Real-Time Image-based Topological Localization in Large Outdoor Environments

David M. Bradley, Rashmi Patel, Nicolas Vandapel, Scott M. Thayer
Carnegie Mellon University
IROS August 5th, 2005

Unrestricted non-commercial use and modification of these slides is allowed as long as the accompanying paper is cited. A copy of these slides is available at: www.davidbradley.info/publications, and the PowerPoint originals are also freely available by e-mailing David M. Bradley

Copyright © 2005, David M. Bradley
Localization in Large Unstructured Environments

- Large scale environments
- Variable lighting conditions
- Demonstrated real-time localization
- Image-based feature matching
- On-board local sensing with prior map
- Research philosophy:
 - Data association is the weak link
Localization to a prior map

- Camera image varies continuously as camera moves
 → 3D manifold in high-dimensional image space
- Image feature vectors are stored for each location \((x, y, \theta)\)
 → Reduced storage and matching costs
 → Reduce sensitivity to noise
- Close in feature space → close in physical space

Copyright © 2005, David M. Bradley
Gradient Orientation Histograms

- Divide image into sub-regions
- Histogram the image gradient orientation weighted by its magnitude
- Concatenate histograms into one vector
- Threshold and normalize
- Inspired by [1] and Similar to feature used in [2]
- Compare descriptors using:

\[d(X_i, X_j) = 1 - X_i X_j^T \]

Fort Indiantown Gap Test

- 100k pairs of GPS-tagged images
- 70 km accumulated driving
Fort Indiantown Gap Data Set

Paths Driven

<table>
<thead>
<tr>
<th>Weather</th>
<th># of runs</th>
<th>Avg. # of images</th>
<th>Avg. path length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>10</td>
<td>4723</td>
<td>2.8 km</td>
</tr>
<tr>
<td>Overcast</td>
<td>8</td>
<td>4919</td>
<td>3.05 km</td>
</tr>
<tr>
<td>Dusk</td>
<td>2</td>
<td>4333</td>
<td>2.8 km</td>
</tr>
<tr>
<td>Night</td>
<td>3</td>
<td>4044</td>
<td>3.1 km</td>
</tr>
</tbody>
</table>

Copyright © 2005, David M. Bradley
Real-time Localization

- Nearest neighbor found for each new observation
- If feature-space distance < threshold, accept match
- 7 Hz operation with a prior map of 4700 images
 → Limited by feature creation, not comparison
Sample Matching Results

Onboard Camera

On Target Path

Path Deviation Detection Results Video

time: 0.0s
distance traveled: 0.01km
speed: 7.1mph

best match fd: 0.02
certainty: 100%

Copyright © 2005, David M. Bradley
Probabilistic Localization Error Bounds

Feature space threshold set to detect 50% of pairs within 3 m and 9°

Overcast

P(match error < X) for PD>=0.500

Sunny

P(match error < X) for PD>=0.500

Probability that feature-space matches were taken within X m

Random Chance

Copyright © 2005, David M. Bradley
Overcast Conditions

- > 90% probability of detection with 6% false alarm rate
- Similar performance across imaging frequency bands and resolutions

Note change in scale
Sunny Conditions

• > 80% probability of detection with 6% false alarm rate
• Strong shadows change as the sun moves
• CCD saturates when sun is in FOV
 → High Dynamic range environment

Copyright © 2005, David M. Bradley
Night-time Conditions

- >50% probability of detection with 6% false alarm rate

Copyright © 2005, David M. Bradley
Performance Between Environmental Conditions

- Salt and pepper noise
- Strong Shadows
- Drastic lighting change

Night - NIR

Copyright © 2005, David M. Bradley
Perceptual Aliasing

- Robot kidnapping problem at every iteration
- Similar areas require filtering over time to reject false positives
Conclusions

• Pruning method
 → Low computational and storage requirements

• Sufficient Accuracy for large environments

• Resolve ambiguities with more expensive:
 → Temporal Filtering
 – HMM [3]
 – Maximum Likelihood [4]
 → Perceptual features
 – SIFT

• Helpful if the environment constrains the robots configuration space

• Currently working on increasing feature robustness across illumination changes

Acknowledgements

- General Dynamics Robotics Systems
- U.S. Army Tank-automotive and Armaments Command
- Christopher Baker, Zachary Omohundro and Christopher Atwood
- Anthony Stentz and Marc Zinck
- Martial Hebert
Why have RGB and NIR?