
GRAPHITE: A Visual Query System for Large Graphs

Duen Horng Chau, Christos Faloutsos,
Hanghang Tong, Jason I. Hong

Carnegie Mellon University
f dchau, christos, htong, jasonhg@cs.cmu.edu

Brian Gallagher, Tina Eliassi-Rad
Lawrence Livermore National Laboratory

f bgallagher, eliassirad1g@llnl.gov

Abstract

We present Graphite , a system that allows the
user to visually construct a query pattern, �nds both
its exact and approximate matching subgraphs in large
attributed graphs, and visualizes the matches. For ex-
ample, in a social network where a person's occupa-
tion is an attribute, the user can draw a `star' query
for \�nding a CEO who has interacted with a Secre-
tary, a Manager, and an Accountant, or a structure
very similar to this". Graphite uses theG-Ray al-
gorithm to run the query against a user-chosen data
graph, gaining all of its bene�ts, namely its high speed,
scalability, and its ability to �nd both exact and near
matches. Therefore, for the example above,Graphite
tolerates indirect paths between, say, the CEO and the
Accountant, when no direct path exists. Graphite
uses fast algorithms to estimate node proximities when
�nding matches, enabling it to scale well with the graph
database size.

We demonstrate Graphite 's usage and ben-
e�ts using the DBLP author-publication graph,
which consists of 356K nodes and 1.9M edges.
A demo video of Graphite can be downloaded at
http://www.cs.cmu.edu/~dchau/graphite/graphite.mov .

1. Introduction

People often want to �nd patterns in graphs, such
as social networks, to better understand their dynam-
ics. One such use is to spot anomalies. For example, in
social networks where a person's occupation is an at-
tribute, we might want to �nd money laundering rings
that consist of alternating businessmen and bankers.
But, then, we face several challenges: (1) we need a
conveninent way to specify this ring pattern as a query,
with appropriate attributes (e.g., businessman, banker)
assigned to each node; (2) we need to �nd all poten-

Figure 1. The Graphite user interface show-
ing the query pattern (left) for a chain
of authors from four different conferences.
Nodes are authors; attributes are confer-
ences; edges indicate co-authorship. One
best-effort match (right) is Indyk (STOC),
Muthu (SIGMOD), Garofalakis bridging Muthu
and Jordan (ICML), and Hinton bridging Jor-
dan and Fels (ISBMS).

tial matches for this pattern; we want near matches as
well, such as allowing another person between a busi-
nessman and a banker, because we may not know the
exact structure of a money laundering ring; (3) the
graph matching process should be fast, avoiding expen-
sive operations, such as joins; (4) we want to visualize
all the matches to better interpret them.

We present Graphite , a system designed to solve
the above challenges. Graphite stands for Graph
I nvestigation by T opological Example. It provides a
usable integrated environment for handling the com-



Figure 2. A �cticious network of people,
whose job titles (attributes) are represented
by shapes and colors.

(a) Loop query (b) A matching subgraph

Figure 3. A loop query and a match

plete workow of querying a large graph for subgraph
patterns. Users can (1) naturally draw the structure of
the pattern they want to �nd and assign attribute val-
ues to nodes; (2) run the query against a user-chosen
data graph, using theG-Ray method, to quickly locate
exact and near matches; (3) obtain matches in a matter
of seconds; and (4) visualize the matches.

Figure 1 is a screenshot ofGraphite when we ask
for a chain of four coauthors in DBLP: a STOC'05 au-
thor, a SIGMOD'06 author, an ICML'93 author, and
an ISBM'05 author. Such a chain does not exist, but
Graphite returns a best-e�ort match, with two in-
termediate nodes (in white): Minos Garofalakis, who
bridges Muthu (SIGMOD) with Jordan (ICML, a pre-
mier machine learning conference) and Geo�rey Hin-
ton, who bridges Michael Jordan (ICML) and Sidney
Fels (ISBMS, a conference on biomedical simulation).

This paper is organized as follows. Section 2 gives
the formal de�nition of our subgraph matching prob-
lem. Section 3 describes the system details. Sec-
tion 4 describes what we will be demonstrating for
Graphite . Section 5 discusses related work. We con-
clude our contributions in Section 6.

2. Problem De�nition

We describe the subgraph matching problem that
Graphite is designed to solve. Consider the �ctitious

social network in Figure 2, where nodes are people,
whose attributes (job titles) are represented by shapes
and colors. We de�ne the problem as:given

� a data graph (e.g., Figure 2), where the nodes have
one categorical attribute, such as job titles,

� a query subgraph describing the con�guration of
nodes that the user wants to �nd (e.g., Figure
3(a)), and

� the number of desired matching subgraphsk,

�nd k matching subgraphs, that match the query as
well as possible.

For inexact matches, they should be ranked accord-
ingly to their quality, such as how \similar" they look to
the query. Incidentally, since we are using theG-Ray
algorithm, the matching subgraphs will be automati-
cally ranked according to its goodness function, giving
convincing and intuitive rankings [6].

3. Introducing Graphite

Graphite is a system for visually querying large
social networks through direct manipulation, �nding
exact and near matches, and visualizing them.

The User Interface and Interactions. Figure
4 shows Graphite 's user interface. The left half is
the query area (a), where users draw their query sub-
graphs. They can assign an attribute to a node by
double-clicking on it and picking a value from a pop-up
dialog (f). Users can create nodes and edges with the
editing control (middle icon at (c)), reposition or delete
them with the picking control (arrow icon at (c)), pan
around the view port with the panning control (hand
icon at (c)), and zoom in or out with the mouse scroll
wheel. The right half of the user interface is theresults
area (b), which shows the exact and near matches as
tabs (e) that the user can inspect conveniently by ip-
ping through them. Users can specify the number of
matches they want to �nd with the text box at the bot-
tom of the interface (d). They can then click the Find
Matches button to start the pattern matching process.

Algorithm for Finding Matches. There are
many di�erent subgraph matching algorithms that
could be used forGraphite ; if we only wanted ex-
act matches, we could write SQL queries to specify the
query patterns. However, we chose theG-Ray algo-
rithm for the following two advantages. First, when
no exact matches exist, it automatically searches for
best-e�ort matches (tolerating longer, indirect paths).
Second, thanks to its proposed goodness function [6], it
ranks the resulting matches, returning results that are



Figure 4. The Graphite user interface. (a) User-speci�ed `star' query pattern. (b ) Near match for the
`star' pattern. Nodes are authors; attributes are conferen ces; edges link co-authors. The query asks
for an author who has published in PODS, with connections to a uthors of IAT, PODS, and ISBMS. (c)
Users can select, create, move and delete nodes and edges; th ey can also zoom and pan. (d) Users
specify number of matches. (e) Matches shown as tabs. (f) Use rs double-click a node to bring up a
dialog for �ltering attributes down to the ones that contain the �ltering text.

empirically more important to the users, thus avoids
ooding the user with a potentially huge number of
less important matches.

Implementation. Graphite is a Java SE 6 ap-
plication. It uses the JUNG1 Java library for editing
and visualizing graphs. G-Ray, the backend algorithm
that Graphite uses for subgraph matching is written
in the MATLAB programming language. Graphite
uses the RemoteMatLab software library2 to remotely
call into an instance of MATLAB that has been started
as a server, passing query patterns to the algorithm and
obtaining matches from it.

4. Demonstration

Datasets. We use the DBLP dataset,3 from which
we construct an attributed graph where each node is
an author and the node's attribute is the combina-
tion of a conference name and a year (e.g., \ICDM

1http://jung.sourceforge.net/
2http://plasmapowered.com/wiki/index.php/

Calling MatLab from Java
3http://www.informatik.uni-trier.de/ ~ley/db/

2008"). We describe this attributed graph by two ma-
trices: (1) a node-to-node matrix, which represents the
co-authorship among authors where entry (i; j ) is the
number of coauthored papers between authori and j ;
and (2) a node-to-attribute matrix, which represents
the author-conference relationship where entry (i; j )
equals 1 if author i has published in conferencej , and 0
otherwise. In total, there are 356,364 nodes, 1,905,970
edges, and 12,920 possible attribute values.

Demonstration Details. We will demonstrate
how to draw common query structures, such as a `line'
pattern (as in Figure 1, discussed in Section 1), and
a `star' pattern (as in Figure 4). Our audience can
also create their own query patterns. The `star' query
asks for an author who has published in PODS (in
red), who has co-authored papers with three other au-
thors from the conferences IAT (orange), PODS (red),
and ISBMS (yellow). In one of the highest-ranking
matches (on the right), the PODS author in the center
is Philip Yu, a proli�c author in databases and data
mining. The other PODS author is Hector Garcia-
Molina, also extremely proli�c, with an indirect con-



nection to Philip through Chawathe, his ex-advisee.
Zhongfei (Mark) Zhang is the matching author for IAT,
Intelligent Agent Technology, who is a computer vision
researcher with a recent interest in data mining, hence
the connection to Philip Yu.

We will show our audience how to assign attributes
to the query nodes, via the dialog shown in Figure 4(f),
which quickly �lters possible attribute values down
to the ones that contain the �ltering text. We will
also perform real-time pattern matching for the query
patterns by communicating with the backend Matlab
server. We will engage our audience to make sense of
the exact and near matches thatGraphite displays,
and to o�er their feedback on the quality of the results.

5. Related Work

Graph matching algorithms vary widely due to dif-
ferences in the speci�c problems they address. G-
Ray is a fast approximate algorithm for inexact pat-
tern matching in large, attributed graphs. It extends
the ideas of connection subgraphs [2] and centerpiece
graphs [5] and applies them to pattern matching in at-
tributed graphs. This work is also related to the idea
of network proximity, which builds on connection sub-
graphs [3].

Our work focuses on �nding instances of user-
speci�ed patterns in graphs. Graph mining work in
the database literature focuses on related problems,
like the discovery of frequent or interesting patterns
[7], near-cliques [4], and inexact querying of databases
[1]. However, none of these methods can do `best-
e�ort' matching for arbitrary shapes, like loops, that
Graphite can handle.

6. Conclusions

We have presentedGraphite , a system for visually
querying large graphs. Graphite 's contributions in-
clude (1) providing an integrated environment for han-
dling the complete workow of querying a large graph
for subgraph patterns; (2) providing an intuitive means
for users to specify query patterns by simply draw-
ing them; (3) �nding and ranking both exact and near
matches, using the best-e�ort G-Ray algorithm; (4) vi-
sualizing matches to assist users in understanding and
interpreting the results; and (5) delivering results in
high speed for large graphs (such as the DBLP graph,
consisting of 356K nodes), returning results in seconds,
on a commodity PC.

We believeGraphite can become a useful tool for
scientists and analysts working on graph problems to

quickly �nd patterns of their choosing, to experiment
with and to con�rm their speculations, and to better
understand the dynamics of their graphs.

7 Acknowledgement

This material is based upon work supported by the
National Science Foundation under Grants No. IIS-
0705359 and under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence
Livermore National Laboratory under contract DE-
AC52-07NA27344 . Duen Horng Chau is supported
by Symantec Research Labs Fellowship. Any opin-
ions, �ndings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and
do not necessarily reect the views of the National Sci-
ence Foundation, or other funding parties.

References

[1] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing
in databases using banks. In ICDE '02: Proceedings of
the 18th International Conference on Data Engineering ,
pages 431{440, 2002.

[2] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast
discovery of connection subgraphs. In KDD '04: Pro-
ceedings of the 10th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, page
118127, 2004.

[3] Y. Koren, S. North, and C. Volinsky. Measuring and
extracting proximity in networks. In KDD '06: Proceed-
ings of the 12th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages
245{255, 2006.

[4] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph
quasi-cliques. In KDD '05: Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining , 2005.

[5] H. Tong and C. Faloutsos. Center-piece subgraphs:
Problem de�nition and fast solutions. In KDD '06: Pro-
ceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
404{413, 2006.

[6] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-
Rad. Fast best-e�ort pattern matching in large at-
tributed graphs. In KDD '07: Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 737{746, New York,
NY, USA, 2007. ACM.

[7] X. Yan, P. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In ICDM '04: Proceedings of
the 4th International Conference on Data Mining , pages
335{346, 2004.


