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Abstract— A key challenge for autonomous navigation in
cluttered outdoor environments is the reliable discrimination
between obstacles that must be avoided at all costs, and
lesser obstacles which the robot can drive over if necessary.
Chlorophyll-rich vegetation in particular is often not an obstacle
to a capable off-road vehicle, and it has long been recognized
in the satellite imaging community that a simple comparison
of the red and near-infrared (NIR) reflectance of a material
provides a reliable technique for measuring chlorophyll content
in natural scenes. This paper evaluates the effectiveness of using
this chlorophyll-detection technique to improve autonomous
navigation in natural, off-road environments. We demonstrate
through extensive experiments that this feature has properties
complementary to the color and shape descriptors traditionally
used for point cloud analysis, and show significant improvement
in classification performance for tasks relevant to outdoor
navigation. Results are shown from field testing onboard a robot
operating in off-road terrain.

I. INTRODUCTION

Current autonomous navigation techniques work well for
environments such as hallways and on roads, where obstacles
are static and usually rigid. In these cases, size and shape are
sufficient for determining which obstacles can be driven over
and which need to be avoided. In off-road driving, however,
the assumption that every obstacle is rigid and would be
lethal to the robot quickly presents problems. In situations
such as a field of tall grass, there may be dense geometric
obstacles on all sides of the robot. In order to plan safe,
efficient paths the robot must be able to reliably discriminate
between vegetation that it can drive through if necessary, and
rigid obstacles such as tree trunks and rocks that can cause
damage (Figure 1). For safe high-speed operation performing
this discrimination at range becomes increasingly important.

Methods have been developed to detect vegetation from
3-D point clouds [1], [2], but there is still significant room for
improvement, particularly at longer ranges where the limited
viewpoint of onboard sensors, reflection of the laser pulses
away from the scanner, laser beam divergence, and partial
occlusion by other objects make it difficult to obtain point
clouds of sufficient quality and density.

Fortunately there are well-established techniques for mea-
suring chlorophyll content using a multi-spectral camera [3],
[4], [5], [6], [7], [8], [9], [10] that have been developed for
satellite-based remote sensing. A simple pixel-by-pixel com-
parison between red and Near-InfraRed (NIR) reflectance,
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Fig. 1. Autonomous mobile robot used for this evaluation. The addition
of NIR data helps in discrimination between the rock on the left and the
bush on the right.

normally referred to as a vegetation index or a band-ratio,
provides a powerful and robust way to detect vegetation.
Further, most CCDs have significant spectral response all
the way out to wavelengths of around 1000nm, meaning that
a standard monochrome CCD can be converted into a NIR
camera simply by covering it with a longpass filter. Although
the viewpoint of a satellite is drastically different from that of
a mobile robot, we show that the technique is still effective
despite additional complications such as views of the sky,
or shadowed areas that are lit by both light reflected off of
other surfaces and light reflected from the sky.

In the mobile robotics community, suprisingly little atten-
tion has been given to the use of multi-spectral information
for ground-based terrain classification for navigation. An
early attempt, [11], used data from a filter wheel camera
to label pixels as chlorophyll-rich vegetation or soil based
on thresholding the ratio of the NIR and red values. Later
work in [12] mentioned the usefulness of NIR in detecting
photosynthetic vegetation, but described the use of a Gaus-
sian mixture model-based classifier with only RGB features.
Aside from the overall speed of the classifier, no quantitative
performance analysis was given, and the role played by the
features in the larger system was largely presented as anec-
dotal. This work is an extension of [13], which provides an
extensive qualitative evaluation of several vegetation indices
across different environments and geographic locations, but
did not incorporate a ladar or stereo system and so could not
evaluate the utility of combining vegetation indices with 3-D
data.

To bridge this gap in understanding, we choose a broad
suite of classification tasks relevant to off-road navigation
using combinations of popularly used shape, density and



color features and show the effect of augmenting these
features with NIR and NDVI information. In particular for
each task we analyze the reliability of different feature sets
with respect to sensing range. We demonstrate through a
set of experiments that this feature has properties comple-
mentary to the color and shape descriptors traditionally used
for point cloud analysis, and show significant improvement
in classification performance for tasks relevant to outdoor
navigation.

The paper is organized as follows. Section II gives an
overview of existing approaches to vegetation detection using
spectral and geometric information, and its application to
navigation. Section III describes the overall system im-
plementation on our robot platform including the sensing
modalities available and the design choices made for internal
representation and path planning. Section IV describes the
datasets used and presents results on voxel classification
experiments. Section V describes how improved voxel clas-
sification translates into system level performance gains.
Finally we conclude in Section VI and discuss future work.

II. APPROACHES TO VEGETATION DETECTION

This paper combines two complementary approaches to
vegetation detection, vegetation indices (also referred to as
band-ratio techniques) that have long been used in the remote
sensing community, and more recent 3-D structure based
techniques from the mobile robotics community.

A. Vegetation Indices

The spectral properties of chlorophyll-rich vegetation are
primarily determined by the absorption spectra of water and
chlorophyll, and the refraction of light at cell walls [14].
The water present in cells absorbs light with wavelengths
longer than 1400 nm. Chlorophyll strongly absorbs visible
light, especially red and blue wavelengths [3]. The remaining
light is efficiently scattered by the critical internal reflection
caused by the change in refractive index from water to air
at the cell wall. As a result, those wavelengths between 700
nm and 1400 nm that escape both water and chlorophyll are
strongly reflected in all directions.

The sharp difference between the reflectance of vegetation
at 645nm (red) and at 780nm (NIR) has long been exploited
in the field of satellite remote sensing. Kauth and Thomas [7]
noticed that plotting NIR reflectance against Red reflectance
for satellite images produced a scatter diagram with a line of
points formed by pixels containing bare soil, and a cluster
of points from pixels completely covered with vegetation.
Points with a mixture of vegetation and soil appear between
the soil line and the vegetation point. Figure 2 shows this
scatter plot created from one of our images. Because our
camera also includes a view of the sky, our scatter plot
contains a blue sky region ( bottom image, marked in blue) as
well as the soil region (middle image, marked in red) and the
vegetation region (top image, marked in green). Clouds blend
into the soil line, but are still very distinct from vegetation.
Pixels containing vegetation and blue sky are remarkably
well separated from everything else in a natural scene.

One of the most popular ways to use the information
contained in the red and NIR bands for remote sensing appli-
cations is to compute a quantity known as the Normalized
Difference Vegetation Index (NDVI) which varies from -1
(blue sky) to 1 (chlorophyll-rich vegetation) [8].

NDVI =
ρNIR − ρRED

ρNIR + ρRED
(1)

An informative interpretation of the NDVI is given in
[15], where it is shown to be a measurement of the slope
from the origin to the location of the pixel in a 45 degree
rotation of the red-NIR space. Several attempts have been
made in the remote sensing literature to correct deficiencies
in this index [10], [5], [16], [15], particularly in shadows
and underexposed areas. Since the NDVI measures the slope
from the origin, sensor noise and errors in the radiometric
calibration of the red and NIR sensors have a much greater
effect in underexposed areas. Shadows pose a more chal-
lenging problem, since the reflected light that illuminates
shadowed regions can have a spectral distribution that is
significantly different from that of sunlight, usually shifted
towards blue wavelengths because of atmospheric scattering.

The typical use of NDVI in remote sensing is to measure
the Leaf Area Index (LAI), the percentage of the ground
surface that is covered by vegetation. However, when the goal
is linear classification into vegetation and non-vegetation
categories, it is useful to provide the raw NIR and red values
as well as the NDVI to the classifier. This is because a linear
decision boundary based solely on the NDVI corresponds to
a line intersecting the origin of the red-nir space, whereas
a linear classifier operating on the raw pixel values and a
constant bias feature can produce a decision boundary with
an arbitrary intercept. In this paper the NDVI is discussed
to tie this vegetation detection technique back to its origins
in the remote sensing community, but the actual classifiers
evaluated in section IV use the raw pixel values as well as
the NDVI, since for a linear classifier they may be more
informative than using many of the variants of the NDVI.

1) Validation of Approach: The USGS digital spectral
library [17], provides a useful tool for selecting an appropri-
ate NIR filter, and verifying the effectiveness of using NIR
in conjunction with red across a variety of different types
of vegetation and non-vegetation. This library contains the
spectral signatures of over 800 different materials. Many of
these spectra are from rare minerals that are not relevant
to our application. The relevant subset of the library used
for testing contained 105 common types of vegetation and
169 common soil mixtures, artificial materials, and coatings.
The optimal linear separator on this dataset classifies 258
of 274 materials correctly. A yellow aspen leaf and dry
grass are misclassified as non-vegetation, and various man-
made materials and natural mixtures involving hematite are
misclassified as vegetation (figure 3).

B. 3-D Point Distribution
A complementary approach to vegetation detection, pre-

sented in [1], uses the spatial distribution of the local ladar
point cloud to classify the region into surfaces, linear struc-
tures, and a class referred to as scatter, which includes tree



Fig. 2. Scatter plot of NIR reflectance vs. red reflectance for all pixels in a typical image. Different regions in the scatterplot correspond to different
types of materials in the image. Pixels in the green region correspond to vegetation (top image), pixels in the red region are mainly soil and man-made
structures (middle image), and pixels in the blue region correspond to sky (bottom image).

Fig. 4. Small images show the RGB and color appearance of two scenes. Large images are the RGB image with areas of high NDVI highlighted in bright
green. While generally reliable in natural scenes, NDVI can fail on synthetic materials such as the paint on the truck in the right image. In this case 3-D
methods would easily classify the side of the truck as a rigid obstacle instead of vegetation. Note that NDVI correctly classifies the brown dead grass in
the left image as vegetation.

canopy and porous vegetation. This method first computes
the eigenvalues of the covariance matrix of the local point
cloud (defined as all points within a certain distance of the
point of interest), and then classifies the point based on the
relative magnitudes of those eigenvalues. Linear structures
have one dominant eigenvalue. Surfaces have two large
eigenvalues, and an area is declared to be scatter when the
third largest eigenvalue is a significant fraction of the largest
eigenvalue. In addition, the estimated surface normal of the
local area, another useful feature of the local point cloud, is
recovered by this computation as it is simply the eigenvector
corresponding to the smallest eigenvalue of the covariance
matrix.

This 3-D method performs particularly well on certain
man-made structures where the NDVI approach is known
to fail. For instance, certain types of vehicle paint give off a
vegetation-like NDVI signature (figure 4), but the flat sides of
vehicles are easily detected as surface 3-D structures (figure
5). However, the 3-D method does require a relatively dense,
high-quality point cloud, which limits its application to areas
closer to the robot.

III. SYSTEM OVERVIEW

The vegetation index technique for detecting chlorophyll-
rich vegetation can (and has) been implemented in many
different ways, but since this is an experimental paper which



Fig. 3. Material spectra misclassified by an optimal linear discriminator
using the red and NIR bands (600-670nm and 900-1000nm). Horizontal line
segments indicate the simulated camera responses used for classification.
258 of 274 common materials are classified correctly. The failures are
mainly dead vegetation where the chlorophyll has had time to degrade, man-
made materials such as plastic, and natural mixtures involving hematite.

Fig. 5. Left: average RGB values of each voxel in a scene containing cars.
Right: after 3-D classification the voxels containing the flat sides of the
cars are classified as obstacles (blue). Voxels containing curved car surfaces
have more of a vegetation-like signature (green), and voxels corresponding
to ground are marked in red.

addresses system-level effects we include a brief description
of the specific implementation to aid in analyzing the results.

The robotic system used for this evaluation extends the
approach outlined in [18]. A set of laser scanners and
cameras provide the input to the perception system, which
consists of 3-D points that have been projected into camera
images, and tagged with local properties of the image such
as color and the NDVI value (Figure 6). The local perception
system then discretizes the space surrounding the robot into
a 3-D grid of voxels, and accumulates summary statistics
of the tagged laser points over each voxel. The summary
statistics include the averages of the point tags, eigenvalues
of the local point cloud scatter matrix, the surface normal
(3rd eigenvector of the scatter matrix), and the probability
and strength of laser pulse reflection from the voxel. The
perception system is then responsible for condensing this 3-
D grid of voxels into a 2-D grid of cost values so that the
planner (a variant of A*) can then plan a minimum cost path.
Various interpretations have been proposed for the meaning
of the cost values, such as mobility risk, but due to the
tightly coupled nature of mobile robot systems they have
no fundamental interpretation apart from the paths that they
cause the planner to produce through the environment.

Costs are produced from the voxels by applying a set
of learned classifiers in conjuction with several hand-tuned
rules for combining the classification results in each vertical
column. Linear maximum entropy (multi-class logistic re-
gression) classifiers [19], are used in order to meet the strict
real-time requirements imposed by continuous motion at
several meters per second. These classifiers find a conditional
distribution P (c|d) for the class c(d) of training example
d ∈ D, that has maximum entropy (i.e. makes as few
assumptions as possible) subject to the constraint that the
expected value of each feature fi(d, c) of each example
matches its average value over the training set (2).

1
|D|

∑
d∈D

fi(d, c(d)) =
∑

d

P (d)
∑

c

P (c|d)fi(d, c) (2)

In practice the empirical distribution of d in the training set
is used to approximate the true distribution P (d), and a weak
Gaussian prior is added to control overfitting. The resulting
maximum entropy conditional distribution takes the form of
a linear classifier over the features (3), that is normalized to
form a probability distribution (4).

P (c|d) =
1

Z(d)
e

P
i λifi(d,c) (3)

Z(d) =
∑

c

e
P

i λifi(d,c) (4)

The classifiers are trained from labeled data sets that are
gathered by either driving the robot over areas of different
terrain type (and labelling everything that passes under the
robot), or in the case of obstacles, by hand-labelling their
locations in a set of point clouds using a simple paint-like
interface. Currently there are two ways that classifiers are
used in the system. The classification of a voxel as obstacle,
vegetation, or ground influences how the data it contains is



Fig. 6. Top left: A typical camera image. Inputs to the perception system consist of 3-D points that have been projected into the camera images and
tagged with local image properties such as color (top right) and the NDVI value (bottom right). The points are then accumulated in a discretized 3-D grid
of voxels, with the average NDVI of each voxel shown in the bottom left image.

used in estimating the ground plane. Also, the rigid/non-
rigid obstacle classifications of the voxels in each column
are used to compute an overall rigid/non-rigid flag for the
column, which allows for the assignment of different costs
to rigid and non-rigid obstacles in the 2-D costmap.

Because the beamwidth of the ladar we use is approx-
imately 10x the angular resolution of the cameras, ladar
points tagged with the center point of the ladar beam may be
incorrectly tagged with pixels from the sky. Because of this
effect voxels straddling vegetation/sky image boundaries can
have average NDVI values that look like non-vegetation (blue
sky is particulary bad because of its exceptionally low NDVI
value). To reduce this problem, the exposure on the cameras
is controlled to correctly expose only those portions of the
image where ladar returns were received, which generally
means that sky pixels are marked as overexposed and their
NDVI tags do not contribute to the voxel’s classification.

IV. VOXEL CLASSIFICATION RESULTS

A. Data Set
The system was trained and tested using data from two sig-

nificantly different physical environments. Training examples
of rocks, bushes, grass, trees, and man-made structures such
as cars, telephone poles, and barrels were gathered from a
site in Western Pennsylvania. More examples of rocks and
bushes were collected several weeks later in natural terrain in
the foothills of the Colorado Rockies. Voxels were labeled
by either hand-labelling the point cloud, or in some cases
labeling everything the vehicle drives over. In both cases the
features (density, surface normal, scatter matrix eigenvalue,
RGB, NIR, and NDVI) of each labeled voxel were recorded
every time a new laser point in that voxel was observed.

B. Classification Results

We start our evaluation with quantitative results on the
effects of using NDVI for several important discriminative
tasks. We first compare the performance of the feature
sets for similar (but physically separate) environments and
lighting conditions. Figure 7 compares classifiers trained for
the binary task of discriminating between non-rigid voxels
(grass, bushes, etc...) and rigid voxels (Tree trunks, rocks,
cars, telephone poles, bare ground, etc...). As discussed
in Section III, this task is crucial to the way the robot
generates a costmap for path planning. Both the RGB and the
NDVI features can accomplish this task sucessfully, showing
roughly a 20% improvement in classification accuracy over
ladar features alone. The ladar features become crucial,
however, in the more complicated three-way classification
task used by the robot to estimate the true ground plane
of the scene. This task is similar to the previous task, with
the exception that the rigid voxel class is divided into an
obstacle class and a road class (horizontally oriented bare
ground surfaces). In Figure 8 we see that combining the
camera features with the ladar features boosts the total clas-
sification accuracy by approximately 10%. This performance
boost is almost entirely from improvements in the ability to
discriminate between the obstacle and road classes, as shown
in Tables II & III. Again in this task we see that the camera
features are very helpful in discriminating between non-rigid
voxels and the other two classes (Table I).

Finally we investigate the generalization ability of the dif-
ferent feature sets across different geographic environments
on the task of discriminating between rocks and bushes.
For this test the training set is from Pennsylvania, and the



Fig. 7. Voxel classification accuracy vs range for telling rigid obstacles (rocks, tree trunks, telephone poles, cars, etc...) apart from non-rigid obstacles
(grass and bushes). Left: training set performance. Right: Test set performance. Inclusion of RGB or NDVI features provides a significant performance
boost over ladar features alone.

Fig. 8. Voxel classification accuracy vs range for discriminating between rigid obstacles, non-rigid vegetation, and ground. Left: training set performance.
Right: Test set performance. This task, which is used in ground plane estimation, benefits significantly from combining ladar and RGB or NDVI features.

Fig. 9. Voxel classification accuracy vs range for discriminating between rocks and bushes. Left: training set performance. Right: Test set performance.
The training set for this task was collected in Pennsylvania, and the test set was collected in Colorado. The NDVI features show superior generalization
to the novel environment.



True Class
Predicted Class obstacle vegetation ground
obstacle 88.7 11.4 3.1
vegetation 9.5 64.0 27.9
ground 1.8 24.6 68.9

TABLE I
CONFUSION MATRIX FOR A CLASSIFIER TRAINED ONLY WITH LADAR

FEATURES

True Class
Predicted Class obstacle vegetation ground
obstacle 88.1 0.2 4.7
vegetation 6.4 95.1 21.2
ground 5.5 4.7 74.1

TABLE II
CONFUSION MATRIX FOR A CLASSIFIER TRAINED WITH ALL FEATURES

test set is from Colorado. As shown in figure 9, the NDVI
features are hardly affected by the change in environment,
and their performance degrades only slightly. The RGB
features, on the other hand, allow the classifiers to overfit
to the specific lighting and flora of the training set, leading
to vastly degraded performance in the novel environment.

Fortunately, it is not necessary to have many NIR sen-
sors to benefit from the generalization ability of the NDVI
features. As long as a representative sample of RGB-NIR
tuplets are available for the current environment and lighting
condition, a RGB-based classifier can be trained to predict
the NDVI values. This representative sample might come
from a single NIR camera whose field of view overlaps with
that of an existing RGB camera on the robot. Figure 10 shows
the results of predicting the NDVI value at each pixel in an
image using simple features computed from the local RGB
values consisting of the RGB, HSV, and Lab values of the
pixel when blurred with a gaussian at four scales (sigma of
1, 2, 4, and 8 pixels). The 100-node regression tree used
for the prediction was trained on a random sample from a
4-color (RGB and NIR) image with a field of view covering
a separate portion of the same scene. Table IV gives the
relative error rates of predicting NDVI over a sequence of
1646 4-color images from the same environment. Numbers
given have been normalized by the error produced by simply
predicting the mean NDVI value of all the pixels in the
image sequence. Classifiers were re-trained every 25 images
using an image that was 20 seconds old (which corresponds
to approximately 30m of travel in this sequence, enough to
ensure a significant viewpoint difference). The regression tree
produced less than 8% of the error obtained by predicting

True Class
Predicted Class obstacle vegetation ground
obstacle 78.7 0.2 21.1
vegetation 6.7 95.1 21.4
ground 14.6 4.7 57.5

TABLE III
CONFUSION MATRIX FOR A CLASSIFIER TRAINED WITH ONLY CAMERA

FEATURES

Fig. 10. NDVI can be predicted from RGB for a given environment and
illumination condition, meaning the benefits of NDVI can be captured even
if the NIR sensors on the robot have a much more limited field of view
than the RGB sensors. The 4-color image (RGB & NIR, only RGB shown)
at top left is used to train a classifier that predicts the NDVI image (bottom
right) for the RGB image at top right. The ground truth NDVI image is
shown at bottom left. Note how the vegetation behind the cars is detected
against the dark green portion of the building.

100-node regression tree linear least squares
0.078 0.117

TABLE IV
MEAN NDVI PREDICTION ERROR OVER A SEQUENCE OF 1646 4-COLOR

IMAGES CAPTURED ONBOARD A MOBILE ROBOT WHILE DRIVING IN A

GRASSY URBAN AREA.

the mean NDVI value.

V. SYSTEM-LEVEL PERFORMANCE GAINS FROM
IMPROVED VEGETATION DETECTION

The increase in voxel classification accuracy from adding
RGB and NDVI features improves the robot’s overall ability
to autonomously avoid rigid obstacles without being overly
afraid of bushes or tall grasses. Figure 6 shows the robot’s
view of two barrels that it is avoiding during a 2 m/s
autonomous run. Figure 11 shows the classification maps the
robot generates from this position with and without the NDVI
features. The tall grass behind the barrels creates many false
obstacles for the ladar-only perception system. With NDVI
information the barrels stand out clearly as the two large blue
blobs, and there is only one small false-positive obstacle. To
show generalization across environments, this run took place
in Colorado using classifiers that were trained exclusively on
data collected in Pennsylvania.

VI. CONCLUSIONS AND FUTURE WORK
The near-infrared and red color bands provide a robust

method for discriminating between rigid obstacles and non-
rigid vegetation that thus far has been underutilized on
mobile robotics systems. By showing how it contributed to
performance improvements in a field tested robotic system,
we hope to encourage more widespread use of this technique

More work is needed in the area of color constancy, or
compensating for the effect of differences in the illuminants



Fig. 11. Left: classification map using ladar features only. Right: adding NDVI information allows the system to be more selective, and display the barrels
from Figure 6 clearly in the classification map without also picking up non-rigid vegetation. The barrels are the two large white blobs. White indicates
obstacle classification (high cost), green indicates vegetation classification (low cost), and red indicates road classification (very low cost). The position of
the robot is represented as a gray rectange.

encountered. The general problem of color constancy is
underdetermined, however robotic systems that use ladars
in conjuction with NIR and color cameras have a crucial
advantage in that they often have access to information such
as laser remission, surface normal, and surface shape that can
be used to help deduce the approximate spectral distribution
of the illumination.
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