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ABSTRACT
Extracting useful knowledge from large network datasets has
become a fundamental challenge in many domains, from sci-
entific literature to social networks and the web. We intro-
duce Apolo, a system that uses a mixed-initiative approach—
combining visualization, rich user interaction and machine
learning—to guide the user to incrementally and interac-
tively explore large network data and make sense of it. Apolo
engages the user in bottom-up sensemaking to gradually build
up an understanding over time by starting small, rather than
starting big and drilling down. Apolo also helps users find
relevant information by specifying exemplars, and then us-
ing a machine learning method called Belief Propagation to
infer which other nodes may be of interest. We evaluated
Apolo with twelve participants in a between-subjects study,
with the task being to find relevant new papers to update
an existing survey paper. Using expert judges, participants
using Apolo found significantly more relevant papers. Sub-
jective feedback of Apolo was also very positive.
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INTRODUCTION
Making sense of large networks is an increasingly important
problem in domains ranging from citation networks of sci-
entific literature; social networks of friends and colleagues;
links between web pages in the World Wide Web; and per-
sonal information networks of emails, contacts, and appoint-
ments. Theories of sensemaking provide a way to character-
ize and address the challenges faced by people trying to or-
ganize and understand large amounts of network-based data.
Sensemaking refers to the iterative process of building up a
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Figure 1. Apolo displaying citation network data around the article The
Cost Structure of Sensemaking. The user gradually builds up a mental
model of the research areas around the article by manually inspect-
ing some neighboring articles in the visualization and specifying them
as exemplar articles (with colored dots underneath) for some ad hoc
groups, and instructs Apolo to find more articles relevant to them.

representation or schema of an information space that is use-
ful for achieving the user’s goal [31]. For example, a scien-
tist interested in connecting her work to a new domain must
build up a mental representation of the existing literature in
the new domain to understand and contribute to it.

For the above scientist, she may forage to find papers that
she thinks are relevant, and build up a representation of how
those papers relate to each other. As she continues to read
more papers and realizes her mental model may not well fit
the data she may engage in representational shifts to alter her
mental model to better match the data [31]. Such representa-
tional shifts is a hallmark of insight and problem solving, in
which re-representing a problem in a different form can lead
to previously unseen connections and solutions [11]. The
practical importance of organizing and re-representing in-
formation in the sensemaking process of knowledge workers
has significant empirical and theoretical support [28].

We focus on helping people develop and evolve external-
ized representations of their internal mental models to sup-
port sensemaking in large network data. Finding, filtering,
and extracting information have already been the subjects
of significant research, involving both specific applications
[7] and a rich variety of general-purpose tools, including
search engines, recommendation systems, and summariza-
tion and extraction algorithms. However, just finding and



Figure 2. The Apolo user interface displaying citation data around the article The Cost Structure of Sensemaking. The user has created three groups:
Information Visualization (InfoVis, blue) , Collaborative Search (orange), and Personal Information Management (PIM, green). A color is automatically
assigned to each group, and each node is assigned the color of the group it most likely belongs to; saturation indicates “belongness”. Each exemplar
has a colored dot below it. 1: The Configuration Panel for enhancing visualization readability, by setting visibility of citation edges and article titles,
varying font size and visible length of titles via sliders. 2: The Filter Panel provides filters to control the type of nodes to show; the default filter is
“Everything”, showing all types of nodes, except hidden ones. Other filters show nodes that are starred, annotated, pinned, selected, or hidden. 3:
The Group Panel lets the user create, rename, and delete groups. 4: The Visualization Panel where the user incrementally and interactively builds up
an understanding and a highly personalized visualization of the network. Articles whose titles contain “visual” are highlighted with yellow halos.

filtering or even reading items is not sufficient. Much of
the heavy lifting in sensemaking is done as people create,
modify, and evaluate schemas of relations between items.
Few tools aimed at helping users evolve representations and
schemas. We build on initial work such as Sensemaker [3]
and studies by Russell et al. [30] aimed at supporting the
representation process. We view this as an opportunity to
support flexible, ad-hoc sensemaking through intelligent in-
terfaces and algorithms.

These challenges in making sense of large network data
motivated us to create Apolo, a system that uses a mixed-
initiative approach—combining rich user interaction and
machine learning—to guide the user to incrementally and
interactively explore large network data and make sense of
it. Our main contributions are

• We aptly select, adapt, and integrate work in machine
learning and graph visualization in a novel way to help
users make sense of large graphs using a mixed-initiative
approach. Apolo goes beyond just graph exploration, and
enables users to externalize, construct, and evolve their
mental models of the graph in a bottom-up manner.
• Apolo offers a novel way of leveraging a complex

machine learning algorithm, called Belief Propagation
(BP) [40], to intuitively support sensemaking tailored to
an individual’s goals and experiences; BP was never ap-
plied to sensemaking or interactive graph visualization.
• We explain the rationale behind the design of Apolo’s

novel techniques and how they advance over the state
of the art. Through a usability evaluation using real ci-

tation network data obtained from Google Scholar, we
demonstrate Apolo’s ease of use and its ability to help re-
searchers find significantly more relevant papers.

RELATED WORK
Apolo intersects multiple research areas, each having a large
amount of relevant work. However, less work explores how
to better support graph sensemaking, like the way Apolo
does, by combining powerful methods from machine learn-
ing, visualization, and interaction. Here, we briefly describe
relevant work in some of the related areas.

Sensemaking
Sensemaking refers to the iterative process of building up
a representation of an information space that is useful for
achieving the user’s goal [31]. Numerous models have been
proposed, including Russell et al.’s cost structure view [31],
Dervin’s sensemaking methodology [8], and the notional
model by Pirolli and Card [28]. Consistent with this dy-
namic task structure, studies of how people mentally learn
and represent concepts highlight that they are often flex-
ible, ad-hoc, and theory-driven rather than determined by
static features of the data [4]. Furthermore, categories that
emerge in users’ minds are often shifting and ad-hoc, evolv-
ing to match the changing goals in their environment [14].
These results highlight the importance of a “human in the
loop” approach for organizing and making sense of infor-
mation, rather than fully unsupervised approaches that result
in a common structure for all users. Several systems aim to
support interactive sensemaking, like SenseMaker [3], Scat-
ter/Gather [7], Russell’s sensemaking systems for large doc-



Figure 3. a) The Apolo user interface at start up, showing our starting article The Cost Structure of Sensemaking highlighted in black. Its top 10
most relevant articles, having the highest proximity relative to our article, are also shown (in gray). We have selected our paper; its incident edges
representing either “citing” (pointing away from it) or “cited-by” (pointing at it) relationships are in dark gray. All other edges are in light gray, to
maximize contrast and reduce visual clutter. Node size is proportional to an article’s citation count. Our user has created two groups: Collab Search
and InfoVis (magnified). b-d) Our user first spatially separates the two groups of articles, Collab Search on the left and InfoVis on the right (which
also pins the nodes, indicated by white dots at center), then assigns them to the groups, making them exemplars and causing Apolo to compute the
relevance of all other nodes, which is indicated by color saturation; the more saturated the color, the more likely it belongs to the group. The image
sequence shows how the node color changes as more exemplars are added.

ument collections [30], Jigsaw [34], and Analyst’s Notebook
[16]. Other relevant approaches include [35] and [1] which
investigated how to construct, organize and visualize topi-
cally related web resources.

Visualization and exploration
Apolo builds on a large body of research aimed at un-
derstanding and supporting how people can gain insights
through visualization [17]. A number of tools have been de-
veloped to support “landscape” views of information. These
include WebBook and WebForager [6], which use a book
metaphor to find, collect, and manage web pages; Butter-
fly [21] aimed at accessing articles in citation networks; and
Webcutter, which collects and presents URL collections in
tree, star, and fisheye views [20]. For a more focused review
on research visualizing bibliographic data, see [23].

In contrast to many of these systems which focus on pro-
viding overviews of information landscapes, Apolo adopts
a bottom-up sensemaking approach [31] aimed at helping
users construct their own landscapes of information. This is
because people may have very different mental representa-
tions of information depending on their individual goals and
prior experiences. To address this problem, some research
has explored local exploration of graphs, including Treeplus
[19], Vizster [10], and the degree-of-interest approach pro-
posed in [37]. These approaches generally support the idea
of starting with a small subgraph and expanding nodes to
show their neighborhoods (and in the case of [37], help
identify useful neighborhoods to expand). One key differ-
ence with these works is that Apolo changes the very struc-
ture of the expanded neighborhoods based on users’ interac-
tions, rather than assuming the same neighborhoods for all
users. We will describe this approach in more detail when
discussing Apolo’s core design factors.

Graph mining algorithms and tools
A lot of research in graph mining studies how to automati-
cally discover clusters (or groupings) in graphs, e.g., Graph-
cut [18], METIS [13]. Much work has also been done on de-
veloping methods to compute relevance between two nodes
in a network; many of them belong to the class of spreading-
activation [2] or propagation-based algorithms, e.g., HITS
[15], PageRank [5], and random walk with restart [36]. Used
by Apolo, Belief Propagation [40] is a message passing al-
gorithm over link structures similar to spreading activation,
but it is uniquely suited for graph sensemaking because it
offers simultaneous support for: multiple user-specified ex-
emplars (unlike [37]); any number of groups (unlike [2, 12,
37]); linear scalability with the number of edges (best pos-
sible for most graph algorithms); and soft clustering, sup-
porting membership in multiple groups (unlike [18]). Few
tools have integrated graph algorithms to interactively help
people make sense of network information [12, 27, 37], and
they often only support some of the sensemaking features
offered by Apolo, e.g., [37] supports one group and a single
exemplar.

INTRODUCING APOLO

The user interface
The Apolo user interface is composed of three main areas
(Figure 2). The Configuration Panel at the top (1) provides
several means for the user to reduce visual clutter and en-
hance readability of the visualization. Citation edges and ar-
ticle titles (i.e., node names) can be made invisible, and the
font size and the visible length of the titles can be varied via
sliders. On the left is the Filter Panel (2) and Group Panel
(3). The Filter Panel provides filters to control the types of
nodes to show; the default filter is “Everything”, showing all
types of nodes, except hidden ones. Other filters show nodes



that are starred, annotated, pinned, selected, or hidden. The
Group Panel lets the user create, rename, and delete groups.
Group names are displayed with the automatically assigned
color (to the left of the name) and the exemplar count (right
side). Each group label also doubles as a filter, which causes
only the exemplars of that group to be visible. The Visual-
ization Panel (4) is the primary space where the user inter-
acts with Apolo to incrementally and interactively build up
a personalized visualization of the data.

Apolo in action
We show how Apolo works in action through a sensemak-
ing scenario of exploring and understanding the landscape
of the related research areas around the seminal article The
Cost Structure of Sensemaking by Russell et al. (Figure 2
shows final results). This example uses real citation network
data mined from Google Scholar using a breadth-first strat-
egy to crawl all articles within three degrees from the above
paper. The dataset contains about 83,000 articles (nodes)
and 150,000 citations relationships (edges, each represents
either a “citing” or “cited-by” relationships). This scenario
will touch upon the interactions and major features of Apolo,
and highlight how they work together to support sensemak-
ing of large network data. We will describe the features in
greater depth in the next section.

We begin with a single source article highlighted in black
in the center of the interface (Figure 3a) and the ten most
relevant articles as determined by the built-in BP algorithm.
Articles are shown as circles with sizes proportional to their
citation count. Citation relationships are represented by di-
rected edges.

After viewing details of an article by mousing over it (Fig-
ure 4), the user moves it to a place on the landscape he thinks
appropriate, where it remains pinned (as shown by the white
dot at the center). The user can also star, annotate, unpin,
or hide the node if so desired. After spatially arranging a
few articles the user begins to visually infer the presence of
two clusters: articles about information visualization (Info-
Vis) and collaborative search (Collab Search). After cre-
ating the labels for these two groups (Figure 3a), the user
selects a good example article about InfoVis and clicks the
InfoVis label, as shown in Figure 4, which puts the article
into that group. A small blue dot (the group’s color) ap-
pears below the article to indicate it is now an exemplar of
that group. Changing an article’s group membership causes
BP to execute and infer the relevance of all other nodes in

Figure 4. The Details Panel, shown when mousing over an article, dis-
plays article details obtained from Google Scholar. The user has made
the article an exemplar the InfoVis group by clicking the group’s label.

Figure 5. a) Pop-up menu shown upon right click; the user can choose
to show more articles, add suggested articles for each group, rank sets
of nodes in-place within the visualization, hide or unpin nodes. b)
Newly added neighboring nodes ranked by citation count; they are
selected by default to allow the user to easily relocate them all to a
desired location. c) The same nodes, ranked by their “belongness” to
the (blue) InfoVis group; articles whose titles contain“visual” are high-
lighted with yellow halos.

the network relative to the exemplar(s). A node’s relevance
is indicated by its color saturation; the more saturated the
color, the more likely BP considers the node to belong to
the group. Figure 3b-d show how the node color changes as
more exemplars are added.

Our user now would like to find more articles for each group
to further his understanding of the two research areas. The
user right-clicks on the starting paper and selects “Add next
10 most cited neighbors” from the pop-up menu (Figure 5a).
By default, new nodes added this way are ranked by cita-
tion count (proportional to node size, as shown in Figure 5b)
and initially organized in a vertical list to make them easy to
identify and process. To see how relevant these new nodes
are, he uses Apolo’s rank-in-place feature to rank articles by
their computed relevance to the InfoVis group. To quickly
locate the papers about visualization, our user types “visual”
in the search box at the top-right corner (Figure 5c) to high-
light all articles with “visual” in their titles.

Going further down the list of ranked articles, our users
found more InfoVis articles and put them all into that group.
Within it, our user further creates two subgroups spatially, as
shown in Figure 6, the one on top containing articles about
visualization applications (e.g., Data mountain: using spa-
tial memory for document management), and the lower sub-
group contains articles that seem to provide analytical type
of information (e.g., The structure of the information visual-
ization design space). Following this work flow, our user can
iteratively refine the groups, create new ones, move articles

Figure 6. Two spatial subgroups



between them, and spatially rearrange nodes in the visual-
ization. The user’s landscape of the areas related to Sense-
making following further iterations is shown in Figure 2.

CORE DESIGN RATIONALE
Below we discuss core factors that demonstrate Apolo’s con-
tributions in supporting sensemaking.

Guided, personalized sensemaking and exploration
A key factor in the design of Apolo was having exploration
and sensemaking be user-driven rather than data-driven—
using structure in the data to support the user’s evolving
mental model rather than forcing the user to organize their
mental model according to the structure of the data. This led
to several interrelated features and design decisions. First,
it drove our decision to support exploration through con-
struction, where users create a mental map of an informa-
tion space. By allowing users to define the map by pinning
nodes to the layout, the system provides stability: famil-
iar landmarks do not shift, unless the user decides to shift
them. Contrast this to a pure force-directed layout algo-
rithm, which may place items in a different location every
time or shift all items when one is moved. Apolo’s support
for hybrid layout, mixing user-driven and automatic layout,
is also different from work on semi-automatic layout (e.g.,
[32]) that uses constraints to improve a final layout, whereas
Apolo supports constraints (fixing node positions) to help
users evolve and externalize their mental models.

Second, instead of using an unsupervised graph clustering
algorithm that uses the same similarity space for every user
(as in [27]), we adapted a semi-supervised algorithm (BP)
that would fundamentally change the structure of the sim-
ilarity space based on user-labeled exemplars. Apolo uses
this algorithm to find relevant nodes when starting up or
when the user asks for group- or paper-relevant nodes, and to
quantify relevance for use in ranking-in-place or indicating
relevance through color. This means that even if two users’
landscapes included the same nodes, those landscapes could
be very different based on their goals and prior experience.

Multi-group Sensemaking of Network Data
Another important factor was the ability to support multi-
ple dynamic, example-based groups. Theories of categoriza-
tion suggest that people represent categories and schemas
through examples or prototypes [29], as opposed to what are
typical way of interacting with collections of information
online such as search queries or tags. Furthermore, items
may and often do belong to multiple groups, leading to a
need for “soft” clustering.

Apolo was designed to support multiple groups both in the
interface and algorithmically. In the interface, users can eas-
ily create multiple groups and move nodes into and out of
one or more groups (via the Details Panel, Figure 4). Users
can also see the degree to which the algorithm predicts items
to be in a group through color. The use of the BP algo-
rithm is instrumental as it can support fast, soft clustering on
an arbitrary number of groups; many graph-based spreading
activation-style algorithms are limited to one or two groups
(such as PageRank [5], and random walk with restart [36]).

Evaluating exploration and sensemaking progress
Sensemaking involves evolution and re-representation of the
user’s mental model. Users typically continue evolving
their models until they stop encountering new information;
when the new information they encounter confirms rather
than changes their existing mental representations; and when
their representations are sufficiently developed to meet their
goals. To assist in this evaluation process, Apolo surfaces
change-relevant information in a number of ways. It helps
the user keep track of which items have been seen or hid-
den. New nodes are added in a systematic way (Figure 5),
to avoid disorienting the user. Pinned nodes serve as fixed
landmarks in the users’ mental map of the information space
and can only be moved through direct action by the user.
When saving and loading the information space, all pinned
nodes remain where the user put them. Apolo uses all these
features together to preserve the mental map that the user has
developed about the graph structure over time [24].

As a node’s group membership can be “toggled” easily, the
user can experiment with moving a node in and out of a
group to see how the relevance of the other nodes change, as
visualized through the nodes’ color changes; thus the effect
of adding more exemplars (or removing them) is easily ap-
parent. Also, color changes diminishing over time can help
indicate the user’s representations stabilizing.

Rank-in-place: adding meaning to node placement
Typically, layout algorithms for graphs (e.g., force-based
layouts) try to layout nodes to minimize occlusion of nodes
and edges, or to attain certain aesthetic requirements [9].
These layouts usually offer little help with the sensemaking
process. Approaches to address this problem include “linked
views”, which use a separate view of the data (e.g., scatter
plot) to aid node comparison; and imparting meaning to the
node locations (e.g., in NodeXL [33] and PivotGraph [39]).
However, the above approaches are often global in nature:
all nodes in the network are repositioned, or a new, dedi-
cated visualization created.

Apolo’s main difference is that it offers a rank-in-place fea-
ture that can rank local subsets of nodes in meaningful ways.

Figure 8. Our user applies two rank-in-place arrangements to the exem-
plars of Collaborative Search group (left, ranked by their “belongness”
to the group) and the InfoVis group (right, ranked by year). These
two side-by-side arrangements reveal several insights: 1) the Collabo-
rative Search articles are less cited (smaller node sizes), as the research
is more recent; 2) only the article Exploratory Search in the Collabo-
rative Search group cited the source paper, while three papers in the
InfoVis has either cited or been cited by the source paper.



Figure 7. Illustrating how the user can learn more about a set of nodes using the rank-in-place feature, which imparts meaning to the nodes’ locations,
by vertically aligning and ordering them by a specified node attribute. (Node names have been hidden in figures c and d to reduce clutter.) a) Without
using rank-in-place, nodes’ positions are determined by a force-directed layout algorithm, which strives for aesthetic pleasantness, but offers little to
help with sensemaking. b) Using rank-in-place, our user ranks the articles by their “belongingness” to the Collaborative Search group. c) Ranking
articles by year reveals a different structure to the data. d) Ranking by citation count shows the “WebBook” article appears at the top as most cited.

Figure 7 shows one such example. Furthermore, the user can
create multiple, simultaneous arrangements (through rank-
ing) for different sets of nodes, which can have independent
arrangement criteria (e.g., one ranks by year, the other ranks
by citation count). We designed for this flexibility to al-
low other characteristics of the nodes (e.g., their edges, node
sizes) to still be readily available, which may then be used
in tandem with the node arrangement across multiple rank-
ings (see Figure 8). Recently, researchers are exploring tech-
niques similar to rank-in-place, to create scatterplots within
a network visualization [38].

IMPLEMENTATION & DEVELOPMENT

Informed design through iterations
Sensemaking for large network data is an important problem
which will undoubtedly take years of research to address. As
such, our Apolo system only solves part of it; however, the
system’s current design is the result of over two years’ in-
vestigation and development effort through many iterations
and two major revisions.

The first version of Apolo presented suggestions in ranked
lists without a visualization component (Figure 9), one list
for each group in a floating window. Users’ exemplars
showed up at the top of the lists with the most relevant items
in ranked order below them . We initially thought that the
high data density and ease of comprehension of the list for-
mat might lead to better performance than a spatial layout.
However, our users quickly pointed out the lack of a spatial
layout, both as a workspace to externalize their mental rep-
resentations as well as to understand the relations between

Figure 9. The first version of Apolo

items and between groups. This finding prompted us to add
a network visualization component to the second revision.
While working towards the second revision, we conducted
contextual inquiries with six graduate students to better un-
derstand how they make sense of unfamiliar research top-
ics through literature searches. We learned that they often
started with some familiar articles, then tried to find works
relevant to them, typically first considering the articles that
cited or were cited by their familiar articles. Next, they con-
sidered those new articles’ citation lists. And they would
repeat this process until they had found enough relevant arti-
cles. This finding prompted us to add support for incremen-
tal, link-based exploration of the graph data.

We studied the usability of the second revision through a
pilot study, where we let a few researchers use Apolo to
make sense of the literature around new topics that they re-
cently came across. We learned that (1) they had a strong
preference in using spatial arrangement to manage their ex-
ploration context, and to temporarily organize articles into
approximate (spatial) groups; (2) they used the visualiza-
tion directly most of the time, to see relations between ar-
ticles and groups, and they only used the list for ranking
articles. These findings prompted us to rethink Apolo’s in-
teraction design, and inspired us to come up with the rank-
in-place technique that offers benefits of both a list-based
approach and a spatial layout. Rank-in-place lays out nodes
at a greater density, while keeping them quick to read and
their relations easy to trace. With this new technique, we
no longer needed the suggestion lists, and the visualization
became the primary workspace in Apolo.

System Implementation
The Apolo system is written in Java 1.6. It uses the JUNG
library [26] for visualizing the network. The network data
is stored in an SQLite1 embedded database, for its cross-
platform portability and scalability up to tens of gigabytes.
One of our goals is to offer Apolo as a sensemaking tool that
work on a wide range of network data, so we designed the
network database schema independently from the Apolo sys-
tem, so that Apolo can readily be used on different network
datasets that follow the schema.
1www.sqlite.org



We implemented BP as described in [22]. The key settings
of the algorithm include: (1) a node potential function that
represents how likely a node belongs to each group (a value
closer to 1 means more likely), e.g., if we have two groups,
then we assign (0.99, 0.01) to exemplars of group 1, and
(0.5, 0.5) to all other nodes; (2) an edge potential function
that governs to what extent an exemplar would convert its
neighbors into the same group as the exemplar (a value of 1
means immediate conversion; we used 0.58).

EVALUATION
To evaluate Apolo, we conducted a laboratory study to as-
sess how well people could use Apolo on a sensemaking task
on citation data of scientific literature. At a high-level, we
asked participants to find papers that could be used to up-
date the related work section of a highly cited survey paper
describing software tools for HCI [25]. We considered using
other datasets such as movie data, but we felt that evaluation
could be too subjective (genres are hard to define). In con-
trast, scientific literature provides a good balance between
objectivity (some well-known research areas) and subjectiv-
ity (subject’s different research experience). Another rea-
son we chose scientific literature was because it was eas-
ier to assess “ground-truth” for evaluating the study results.
More specifically, we used literature from computer science
research areas of HCI (i.e., UIST), and had experts at our
institution help establish “ground truth.”

Participants
We recruited twelve participants from our university through
a recruitment web site managed by our institution and
through advertisements posted to a university message
board. All participants were either research staff or stu-
dents, and all had backgrounds in computer science or re-
lated fields, so they would be comfortable with the techni-
cal computer-related terms mentioned in the study materials.
Our participants’ average age was 24, and 9 were male and
3 were female. All participants were screened to make sure
they had (1) participated in research activities, (2) were not
familiar with user interface (UI) research, and (3) had con-
ducted literature search before using Google Scholar. Seven
of them have used other citation managers/websites, such as
PubMed or JSTOR. Each study lasted for about 90 minutes,
and the participants were paid $15 for their time.

We also had two judges who were experts with HCI research
help evaluate the results of the participants. These judges
have taught classes related to the UIST topics that the par-
ticipants were exploring.

Apparatus
All participants used the same laptop computer that we pro-
vided. It was connected to an external 24” LCD monitor,
with a mouse and keyboard. The computer was running
Windows 7 and had Internet Explorer installed, which was
used for all web-browsing-related activities. For the Apolo
condition, we created a web crawler that downloaded cita-
tion data from Google Scholar using a breadth-first-search
within three degrees of separation using the survey paper as

the starting point. There was a total of about 61,000 articles
and 110,000 citations among them.

Experiment Design & Procedure
We used a between-subjects design with two conditions: the
Apolo condition and the Scholar condition, where partici-
pants used Google Scholar to search for papers. We consid-
ered using a within-subjects design, where the participants
would be asked to find related work for two different survey
papers from different domains using the two tools; however
that would require the participants to simultaneously have a
background in both domains while not being knowledgeable
about both. We believed these constraints would make the
scenarios used in the study overly artificial, and that qualified
participants would be much harder to come across. However,
we still wanted to elicit subjective feedback from the partic-
ipants, especially for their thoughts on how the two tools
compare to each other for the given task. To do this, we aug-
mented each study with a second half where the participants
used the other tool that they did not use in the first half. None
of the data collected during these second tasks were used in
the quantitative analysis of the results.

We asked participants to imagine themselves as researchers
new to research in user interfaces (UI) who were tasked with
updating an existing survey paper published in 2000. The
participants were asked to find potentially relevant papers
published since then, where relevant was defined as papers
that they would want to include in an updated version. We
felt that defining “relevant” was necessary and would be un-
derstandable by researchers. Given that finding relevant pa-
pers for the entire survey paper would be a very extensive
task, both for participants and for the judges, we asked par-
ticipants to focus on only two of the themes presented in
the survey paper: automatically generating user interfaces
based on models and rapid prototyping tools for physical
devices, not just software (both paraphrased), which were in
fact section titles in the paper.

In each condition, the participants spent 25 minutes on the
literature search task. They were to spend the first 20 min-
utes to collect relevant articles, then the remaining five to
select, for each category, 10 that they thought were most
relevant. They did not have to rank them. We limited the
time to 25 minutes to simulate a quick first pass filter on
papers. In the Google Scholar condition, we set the “year
filter” to the year 2000 so it would only return articles that
were published on or after that year. In the Apolo condi-
tion, we started people with the survey paper. Participants in
the Apolo condition were given an overview of the different
parts of Apolo’s user interface and interaction techniques,
and a sheet of paper describing its main features.

Results
We examined our results using both a quantitative approach
as well as subject measures. We pooled together all the arti-
cles that the participants found in the study and divided them
into two stacks, “model-based” and “prototyping”, accord-
ing to how they were specified by the participants. For each
article, we located a soft copy (usually a PDF) and printed
out the paper title, abstract and author information. We col-



Figure 10. a) Average combined judges’ scores; an article from a par-
ticipant receives a score of 1 when it is considered relevant by an expert
(min is 0, max is 2). The average score across both categories was signif-
icantly higher in the Apolo condition. Error bars represent -1 stdev, *
indicates statistically significant. b) The number of articles considered
relevant by the two expert judges (blue and orange). The total number
of articles found by participants are in gray. The two experts strongly
agree with each other in their judgment.

lected these printouts and sorted them alphabetically. These
printouts were used by the expert judges. We had the two
judges select papers relevant to the topic. We represented
each expert’s judgment as a vector of 0s and 1s. An arti-
cle was marked with “1” if the expert considered it relevant,
and “0” otherwise. We used cosine similarity to evaluate the
similarity between the two experts. A score of 1 means com-
plete agreement, and 0 means complete disagreement. For
the “Model-based” articles, the cosine similarity between the
experts’ judgement was 0.97. For the “Prototyping” articles,
despite few papers being considered relevant by the judges,
the cosine similarity was 0.86.

In our evaluation, the independent factor is “participant”,
and the dependent factor is the relevance scores assigned by
the expert judges. Using a two-tailed t-test, we found the av-
erage score across both categories was significantly higher in
the Apolo condition (t(9.7) = 2.32, p < 0.022), as shown in
Figure 10a. We also note that participants in both conditions
did well for finding papers related to model-based interfaces.
One reason for this is that papers in this category tended to
have the word “automatic” or “model” in the title. However,
the same was not true for papers in the prototyping category.

Subjective Results
Overall, participants felt that Apolo improved their sense-
making experience. Based on a post-test survey, Apolo
seemed to be easy to use, as shown in Figure 11 and 12.
These results are encouraging given that Apolo was not de-
signed as a walk-up-and-use system.

We organized qualitative feedback from participants into
three categories. The first relates to general sensemaking
and organization. One participant said that Apolo “helped
much more in organizing search[...] Google was a bit ran-
dom.” The graph visualization was also helpful. One person
said that it “helped me see the citation network in which ar-
ticles cited which ones”. Another said that the “indication of
degree relevance by color was extremely helpful and easy to
use and it also helped to make sense of the articles.” Being
able to spatially organize papers was also a useful feature
and participants were happy about using it. One person said

Figure 11. Subjective ratings of Apolo. Participants rated Apolo favor-
ably. Features for grouping, suggesting and ranking nodes, were highly
rated. Apolo’s usage was very clear to most participants (green bar).

that “arrangement of articles in my order of preference & my
preferred location was easy.” We do note that the task that
we had participants do was somewhat limited in scale, but
for the current task the screen real estate available was suf-
ficient. Seeing connections between papers was also help-
ful. Participants said that “it helped me see the citation net-
work in which articles cited which ones”, and that it was an
“easy way to list & relate citations graphically.” Participants
also had constructive feedback for improving Apolo. One
comment was to have abstracts be more readily available in
Apolo (a constraint of the crawling software, since Google
Scholar does not have full abstracts in an accessible format).
Another comment was that there would often be too many
edges, a problem common to graph visualizations.

Discussion and Limitations
While the results of our evaluation was positive, there are
also several limitations. For example, we only had partic-
ipants examine two themes. Having more themes would
stress the screen real estate. Apolo currently has minimal
features for managing screen real estate.

We also did not evaluate category creation and removal; par-
ticipants were given two categories that correspond to two

Figure 12. Participants liked and enjoyed using Apolo, and would like
to use it again in the future. They generally found Apolo more useful
than Google Scholar in helping them find relevant articles and make
sense of them.



sections in the given overview paper, which may not be the
most natural categories that they would like to create. How-
ever, if we were to allow the participants to create any group
they wanted, the great variety of possible groups created
would make our evaluation extremely difficult. Moreover, a
pilot study found that more categories required more prior
knowledge than participants would have. Two categories
were in fact already challenging, as indicated by the few rel-
evant articles found for the “Prototyping” group.

The need for the participants to categorize articles was cre-
ated by the tasks; however, in real-world scenarios, such
needs would be ad hoc. We plan to study such needs, as well
as how Apolo can handle those kinds of tasks, in less con-
trolled situations. For example, how many groups do people
create? Do the groupings evolve over time, such as through
merging or subdivision. How well do the findings of sense-
making literature apply to large graph data?

DISCUSSION & FUTURE WORK
We believe mixed-initiative approaches for network explo-
ration are becoming increasingly important as more datasets
with millions or even billions of nodes and edges are be-
coming available. These numbers vastly exceed people’s
limited cognitive capacities. By combining a person’s rea-
soning skills with computer algorithms for processing large
amounts of data, we hope to reduce the disparity in gain-
ing access to and comprehending the vast amount of graph
data that have become increasingly available. Automated
analysis methods and algorithms for extracting useful infor-
mation, such as patterns and anomalies, are active research
topics. However, these methods can rarely give the perfect
solutions, or even if they can, it is necessary to convey such
information to the user. Our work seeks to reach the goal of
supporting sensemaking through a mix of rich user interac-
tion and machine learning.

Visually managing many nodes is also an open problem in
graph sensemaking; Apolo currently focuses on filtering,
e.g. enabling users to remove nodes from the visualization,
re-add them, or focus only on selected ones. By integrating
BP, we hope to help users find relevant nodes quickly and re-
move unnecessary nodes from the visualization more easily
than a manual approach. We have been experimenting with
methods that will help further, such as semantic zooming,
and reversibly collapsing nodes into meta nodes.

Apolo currently relies exclusively on the link-structure of a
graph to make relevance judgments. In the future, we would
like to integrate other types of information as well, such as
the textual content of the nodes and edges (e.g., the content
of an article), edge weights, and temporal information (par-
ticularly important for analyzing dynamic networks).

We are also developing features in Apolo to support data
from many more sources. Some of these include other ci-
tation data sets, such as from the ACM and the IEEE digi-
tal libraries, CiteSeerX, and using one’s own personal cita-
tion libraries (in software like Zotero, Mendeley, and End-
Note) to discover new papers. However, Apolo can be used
on any network data; for example, we have conducted suc-

cessful proof of concepts integrations of tagging data from
delicious, friendship networks from Facebook, and recipe-
ingredient networks. As we move forward it will be impor-
tant to understand the degree to which context-specific fea-
tures are necessary in order to support sensemaking across
a variety of domains. Finally, we plan to release Apolo for
general use and collect feedback and ideas from the commu-
nity about its usefulness and how to improve it.

CONCLUSIONS
This paper introduces Apolo, a mixed-initiative system for
helping users make sense of large network data. Apolo
tightly couples large scale machine learning with rich in-
teraction and visualization features to help people explore
graphs through constructing personalized information land-
scapes. We demonstrate the utility of Apolo through a sce-
nario and evaluation of sensemaking in scientific literature.
The results of the evaluation suggest the system provides sig-
nificant benefits to sensemaking and was viewed positively
by users. This work focuses on the scientific literature do-
main; a recent work [12] showed that approaches similar to
ours (based on spreading activation) could also work well for
graph data of websites and tags. We believe that the ideas in
Apolo can be helpful for many other kinds of data intensive
domains, by aiding analysts in sifting through large amounts
of data and directing users’ focus to interesting items.

ACKNOWLEDGEMENT
We thank Scott Hudson and Brad Myers for their help with
the user study. This work is partially supported by an
IBM Faculty Award, the National Science Foundation un-
der Grants No. CNS-0721736, IIS0970179, IIS-0968484,
OCI-0943148 and under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory un-
der contract No. DE-AC52-07NA27344, and by the Army
Research Laboratory under Cooperative Agreement Num-
ber W911NF-09-2-0053. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, ei-
ther expressed or implied, of the Army Research Labora-
tory, the U.S. Government, NSF, or any other funding par-
ties. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation here on.

REFERENCES
1. B. Amento, W. Hill, L. Terveen, D. Hix, and P. Ju. An

empirical evaluation of user interfaces for topic
management of web sites. In Proc. CHI, page 559.
ACM, 1999.

2. J. Anderson. A spreading activation theory of memory.
Journal of verbal learning and verbal behavior,
22(3):261–95, 1983.

3. M. Q. W. Baldonado and T. Winograd. Sensemaker: an
information-exploration interface supporting the
contextual evolution of a user’s interests. In Proc. CHI,
pages 11–18. ACM Press New York, NY, USA, 1997.

4. L. Barsalou. Ad hoc categories. Memory & Cognition,
11(3):211–227, May 1983.

5. S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine* 1. Computer



networks and ISDN systems, 30(1-7):107–117, 1998.
6. S. Card, G. Robertson, and W. York. The WebBook and

the Web Forager: an information workspace for the
World-Wide Web. In Proc. CHI. ACM, 1996.

7. D. Cutting, D. Karger, J. Pedersen, and J. Tukey.
Scatter/gather: A cluster-based approach to browsing
large document collections. In Proc. SIGIR, pages
318–329. ACM Press, 1992.

8. B. Dervin. An overview of sense-making research:
concepts, methods and results to date. In International
Communications Association Annual Meeting, 1983.

9. G. Di Battista, P. Eades, R. Tamassia, and I. Tollis.
Graph drawing: algorithms for the visualization of
graphs. Prentice Hall PTR Upper Saddle River, NJ,
USA, 1998.

10. J. Heer and D. Boyd. Vizster: Visualizing online social
networks. Proc. InfoVis, pages 33–40, 2005.

11. K. Holyoak and P. Thagard. Mental leaps: Analogy in
creative thought. The MIT Press, 1996.

12. Y. Kammerer, R. Nairn, P. Pirolli, and E. H. Chi.
Signpost from the masses: learning effects in an
exploratory social tag search browser. In Proc. CHI,
2009.

13. G. Karypis and V. Kumar. METIS: Unstructured graph
partitioning and sparse matrix ordering system. The
University of Minnesota, 2.

14. F. Keil. Concepts, kinds, and cognitive development.
The MIT Press, 1989.

15. J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM (JACM),
46(5):604–632, 1999.

16. P. Klerks. The network paradigm applied to criminal
organisations. Connections, 24(3):53–65, 2001.

17. B. Kules. From keyword search to exploration: How
result visualization aids discovery on the web.

18. V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: Image and video synthesis using
graph cuts. ACM Transactions on Graphics,
22(3):277–286, 2003.

19. B. Lee, C. Parr, C. Plaisant, B. Bederson, V. Veksler,
W. Gray, and C. Kotfila. Treeplus: Interactive
exploration of networks with enhanced tree layouts.
TVCG, pages 1414–1426, 2006.

20. Y. Maarek, M. Jacovi, M. Shtalhaim, S. Ur, D. Zernik,
and I. Ben-Shaul. WebCutter: a system for dynamic
and tailorable site mapping. Computer Networks and
ISDN Systems, 29(8-13):1269–1279, 1997.

21. J. Mackinlay, R. Rao, and S. Card. An organic user
interface for searching citation links. In Proc. CHI,
page 73. ACM, 1995.

22. M. McGlohon, S. Bay, M. G. Anderle, D. M. Steier,
and C. Faloutsos. Snare: a link analytic system for
graph labeling and risk detection. In Proceedings of the
15th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’09,
pages 1265–1274, New York, NY, USA, 2009. ACM.

23. G. McKiernan. New Age Navigation. The Serials
Librarian, 45(2):87–123, 2003.

24. K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout

adjustment and the mental map. Journal of Visual
Languages and Computing, 6(2):183–210, 1995.

25. B. Myers, S. Hudson, and R. Pausch. Past, present, and
future of user interface software tools. TOCHI,
7(1):3–28, 2000.

26. J. OMadadhain, D. Fisher, P. Smyth, S. White, and
Y. Boey. Analysis and visualization of network data
using JUNG. Journal of Statistical Software, 10:1–35,
2005.

27. A. Perer and B. Shneiderman. Integrating statistics and
visualization: case studies of gaining clarity during
exploratory data analysis. In Proc. CHI, pages
265–274, New York, NY, USA, 2008. ACM.

28. P. Pirolli and S. Card. The sensemaking process and
leverage points for analyst technology as identified
through cognitive task analysis. In Proc. IA, 2005.

29. E. Rosch and C. Mervis. Family resemblances: Studies
in the internal structure of categories. Cognitive
psychology, 7(4):573–605, 1975.

30. D. M. Russell, M. Slaney, Y. Qu, and M. Houston.
Being literate with large document collections:
Observational studies and cost structure tradeoffs. In
HICSS, page 55. IEEE, 2006.

31. D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card.
The cost structure of sensemaking. In Proc. CHI, pages
269–276. ACM Press, 1993.

32. K. Ryall, J. Marks, and S. Shieber. An interactive
constraint-based system for drawing graphs. In Proc.
UIST, pages 97–104. ACM, 1997.

33. M. Smith, B. Shneiderman, N. Milic-Frayling,
E. Mendes Rodrigues, V. Barash, C. Dunne, T. Capone,
A. Perer, and E. Gleave. Analyzing (social media)
networks with NodeXL. In Proc. C&T, pages 255–264.
ACM, 2009.

34. J. Stasko, C. Gorg, Z. Liu, and K. Singhal. Jigsaw:
supporting investigative analysis through interactive
visualization. InfoVis, 7(2):118, 2008.

35. L. Terveen, W. Hill, and B. Amento. Constructing,
organizing, and visualizing collections of topically
related web resources. TOCHI, 6(1):94, 1999.

36. H. Tong, C. Faloutsos, and J. Pan. Fast random walk
with restart and its applications. In ICDM, pages
613–622, 2006.

37. F. van Ham and A. Perer. “Search, Show Context,
Expand on Demand”: Supporting Large Graph
Exploration with Degree-of-Interest. IEEE TVCG,
15(6).

38. C. Viau, M. J. McGuffin, Y. Chiricota, and I. Jurisica.
The flowvizmenu and parallel scatterplot matrix:
Hybrid multidimensional visualizations for network
exploration. IEEE Transactions on Visualization and
Computer Graphics, 16:1100–1108, 2010.

39. M. Wattenberg. Visual exploration of multivariate
graphs. In Proc. CHI, page 819. ACM, 2006.

40. J. Yedidia, W. Freeman, and Y. Weiss. Understanding
belief propagation and its generalizations. Exploring
artificial intelligence in the new millennium,
8:236–239, 2003.


	Introduction
	Related Work
	Sensemaking
	Visualization and exploration
	Graph mining algorithms and tools

	Introducing Apolo
	The user interface
	Apolo in action

	Core Design Rationale
	Guided, personalized sensemaking and exploration
	Multi-group Sensemaking of Network Data
	Evaluating exploration and sensemaking progress
	Rank-in-place: adding meaning to node placement

	Implementation & Development
	Informed design through iterations
	System Implementation

	Evaluation
	Participants
	Apparatus
	Experiment Design & Procedure
	Results
	Subjective Results
	Discussion and Limitations

	Discussion & Future Work
	Conclusions
	Acknowledgement
	REFERENCES 

