exploit the linearity property of the query costs to build the COP. We first build the COP
for index selection for a single query, then extend it for a workload.

3.3 Index Selection for a Query
Plan selection and index selection are mutually complementary processes, as selecting the optimal
plans involve selecting the optimal indexes and vice versa. To find the COP for plan and index
selection, consider a query Q with O possible interesting order combinations. For each interesting
order combination, INUM caches multiple plans. Let Pop be the pth plan cached for oth interesting
order. The plan can be used only if the atomic configuration covers the plan’s interesting order

5

combination. Let indexes I1, · · · , It cover these interesting orders on tables T1, · · · , Tt. Using the
first observation of INUM, the cost for Pop is:

Cost(Pop) = IC(Pop) +
t∑
i=1

wopiAC(Ii) (1)

The internal cost function IC(Pop) represents the cost of join and aggregation, AC(Ii) is the
access cost function that determines the cost of accessing an index Ii, and wopi is the constant
coefficient for AC(Ii). Typically wopi = 1, to make the equations simpler to understand, we drop
the coefficient in future equations.

The plan cost is the minimum cost using indexes that cover the interesting orders on the table,
hence:

Cost(Pop) = arg min
αi

(IC(Pop) +
t∑
i=1

∑
Ii∈CI(Pop,Ti)

αiAC(Ii)) (2)

such that:
∑

Ii∈CI(Pop,Ti)

αi = 1, αi ∈ {0, 1}∀i (3)

The covering-index function CI(Pop, Ti) finds the set of indexes which cover the interesting
order required by Pop on table Ti. The variable αi is a binary indicator associated with index Ii. If
αi = 1, then the index Ii is used in the plan. Constraints in Eq. 3 ensure that only one index is used
in the query plan for each table. CoPhy models the table scans as “empty” index scans, therefore,
the equation does not consider table scans as special cases. This is a convex program, since the
objective and the constraints are linear. Note that, this problem can be solved with a standard linear
program solver, i.e., without the binary constraints. The optimal solution for the program always
provides binary αi variables.

The cost of the query, is the minimum cost of all the query’s cached plans. Therefore, the cost
of the query Qq can be found as:

Cost(Qq) = minCost(Pop) (4)

Here each instance of the minimization problem Cost(Pop) has an independent set of con-
straints. Hence, to find the minimum cost, we iterate over all cached plans Pop for the query and
minimize Cost(Oop).

3.4 Index Selection for a Workload
The index selection for a workload looks similar to index selection for a query, but using the same
formulation can lead to errors in the presence of constraints. The reason is that for a single query,
the plans are independent from each other, i.e., there can be only one optimal plan selected. In
a workload, however, each query has a plan, and the costs have to be minimized simultaneously,
thus requiring a new formulation.

Consider a workload W , Eqs. 2 and 3 can be extended in a straightforward manner to select
plans for each query in the workload.

6

Cost(W) = minimize
∑
Qq∈W

Cost(Qq) (5)

= arg min
αiq

∑
Qq∈W

(arg min
αiq

IC(Popq)+

t∑
i=1

∑
Ii∈CI(Popq ,Ti)

αiqAC(Ii)) (6)

such that:
∑

Ii∈CI(Popq ,Ti)

αiq = 1 αiq ∈ {0, 1}∀i (7)

The plan Popq is the pth plan cached for oth interesting order for query Qq. The indicator
variable αi is changed to αiq, otherwise selecting an index to use in a query forces it to be used in
all other queries. Since minimizing over another set of minimizations is not a convex function, this
program is not a convex program. To convert it to a convex program, we introduce a new indicator
variable popq which is set to 1 if the plan Popq is selected for query Qq. Since the second term
in the query cost does not change in the following equations, it is denoted by the term CLopq for
improved readability.

CLopq =
t∑
i=1

∑
Ii∈CI(Pop,Ti)

αiqAC(Ii) (8)

Cost(W) = arg min
αiq ,popq

∑
Qq∈W

popq(IC(Popq) + CLopq)) (9)

such that:
∑
p

popq = 1 and popq ∈ {0, 1}∀o, p, q (10)

The minimization along with the constraints converts the plan selection problem for a workload
into a special form of a convex program called “quadratic program”; because the objective function
becomes a quadratic function involving variables popq and αiq. Although convex programs can
be solved efficiently in polynomial time, we improve efficiency by converting them to a linear
program, thereby removing the quadratic term popqαiq. This is achieved by adding constraints as
follows:

arg min
αiq ,popq

∑
Qq∈W

(popq IC(Popq) + CLopq) (11)

such that:
∑

Ii∈CI(Pop,Ti)

αiq = popq ∀Ti (12)

Eq. 12 ensures that the plan Popq is selected for query Qq only if at least one index covering the
interesting order requirement for each table has αiq set to 1. Eqs. 11 and 12 form a linear program
that selects plans for the entire workload and the indexes required for those plans. Similar to index
selection for a query, this program also does not require the binary constraints, as it always finds
the binary solutions for the optimal objective values.

7

Summarizing, Eq.11 defines the objective function for the index selection problem of a work-
load, and Eqs. 7, 10, and 12 define the constraints. Analyzing the size of this problem, observe that
for a workload of |Q| queries and |P | cached plans, if there are |I| indexes in the candidate set,
then the size of the generated program is O((|Q| × |I|) + |P |). For a typical workload |P | << |I|,
since the number of columns used in the workload is much larger than the interesting orders.
Also, |Q| << |I|, since every query can contribute to a large number of indexes. Therefore, the
program size grows linearly with |I|. If |P | is large for a workload, CoPhy uses approximation
techniques [17] to reduce the cache size with a small sacrifice in INUM’s accuracy.

4 Adding Constraints
Without constraints, the plan selection and index selection problems are relatively straightforward.
The problem, however, becomes much harder when the DBA requires the tool to satisfy some con-
straints on the selected indexes. Traditionally, the index storage space has been the only constraint
for the index selection tools. We discuss the index size constraints in this section, and provide a
more complete discussion on translating other types of constraints to the COP in Appendix A.

Size constraint ensures that the final size of the indexes does not exceed a threshold M , or
similar conditions based on the index sizes. To translate these constraints, a condition on the “per-
query” index indicator variable αiq is not sufficient, since the same index can be used in multiple
queries. Using these variables alone causes the problem formulation to double-count the index
size.

Therefore, we derive a new variable αi which indicates the presence of the index in any of
the query plans. The αi variable is the logical-or of all the individual αiq variables for all i. The
logical-or operation is translated by adding the following constraint to the generated program:

αiq ≤ αi ∀i, q αi ∈ {0, 1} ∀i (13)

To prove that these constraints actually work, we show that if an index Ii is used in any query
Qq, then the αi variable is set to 1. Since αiq = 1, and αi > αiq, the constraint αi ∈ {0, 1} forces
αi has to be 1.

The size constraint is represented using the new variable αi as:∑
i

αisize(Ii) ≤M (14)

Sometimes the DBAs also specify constraints on the update cost of the indexes. We model this
situation by adding the update cost to the objective of the optimization algorithm. Let µi be the
update cost for the index Ii, then we add the following term to the objective in Eq.11.∑

i

µiαi (15)

8

Candidate
Selection

COPGen Cache

OptimizerWorkload Constraints

Solver

Solutions Bounds

Cost
Estimation

Figure 2: Architecture of CoPhy

5 CoPhy System Design
In this section, we discuss the complete architecture for the index selection tool - CoPhy, including
the process of selecting candidate indexes and techniques to solve the COP developed in the earlier
sections.

Figure 2 shows the most important modules of CoPhy. All modules except the Solver are
used for building the COP. These modules decide the αiq and the popq variables, and then compute
the IC and the AC functions. Once the COP is constructed, the Solver is used to determine the
solution.

The Candidate Selection module determines the candidate indexes used for the αiq variables
using the workload’s structural properties. The COPGen module takes these candidates and the
constraints as input and generates the COP. Cost Estimation determines the cost model for the
queries, and our tool uses INUM as the cost model. This model caches the plans, the internal cost
functions (ICs), and the access cost functions (ACs). The complete optimization problem is then
input into the Solver. The overall performance of the tool depends on the numbers of αiq, and popq
variables, which control the problem size and, consequently, the solver’s execution time.

We use a very simple Candidate Selection module, which generates indexes for every subset
of the columns referenced in a query, eventually producing a large set of candidate indexes. From
this large candidate set, the module prunes out indexes that never help in reducing query costs; it
then identifies these indexes by finding the minimum access costs for all tables in the query. If
the minimum cost of the query using the index along with best possible indexes on all other tables
is more than the cost of the query without any index, then the index will never be used by the
optimizer. Generally, the module produces thousands of candidate indexes. In comparison, the
commercial physical design tools consider only up to hundreds of candidate indexes.

Now we focus on the Solver, which is critical for CoPhy as it provides the desired efficiency
and scalability.

9

5.1 Solving the COP
The Solver module of Figure 2 takes as input the optimization formulation corresponding to an in-
dex selection problem and computes the near optimal solution. While optimization problems with
integer variables are NP-hard in the worst case, mature solving techniques, in practice, efficiently
optimize very large problem instances. This subsection discusses the details of the algorithms that
enable a fast solution for such large problems. First, a fast greedy algorithm is proposed, then the
complete solution is described.

5.1.1 Greedy Algorithm

We extend the eINUM iterative greedy algorithm proposed in [18] as a baseline solver for the
COP. Each iteration of the greedy algorithm determines the index which decreases the workload
cost the most and adds it to the solution set. The algorithm terminates when there are no more
indexes to add or the storage constraint is violated. The eINUM algorithm however is impractical
as a physical designer, since it takes about 3.5 hours to suggest indexes. We therefore extend the
algorithm by using the structure of INUM cache to speed it up by a factor of 300! The details of
the eINUM algorithm and the optimizations are discussed in Appendix B.

5.1.2 Lagrangian Relaxation Algorithm

Generally the combinatorial programs are solved using the branch-and-bound method. In this
method, the solver starts with an initial upper bound on the program (in our case the solution of
the greedy algorithm). For variable x in the problem, two branches are created, one with x = 0
and the other x = 1. Before exploring a branch, the solver tests to see if the lower-bound of the
branch is higher than the current upper bound. If the lower bound is higher, then that branch is
safely pruned and the search continues in other branches. If it has pruned out all the branches or
all variables are integral variables, it backtracks to search the branches in the parent nodes.

Commercial COP solvers such as CPLEX use linear programming (LP) relaxation to find the
lower and upper bound of the branch-bound process. In LP relaxation, the binary constraints are
ignored and the problem is solved to find the lower bound of the objective. While LP relaxation
works well with many problem formulations, including FLP [17], in our formulation, the linear
relaxation of the αiq variables allows them to be set to very small values. This effectively estimates
the lowest possible cost for the workload without any constraint. For tight constraints, this lower-
bound is far off the desired optimum. Therefore, CPLEX, which uses only LP relaxation, runs for
hours before converging to the optimal solution for our COP. In this section, we improve the bound
computation by using lagrangian relaxation (LR) to compute the upper bound and a randomized-
rounding method on LP relaxation to compute the lower bound.

To understand the LR method to compute the upper or lower bounds, consider the example
problem shown below

minimize f(x)

Such that: g1(x) ≤ A g2(x) ≤ B

10

This problem has f(x) as the objective function and includes many constraints. The lagrangian
relaxation identifies the “tough” constraint among the list of constraints and adds that to the objec-
tive function with a multiplier. Intuitively, it punishes the solver by a factor θ, if it does not satisfy
the constraint. For example, if the first constraint is the toughest constraint in the problem, then
the relaxed problem becomes

minimize f(x) + θ(g1(x)− A)

Such that: g2(x) ≤ B θ > 0

This modified problem may not satisfy the constraint g1(x) ≤ A, since it has been moved to the
objective. But from the solution found using this problem, we cascade the constraints, similarly to
the technique in [14], to find the upper bound on the original problem. By finding an appropriate
value of θ, the upper bound is made tighter and the solver converges to the solution faster.

There is no systematic method to find the tough constraints for a specific problem, since it
depends on the problem structure. For COP, the constraint in Eq. 13 is the toughest one to solve.
Removing that constraint splits the problem into two components, each of which can be solved
efficiently. The constraint, however, makes even sophisticated solvers take considerable time to
solve the problem. Hence, we use that constraint as the “tough” constraint for the LR technique
and then operate in the branch-bound method to solve the problem.

To find the lower bound on a node, CoPhy considers the solutions to the LP relaxed problem.
If 0 < αiq = r < 1, and for a random value 0 < s < 1, we set αiq = 1 if s > r. This randomized
rounding creates a solution that uses more indexes than allowed by the constraints, but has been
shown to provide a tight lower bound on the cost function [13].

Since at each node CoPhy knows the upper and the lower bound on the objective value, we can
gain speed by trading off the accuracy of the final solution by looking at the difference between
the upper and lower bounds. This allows the DBA to terminate the optimization problem when
the difference goes below a given percentage and accept the results from that search step as the
solution.

Furthermore, This allows the DBA to predict when a certain quality guarantee will be achieved
by using simple regression. Thereby, she can estimate the quality of the solution after an estimated
period of time, and intelligently predict when to terminate the optimization session. Since the COP
is based on INUM’s cost model, errors in INUM’s estimation can limit the solver’s knowledge of
the exact optimal value. In our experiments, INUM has about 7% error in cost estimation, which
we argue to be reasonable for the scalability it provides. Moreover, it is an orthogonal problem to
improve INUM’s accuracy using more cached plans.

6 Experimental Results
This section discusses CoPhy’s results on a TPC-H-like workload and on two mainstream com-
mercial DBMSs. We first discuss the experimental setup and then study the workload in detail.
We start with index storage constraints, and then discuss the effect of the quality guarantee on the
execution time.

11

6.1 Experimental Setup
We implement our tool using Java (JDK1.6.0) and interface our code to the optimizer of a popular
commercial DBMS, which we call System1.

We experiment with a subset of TPC-H benchmark containing 15 queries (our experimental
parser, for the time being, does not support the following queries: 7, 8, 11, 15, 20, 21, and 22).
Since experiments with larger databases show trends similar those in a 1GB database, we use this
database on all the workloads for ease and speed of result of verifications. For these 15 queries,
INUM caches 1305 plans and the candidate selection module generates 2325 indexes. We also
show the behavior of the system on other real-world and synthetic benchmarks in Appendix C.

We use a dual-Xeon 3.0GHz based server with 4 gigabytes of RAM running Windows Server
2003 (64bit), but for our experimental purposes we limit the memory allocated to the database
to only 1GB. We report both the selection tool execution time and quality of the recommended
solutions computed using optimizer estimates.

We compute solution quality similarly to [9, 2], by comparing the total workload cost on an
unindexed database cunindexed vs. the total workload cost on the indexes selected by the design tool
cindexed. We report percent workload speedups according to:

% workload speedup = 1− cindexed/cunindexed

We compare the quality of the indexes suggested by CoPhy against the greedy algorithm de-
scribed in Section 5 and Appendix B, and the FLP-based index selection tool. Since the solution
to the problem given by Papadomanolakis et al. is within 0.2% of the optimal solution on System1
for the pruned candidate set, we present the results from their method and identify them as FLP.
The scalability of CoPhy is demonstrated by varying the workload cardinality.

6.2 Solution Quality Comparison
In this experiment, if D is the size of the database, we allocate xD space to indexes in the final
solution. We increase x gradually to observe the improvement in the quality of the selected indexes.
For CoPhy, we stop the search process when the solution reaches within 5% of the optimal solution.
Figure 3 compares the solution quality for TPCH15 using the selection tools on the commercial
system System1. On the x-axis we increase x, and on the y-axis we show the workload speedup
after implementing the selected indexes.

Figure 3 shows that CoPhy suggests indexes with the highest workload speedup for all values
of x on System1. As the space allocated for the indexes grows, all tools converge towards selecting
indexes with similar workload speedup. CoPhy improves on Greedy by fully searching the index
combination space, instead of looking at one index at a time. Greedy prefers large indexes on tables
such as LINEITEM, and misses indexes on the smaller PART and CUSTOMER tables. CoPhy,
however, selected a more balanced set of indexes on both large and small tables to achieve the best
solution quality. FLP needs to prune many candidate configurations to keep the problem size under
control, hence it misses some plans that CoPhy identifies.

The results demonstrate that CoPhy finds is significantly superior to the Greedy algorithm
and FLP algorithm running on the same set of candidate indexes. The benefit of CoPhy is more
pronounced when less space is available for indexes.

12

0

10

20

30

40

50

60

70

80

0.5 1 2 3

W
or

kl
oa

d
Sp

ee
du

p
(%

)

Index Storage Constraint/DB Size

Greedy FLP CoPhy

Figure 3: Results for index selection tools for TPCH15

6.3 Execution Time Comparison
Figure 4 compares the execution time of index selection algorithms with x = 1. On x-axis, we vary
the workload size and on y-axis we show the execution times for different algorithms. To observe
the execution time on larger workloads, we create workloads of 250, 500, 750, and 1000 TPC-
H-like queries using TPC-H’s QGen on TPCH15’s query templates, and name them TPCH250,
TPCH500, TPCH750, and TPCH1000 respectively. To scale INUM computation for these larger
workloads, we use INUM approximations [17]. The approximation method reduces the number
of cached plans from 90 on average to 2 for each query. We run the experiment with an index size
multiplier x = 1, and with 5% quality relaxation for CoPhy. Since the query templates remain
the same, the benefit of using the selection tool for these larger workloads remains similar to
Figure 3, except that the cost approximation for larger workload reduces the solution qualities for
both CoPhy and greedy algorithms by about 3%. Note that, even though TPCH15 does not use
approximations, we compare the running times in the same charts in order to save space. The time

0

5

10

15

20

25

30

35

40

TPCH15 TPCH250 TPCH500 TPCH750 TPCH1000

Ex
ec

ut
io

n
Ti

m
e

fo
r

To
ol

s
(m

in
ut

es
)

Workloads

Greedy FLP COPhy

Figure 4: Execution time of algorithms for varying query sizes.

13

1

10

100

1000

10000

100000

0 5 10

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Relaxation %

15 Queries
10 Queries
5 Queries
1000 Queries

Figure 5: Execution time of CoPhy at different relaxations from the optimal

taken to build the INUM cache model the workloads in Figure 4 are 24, 2, 4, 9, and 17 minutes
respectively. Using workload compression along with the INUM approximation reduces the INUM
cache construction overhead to less than one minute for the generated workloads.

We first focus on TPCH15. Greedy is the fastest selection tool as it Greedy benefits from the
index structure described in Appendix B in detail. In this experiment, building the in-memory
structures for Greedy takes approximately 18 seconds, and running the greedy algorithm takes
about 25 seconds. In comparison, the reported execution time for a similar greedy algorithm is
about 3.5 hours [18], hence using the index structure speeds up the algorithm by a factor of nearly
300. CoPhy spends about 5.2 minutes to find the solutions, of which about 20 seconds were spent
in building the problem from the index variables, and about 45 seconds to find the starting greedy
solution and remaining time in solving the problem with the lagrangian algorithm. FLP spends
more than 5 minutes pruning the configurations and building the combinatorial problem. FLP,
however, solves faster than CoPhy since the pruning reduces the problem size and complexity.

Now we consider the generated workloads and observe the scaling behavior of the tools.
Greedy and FLP scale almost linearly with the problem size. CoPhy’s execution time goes up
to about 9 minutes for the largest workload, however, about 2.5 minutes are spent initializing the
greedy solution, hence the LR method scales well with increasing workload cardinality as well.

We conclude from the experiments that the CoPhy’s solver is capable of scaling to thousands
of queries, and scales almost linearly with the number of queries.

6.4 Quality Relaxation vs. Execution Time
We gradually increase the relaxation distance from the optimal value and observe the improvement
in execution time for the LR based solver. We use System1 with index space constrained to be
the same as the DB size. We report only the time it takes for the LR algorithm to run, as the
greedy algorithm’s execution time does not change with the relaxation values. In Figure 5, we vary
the distance from the optimal value on the x-axis, and on y-axis we show the execution time of
the solver. The three different lines in the figure show the behavior on 3 subsets of the TPCH15
queries, containing 5, 10, and 15 queries respectively. We also compare against the 1000 TPC-H

14

0

0.5

1

1.5

2

2.5

0 1 2 3 4

A
vg

. R
es

p.
 T

im
es

 R
at

io

Index Storage Constraint/DB Size

System1

System2

Figure 6: Quality comparison against commercial systems

queries generated in the previous experiment.
Figure 5 shows that even for a small workload with 15 queries, achieving the exact optimal

value is not feasible. Even after running the solver for more than a day, we could not converge
to the optimal solution. When relaxing the solution to be within 1% from the optimal value, the
solver converges after a long time. For a 15 query workload, 5% relaxation provides the best
balance between proximity to optimal solution and execution time. When the workload size is
reduced to just 5 queries, CoPhy find the optimal solution within a minute; this is possible since
the problem search space is fairly small for the solver to explore every possible combination of
indexes. Similarly, for 10 queries the solver converges to the optimal solution, but takes more
time. Consequently, even with small workloads, the ability to relax the targeted solution helps to
dramatically reduce the execution time of the solver.

6.5 Comparing Against Commercial Tools
Since the commercial designer tools lack a fast cost model like INUM, their runtime is typically
much higher than the INUM-based solutions discussed so far. Hence we only show the comparison
of the performance of their suggested indexes. We compare CoPhy against two commercial sys-
tem physical designers implemented on System1 and System2 using TPCH15. Since the indexes
suggested by the tools on these two systems cannot be directly compared, we normalize the per-
formance on each system by the performance of CoPhy’s suggested indexes. If csystem is the total
workload cost on System using the suggested indexes and ccophy is the workload cost with CoPhy’s
suggested indexes on System, then we report the relative workload speedup: csystem/ccophy. On the
x-axis we increase the index constraint size as a multiple of the table size, and on y-axis we report
the relative speedup.

Figure 6 shows that CoPhy always performs better than System1’s designer tool, and performs
better than System2’s tool when the space allocated to indexes is low. This is a direct result of
not pruning the candidate set eagerly. Therefore, we believe that the generic search method of
CoPhy helps improve the query performance of the commercial systems, when compared to the
sophisticated and fine tuned greedy methods employed by the commercial tools.

15

More Experiments: We discuss more generic constraints on the COP and study their proper-
ties in Appendix A. We also provide results on two more workloads in Appendix C.

7 Conclusion
In this paper we present CoPhy, a practical and scalable physical design tool. We first demonstrate
that we can formulate a reasonably sized COP for the physical design problem, so that the state-
of-the-art solvers can be used to solve the efficiently. Unlike existing selection tools, this approach
allows DBAs to trade off the execution time against the quality of the suggested solutions. Our
experimental results indicate that CoPhy suggests significantly better results when compared to
existing commercial physical design tools, especially when the constraints are tight. We show
the scalability and the portability of CoPhy by running on multiple DBMSs. Finally, CoPhy’s
formulation of the physical design problem can be used with the commercial state-of-the-art cost
models, given access to the optimizer internals [6].

References

[1] S. Agrawal et al. Database tuning advisor for microsoft sql server 2005. In VLDB’04.

[2] S. Agrawal et al. Automated selection of materialized views and indexes in SQL databases. In VLDB
2000.

[3] J. M. Babad et al. A record and file partitioning model. Commun. ACM, 20(1):22–31, 1977.

[4] S. Boyd et al. Convex Optimization. Cambridge University Press, March 2004.

[5] N. Bruno et al. Constrained physical design tuning. PVLDB, 1(1):4–15, 2008.

[6] N. Bruno et al. Configuration-parametric query optimization for physical design tuning. In SIGMOD
’08.

[7] A. Caprara et al. A branch-and-cut algorithm for a generalization of the uncapacitated facility location
problem. TOP, 1996.

[8] S. Chaudhuri et al. Index selection for databases: A hardness study and a principled heuristic solution.
IEEE TKDE, 16(11), 2004.

[9] S. Chaudhuri et al. An efficient cost-driven index selection tool for Microsoft SQL server. In VLDB’97.

[10] D. Cornell et al. An effective approach to vertical partitioning for physical design of relational
databases. IEEE Transactions on Software Engineering, 16(2), 1990.

[11] M. J. Eisner et al. Mathematical techniques for efficient record segmentation in large database systems.
JACM, 1976.

[12] G.Valentin et al. DB2 advisor: An optimizer smart enough to recommend its own indexes. In Pro-
ceedings of ICDE’00.

16

[13] C. Heeren et al. Optimal indexes using near-minimal space. In PODS, 2003.

[14] M. Kormilitsin et al. View and index selection for query-performance improvement: quality-centered
algorithms and heuristics. In CIKM, 2008.

[15] V. Y. Lum et al. An optimization problem on the selection of secondary keys. In Proceedings of the
1971 26th annual conference.

[16] S. Navathe et al. Vertical partitioning algorithms for database design. ACM Trans. Database Syst.,
9(4):680–710, 1984.

[17] S. Papadomanolakis et al. Large-scale data management for the sciences. PhD thesis, CMU, 2007.

[18] S. Papadomanolakis et al. Efficient use of the query optimizer for automated physical design. In VLDB
’07, pages 1093–1104. VLDB Endowment, 2007.

[19] P. Selinger et al. Access path selection in a relational database management system. In SIGMOD 1979.

[20] Z. A. Talebi et al. Exact and inexact methods for selecting views and indexes for olap performance
improvement. In EDBT, 2008.

A Adding More Constraints
Recently Bruno et al. propose a language to specify constraints [5]. In this section, we demon-
strate the COP’s generality by translating the proposed sophisticated constraints into the COP. All
constraints introduced in this section are linear in nature, hence do not violate the convexity of the
COP. We group the constraints into four categories: index constraints, configuration constraints,
generators, and soft constraints, and describe their translations.

A.1 Index Constraints
The DBA may restrict the selection of the indexes by specifying conditions on the size of the index,
the columns appearing in the index, or the number of columns appearing in indexes. Hence, we
sub-group these constraints into three categories: column constraints, index width constraints, and
index size constraints.
Column Constraint: This group of constraints specifies the presence or absence of a column in
the solution set. For example, one column constraint requires that at least one index built on a table
Tt contains a column Cc. This condition can be translated to the COP by adding the following
constraint to the program for every such column:∑

contains(Cc)

αiq ≥ 1 (16)

Reusing the notation from Eq. 6, we denote an index Ii being used in a query Qq as the binary
variable αiq. The function contains(Cc) finds the set of indexes which contain the column Cc.
There can be many variations of this constraint, such as: only the first column of the indexes is Cc,

17

or the index has a set of columns etc. All these variations are translated by changing the function
contains(Cc).
Index Width Constraint: This group of constraints limits the index search space by the number
of the columns they contain. The translation of these constraints is similar to the previous one, as
shown below:

αiqwidth(Ii) ≥ N (17)

Where, N is the limit on the number of columns for an index, and width(Ii) determines the width
of the index Ii.

A.2 Configuration Constraints
Although the DBA can specify any constraint on the configuration space, typically she constrains
only the final configuration or the result configuration by limiting the costs of the queries using it.
For example, the DBA may want to make sure that the final configuration speeds up all queries in
the workload by at least 25% compared to the initial configuration. We translate such constraints
into COP by reusing the cost for the query in Eq. 2 and adding the following constraint to COP:

Cost(Qq) ≤ 0.5 InitialCost(Qq) (18)

The function InitialCost(Qq) represents the cost of the query before running the index selection
tool.

A.3 Generators
Generators allow the DBA to specify constraints for each query, index, or table, without specifically
mentioning them. It is equivalent to for-loops in regular programming languages. For example, if
the DBA wants to restrict the final query cost, she specifies the following constraint:

FOR Qq IN W
ASSERT Cost(Qq) ≤ 0.5 InitialCost(Qq)

The syntax of the constraint is self-explanatory. This constraint is translated by adding constraints
shown in Eq. 18 for each query in the workload. The generator can also contain Filters to limit
the scope of the constraints. For example, following constraint limits the number of columns for
indexes only when they contain the column C3.

For All Ii WHERE Contains(Ii, C3)
ASSERT NumCols(Ii) ≤ 4

The “WHERE” condition filters the indexes using a boolean condition. NumCols(Ii) determines
the number of columns in Ii andContains(Ii, C3) determines that the index Ii contains the column
C3. This filter is translated by generating the constraints in Eq. 16 and 17.

The constraint language also supports aggregates, such as sum and count etc. If the aggregation
does not violate the convexity of the constraints, then they are added to the list of constraints
generated by the program. Many of the common aggregations such as sum and count do not
violate the convexity property and can be translated in this manner.

18

A.4 Soft Constraints
The constraints discussed so far are termed as hard constraints. The final solution proposed by
the design tool has to satisfy all hard constraints. Sometimes the DBA may want to specify a soft
constraint, which should be satisfied to the extent possible, if not completely. The description of
the soft constraints is similar to that of an objective function, hence, we convert these conditions
into objectives in the COP.

For example, the following constraint requires that the solver should try to achieve the lowest
possible cost for the workload, but a solution is still valid even when the cost is not 0. The “SOFT”
keyword indicates constraints that can be violated by the solver. SOFT ASSERT Sum(Cost(Qq)) = 0
In COP, we add the following objective for the constraint:

min
∑

Cost(Qq) (19)

With multiple soft constraints, the optimization program becomes an instance of a multi-objective
optimization [4] program. In multi-objective optimization, the solver does not search for one
optimal point, rather, a set of points in the solution space which are un-dominated. A solution is
called un-dominated, if no other point exists in the solution space where every objective is smaller.
The set of such points is called “pareto-optimal” or “sky-line” points.

When all objectives are convex, the pareto-optimal solution can be determined by using the
“scalarization” method [4]: if the solver desires to optimize a vector O1, O2, · · · , On of objectives
together, it creates a vector λ1, λ2, ..., λn with λi > 0. Using these constants the solver optimizes
the following problem:

min λ1O1 + λ2O2 + ...+ λnOn

Since we assume each of Oi is convex in the worst case, the scalarized-objective also remains
convex. Hence, CoPhy solves efficiently using standard techniques. By varying the values of λi,
the solver finds the pareto-optimal surface of the solutions and the DBA can decide on the optimal
point on the surface.

A.5 Extending the Constraint Language
So far, we discuss how to translate the state-of-the-art constraint language into solvable combina-
torial optimization programs. It is possible to translate even more difficult constraints into COP,
for example, the DBA can add a constraint to restrict the index selection so that the first columns in
any two indexes on a table are not the same. The existing language does not allow such constraints,
and it is difficult to implement such constraints in a greedy constraint solver, since selection of one
index depends on the presence or absence of another. These sophisticated constraints are translated
and solved in CoPhy by adding the following constraint:

1 =
∑

IsF irstCol(Cc)

αi ∀ Cc ∈ Tt (20)

The function IsF irstCol(Cc) finds all indexes which have Cc as the first column.

19

0

500

1000

1500

2000

0 5 10
Es

ti
m

at
ed

 C
os

t

Index Size/DB Size

TPCH15 TPCH1000

Figure 7: Pareto-optimal curve with the storage constraint and the workload costs as soft con-
straints

A.6 Experimental Results
This section discusses some experimental results for the COP after adding the new type of con-
straints. First we discuss the soft constraint results, and then the results for other constraint types.

A.6.1 Adding Soft Constraints

So far we discuss index selection problem with hard index storage constraints and a soft constraint
of workload cost being zero. In this experiment we add more soft constraints to the problem to
observe what the pareto-optimal surface CoPhy generates. We replace the hard constraint of the
index storage cost with a soft constraint which tries to minimize the storage cost. Let s be the
storage cost, and c be the cost of the workload in the new configuration. Using the scalarization
technique discussed in Section A.4, CoPhy minimizes the term λ1c + λ2s. CoPhy begins by
considering the extreme points where λ1 = 0, λ2 6= 0 and the other extreme point where λ1 6=
0, λ2 = 0. Then it considers the third point with λ1c = λ2s, and finally explores other points in
between using a binary search like technique.

Using these two soft constraints, we run the solver with different values of λi settings to achieve
the pareto-optimal curve as shown in Figure 7. The the x-axis shows the storage cost of the sug-
gested indexes, and the y-axis shows the estimated cost of the workload. For each point in the
graph, the solver takes approximately 25 seconds and we show 10 different combinations of λi
values. CoPhy determines the shape of the curve using the first 3 points, hence CoPhy estimates
the shape of the pareto-optimal curve faster than manually changing the hard constraints.

A.6.2 Varying the Constraint Size

In this experiment we show that increasing the input program size does not affect the scalability
of the solver. We investigate the effect of extra constraints by separating them into three cate-
gories, i.e., a) index constraints, b) configuration constraints, and c) storage constraints. For the
first category, we generate constraints of the form “For Index I on LINEITEM I like

20

0
100
200
300
400
500
600

0 2 4 6 8 10
Ex

ec
ut

io
n

Ti
m

e
of

 C
oP

hy

(s
ec

on
ds

)
Number of Constraints

of Storage Constraints

of Configuration Constraints

of Index Constraints

Figure 8: Execution time of CoPhy’s solver with varying number of constraints.

’column,%’”. We generate 10 different constraints for 10 columns of LINEITEM table, and
add them to our program. For the second category, we add “For Query Q in Workload,
Cost(Q) < 0.9*EmptyCost(Q)” to the program for each query Q. For the final category,
we add the constraints of the form “the size of the indexes built on a subset of tables must not
exceed 90% of the total storage constraint”. For example, one of the constraints specifies that
LINEITEM’s and ORDERS’s indexes should not exceed 90% of the total storage space.

Figure 8 shows the execution time of the solver (since other times remains constant for all
points) for each of the constraint categories with increasing number of constraints. On the x-axis
we increase the number of constraints in steps of two, and on the y-axis we show the execution
time of solver for the modified problems. The presence of configuration constraints in the index
selection problem restricts us from using the greedy initialization, hence the execution time of the
solver suffers slightly when compared to earlier experiments. As we add the index and config-
uration constraints, the runtime of the solver is reduced, because adding these constraints to the
optimization problem, reduces the size of the search space, thus helping the solver to get solutions
faster. In TPCH15, LINEITEM generates 809 candidate indexes out of the total 2325 indexes. By
removing LINEITEM’s indexes, we prune the search space drastically, as it is an important table
in the workload.

Similarly, adding the configuration constraints reduces the search space by eliminating many
configurations which do not provide sufficient cost improvement. For example, with 10 constraints
on the configurations, the number of candidate configurations drops from approximately 55900 to
about 6300. Although the search space shrinks drastically, the running time of the solver does not
go down proportionally, since the majority of the search happens in the reduced space in the normal
case as well. The storage constraints, however, add more processing to the solver, as they are harder
constraints compared to the other varieties. As more storage constraints are added, the overhead of
doing the lagrangian relaxation increases, consequently the execution time increases–albeit almost
linearly with a small slope. Note that the storage constraints we add are artificial constraints and
represent the worst case behavior for the solver. Whereas, in the real-world the DBA will more
likely add multiple configuration and index constraints rather than storage constraints.

21

B Greedy Algorithm
In this section, we discuss a fast greedy algorithm to find a candidate final configuration. The
greedy algorithm is fast because it always considers only one index at a time, i.e., does not consider
the index interaction effects. It still provides satisfying results, however, because it considers a
large number of candidates.

Data: I: The candidate set of indexes
O: The objective function
sizeConstr: Index size constraint
Result: S: the solution index set
initialization:;1

S1 = S2 = φ;2

while true do3

Im = arg maxIi∈I\S1(Cost(W,S1)− Cost(W,S1 ∪ Ii));4

if sizeConstr(S1 ∪ Im) then5

S1 = S1 ∪ Im;6

else7

break;8

end9

end10

Repeat 3-10 with Ims = arg maxIi∈I\S1

Cost(W,S2)−Cost(W,S2∪Ii)
Size(Ii)

;11

return S = Max Benefit(S1, S2);12

Algorithm 1: Greedy algorithm for sub-modular index-selection problem

Alg. 1 shows the algorithm, which consists of two loops, each selecting a candidate solution
set. Line 4 finds the index Im, such that, if added to the set of selected indexes, provides the
maximum reduction to the cost of the workload. The function Cost(W,S) determines the cost of
the workload with the index set S. The loop terminates when no new index satisfy the sizeConstr
constraint. Similarly, in the second loop, Line 11 finds the index with maximum improvement for
the objective function per unit storage cost. The candidate solution sets for the indexes are called
S1 and S2 respectively. Since S1 does not consider the storage overhead of the indexes, it generally
selects larger indexes. Selecting large indexes reduces the cardinality of the set S1. The S2 set, on
the other hand, gives more weight to the index size and holds more indexes of a smaller size. The
algorithm then returns a candidate set with higher improvement.

This algorithm directly selects the αi variables in Eq. 13. By setting the dependent variables,
such as αiq, CoPhy determines the popq variables that are used in the objective function in Eq. 11.
Therefore, this algorithm not only solves the index selection problem, but also determines the cost
of the final objective by cascading the constraints.

Optimizing the Greedy Algorithm: In Alg. 1, finding Im and Ims dominates the execution
time of the greedy algorithm. A naive implementation, which iterates over all possible configura-
tions to determine the benefit of the index table takes several hours for a 15 query workload [18].

We speed up the performance of this algorithm by building an in-memory lookup structure.
The structure consists of two large hash tables. The first hash table, named CostMap, contains a

22

mapping of the form (Popq, Tt) → MinCost. Reusing the notations in Section 3, Popq represents
the pth plan of the oth interesting-order combination for query Qq, and Tt is a table used in the
query. The value MinCost is the current minimum cost for accessing data for the table Tt in the
plan Popq. The hash table is initialized with MinCost =∞ for each entry. This hash table allows
the greedy algorithm to easily find the current best solution for each cached plan. The index Ii is
of interest, only if it lowers the current minimum cost of any of the plans.

The second hash table, named IntMap, contains the mapping of the form Cc → Qq → List <
P lans >, where Cc is a column in the table, List < P lans > is the list of plans which benefit
by using Cc column as an interesting order, and Qq is used to group all such interesting orders in
query Qq. For each new index Ii, if it covers the interesting order Cc, the greedy algorithm directly
looks up the queries and plans benefiting from that interesting order.

Since the greedy algorithm needs to find the queries which benefit from an index, and the
amount of benefit the index provides, using these two structures speeds up both the bottleneck
functions by a factor of 300 (as shown in Section 6).

C More Workloads
This section discusses the results for CoPhy on two more workloads. The first one, NREF, is a
real-world protein workload. It shows that for simple queries, the quality improvement of CoPhy
is on par with commercial tools. Then we investigate further into the effect of query complexity
on the quality of CoPhy’s results by using a synthetic benchmark–SYNTH.

C.1 Results for NREF
We now discuss the performance of CoPhy and other index selection tools for the NREF workload.
The NREF database consists of 6 tables and consumes 1.5 GBs of disk space. The NREF workload
consists of 235 queries involving joins between 2 and 3 tables, nested queries and aggregation.
Since the queries are simpler and use fewer columns, all selection algorithms converge to the same
set of a small index set. In System1 these indexes provide 28% workload speedup and on System2
the speedup is about 23%. Greedy outperforms all other algorithms by suggesting indexes in 19
seconds, and System1 completes in 5.6 minutes. Since we use approximation method to estimate
the query costs, CoPhy uses 470 cached plans for the COP and executes in about 1.4 minutes.

C.2 Results for SYNTH
We use the synthetic benchmark to study the behavior of the physical designer in the presence of
increasing query complexity. SYNTH is a 1GB star-schema database, containing one large fact
table, and smaller dimension tables. The dimension tables themselves have other dimension tables
and so on. The columns in the tables are numeric and uniformly distributed across all positive
integers. We use 10 queries, each joining a subset of tables using foreign keys. Other than the join
clauses, they contain randomly generated select columns, where clauses with 1% selectivity, and
order-by clauses. We generate 4 variants of these queries, with the increasing number of candidate
indexes, and interesting orders, hence with increasing complexity. Table 1 shows the details of the
queries on the database.

23

Workload SYNTH1 SYNTH2 SYNTH3 SYNTH4
candidates 381 746 3277 4933
cache size 20 110 418 592
of tables 1 4.6 4.8 10.5

Table 1: The details of the synthetic benchmark. The first row lists the candidate index set’s size
for the workloads, the second one lists the INUM cache sizes, and the last row shows the average
number of tables in the query.

Figure 9: Solution quality comparison for SYNTH workload.

Figure 9 shows the solution quality of the techniques on various SYNTH workloads when the
indexes occupy 25% of the space of the tables. On x-axis, we increase the query complexity, and
on y-axis we show the solution quality of the techniques on System1. When the queries involve

Figure 10: Tool execution time comparison for SYNTH workload.

24

only 1 table, all techniques perform equally well. The quality of the greedy solutions, however,
reduces as the number of tables, hence the interaction between the indexes become important,
which the greedy mechanism of System1 and Greedy do not address. FLP performs as well as
CoPhy when there are only one or two tables in the query. As the number of tables in the table
increases, FLP’s solution suffers. Without pruning the FLP formulation creates a COP with about
110 million variables. Solving such a large combinatorial problem is not feasible in today’s solvers.
Therefore, it prunes away a large fraction of the problem space to produce a problem of the order
of tens of thousands. This substantial pruning removes many candidate configurations from the
search space, hence reduces the solution quality drastically.

Figure 10 shows the tools’ execution times for the different workloads. As expected Greedy
scales the most, since the number of cached plans are relatively small. The FLP technique, scales
the worst, as it spends most of the time pruning away configurations. System1 scales well with the
complexity of the queries, since it uses the optimizer as a black box, the raise in the complexity
does not affect its runtime. CoPhy scales almost linearly with the INUM cache size as expected
from the formulation.

25

	1 Introduction
	2 Related Work
	3 Index Selection As A COP
	3.1 Optimization Programs
	3.2 Cache-based Query Cost Model
	3.3 Index Selection for a Query
	3.4 Index Selection for a Workload

	4 Adding Constraints
	5 CoPhy System Design
	5.1 Solving the COP
	5.1.1 Greedy Algorithm
	5.1.2 Lagrangian Relaxation Algorithm

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Solution Quality Comparison
	6.3 Execution Time Comparison
	6.4 Quality Relaxation vs. Execution Time
	6.5 Comparing Against Commercial Tools

	7 Conclusion
	A Adding More Constraints
	A.1 Index Constraints
	A.2 Configuration Constraints
	A.3 Generators
	A.4 Soft Constraints
	A.5 Extending the Constraint Language
	A.6 Experimental Results
	A.6.1 Adding Soft Constraints
	A.6.2 Varying the Constraint Size

	B Greedy Algorithm
	C More Workloads
	C.1 Results for NREF
	C.2 Results for SYNTH

