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Abstract - This paper introduces a layered architecture for 
multi-sensor fusion, applied for environment awareness of 
personal mobile devices. The working environment of 
personal mobile devices changes dynamically depending on 
their user’s activities. Equipped with sensors, mobile devices 
can obtain an awareness of their mobile working 
environment, to improve their performance with respect to 
usability. The mobility of the device presents two problems 
for building an awareness system. First, the contexts to be 
covered by an awareness system depend on the users, their 
tasks and activities, and also on the data that can be obtained 
from different sensors. Second, the power consumption and 
the size of the mobile device limit the processing capability 
of an awareness system. The solution presented here is to 
design a low cost sensor-based fusion system, which can be 
reconfigured by the user, to enable individualized awareness 
of environments. The software architecture presented in this 
paper is designed with four different layers, which can 
support reconfigurations in mobile environments. 

Keywords: mobile environments, multisensor fusion, 
context-awareness, fusion architecture  

I. Introduction 

Personal mobile devices, such as laptop, GSM and 
PDA, break the traditional desktop paradigm and bring 
people the powers of the computing and electronic 
communication anywhere and anytime. Our 
investigation focuses on improving the function and 
interface of these personal mobile devices through 
awareness of the user’s activities and the current social 
environment. Different from the desktop, mobile 
devices are portable and accompany their users from 
one place to another. This kind of mobility puts the 
device into a changing environment, which is more 
complex to be processed than in fixed cases, while it 
also offers them more opportunities to know more 
about their users and their own situations with certain 
awareness techniques. For example, a PDA may track 
the locations of its user from the home to the office 
and adjust the items in the “to do list” from home-

related issues to the work-related issues. It may also 
recognize that the user starts to walk after a calmly 
sitting and then change its display to the large font 
automatically to ease reading. Many investigations 
have already been done on applying the desktop-based 
awareness to improve the interaction between human 
being and the computing device [1, 2]. Based on these 
former works, a multi-sensor fusion architecture to 
enable awareness for the mobile devices is presented 
in this paper.  

To enable the awareness of mobile devices, a small 
multi-sensor device is developed by the European 
Commission funded research project Technology for 
Enabling Awareness (TEA, [3]). This multi-sensor 
device can be connected to a mobile device as an 
additional part and offers useful context information to 
the host. Aiming not to destroy the portability of the 
mobile device, the multi-sensor device is designed to 
employ only low cost sensors and rely on fusion 
techniques to extract useful contexts from the data 
obtained from these low cost sensors. “Low cost” 
means that: 

First, the size of the sensors should be small enough to 
keep the multi-sensor device much smaller than the 
size of the host device. Second, the sensors should 
consume low power and the signals they produced can 
be processed with little processing power. Finally, the 
price of the sensors is also a factor that should be 
regarded.  

Investigating how to enable awareness in mobile 
environments, two kinds of adaptation are necessary 
when the working environment of the mobile device is 
dynamically changing with situation and location. One 
is that in different situations certain sensors are more 
useful than others. For example, the air pressure 
sensor may be useful when the user is on a flying 
plane, but can not offer much useful information when 
the user is siting in the office room. Operations to 
adjust sensors, such as switch on/off, affect the related 
fusion algorithm to produce stable results. The other 



adaptation is needed because, in different 
environment, the mobile device is interested in 
different contexts. For example, at night, the mobile 
device may pay attention to the context about whether 
there are artificial lights. But in the daytime, this 
context may be not necessary. The fusion-based 
context awareness algorithms, which compute other 
contexts according to the context artificial light, need 
to be able to adapt to this modification. The multi-
sensor fusion system for mobile environment should 
be designed robust enough to adapt the continuous 
reconfigurations of both sensors and contexts.  

In many former works, the sensor fusion can be 
classified into different levels according to the input 
and output data types [4, 5]. The fusion may take place 
in the data level, feature level and decision level.  

In data level fusion, the raw data from sensors is used 
to extract features [6]. Varieties of the methods are 
developed in this level, and were applied in the image 
processing, visual & speech recognition, data 
compression and intelligent control [7, 8, 9]. The 
feature level fusion is to fuse the features extracted 
from multi-sensor data into new features or the final 
decisions. Because most features have well-defined 
structures, the fusion methods in this level can be 
based on statistical approaches and pattern analysis 
approaches [10, 11]. Decision fusion is a common 
problem in many research areas, such as decision 
theory and artificial intelligence. An example of the 
simple decision fusion is the voting system, in which 
every candidate has equal or not equal right to 
determine the final result [12]. Artificial intelligence 
techniques show new trends for the solution for 
decision fusion, for example the neural network [13]. 
There are two advantages of applying neural networks 
to fuse the decision. One is that the neural network is 
noise-tolerant and can process the input features with 
plenty of noise. The other advantage is that neural 
network allows the system to be reconfigured 
according to the specified application instance.  

2. Layered architecture 

The adaptation of the reconfiguration of the sensors 
and contexts in the mobile environment is the 
important factor in designing the architecture of the 
fusion software system. When the sensor is modified 
(being switched on/off or adjusted its sampling rate) in 
the system, there should be a feasible mechanism to let 
the related fusion processes know this change and 
make correct responds. On the other hand, when the 
user reconfigures a context in the system, the feedback 
of this adjustment should also activate the correct 

adjustment of the related processes and sensors. To 
develop a common and feasible reconfiguration fusion 
system, one method is that we define the whole fusion 
system with several independent layers. Each layer 
consists of certain structures and data processes, and 
keeps contact with next layers through defined 
interfaces. In this way, the reconfiguration in one layer 
can be controlled by the predefined function in this 
layer and the effect of the modification can be limited 
by the interface to the next layers. In other words, the 
result of the reconfiguration in one layer can be 
regarded as a kind of normalizing the input of the 
other layer, so that the adaptive fusion algorithms can 
be developed in different layers separately. In this 
paper, we describe a fusion architecture with four 
layers, see figure 1. 

Figure 1. Four layers fusion architecture 
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2.1 Signal layer 

The lowest layer is called signal layer, which 
connected with the sensors directly. The function of 
the signal layer is to control the data collection of the 
sensors and write the data into a uniform structure. A 
special kind of software channel is employed in this 
layer to adapt the reconfigure of the sensors. For each 
sensor, there is a channel with corresponding driver, 
data buffer and other attributes to manage it 
temporally. Three attributes of one channel are the 
logical name of the signal read from the sensor, which 
is used to identify the corresponding driver of the 
sensor; a time stamp system to manage the data stored 
in the buffer; a sampling frequency system, which is 
used to respond to the current available sampling 
statues. When the hardware of the system is modified, 
for example a sensor is added, a sensor is removed, a 
sensor is switched on/off and so on, the sampling 
frequency system of the related channels will detect 
the change automatically and adjust the value of the 
sampling frequency. This sampling frequency value 
can also be set by the system through software 
directly. 

The output data of the signal layer is the raw signal 
data with a structured description. The description 
involves the information about the current data, such 
as the time stamp, the sampling frequency, the number 
of dimensions, and the size of the each dimension. 
Most of the signals employed in TEA project have one 
dimension, for example, light signals, audio signals, 
temperature, etc. There is also two or three-
dimensional signal such as the acceleration signals. 

2.2 Cue layer 

The processes in the cue layer mainly focus on the 
time independent features extracting from each single 
channel data. The time independent features 
extractions transform the time-varied data space into 
time independent feature space. From our point of 
view, the information fusion can be regarded as a data 
compression process. The raw data from several 
sensors will be compress into the result space. The 
fusion across different sensors is to reduce the 
redundancy among the data of these sensors. The 
reduction of the redundancy among the data of on 
sensor is also a kind of information fusion. Except for 
the time independent features extractions, the data 
from multi-dimension sensors is transformed into 
independent feature space in the cue layer. The time-
varied analysis in the cue layer is limited within only a 
short period of sample data. Long term analysis will 
be done in the higher layer. 

We call these kinds of the self-independent features 
from single sensor channel as cue, in order to show 
their differences with the common concept of feature. 
The cue layer keeps a specified period of history of 
cues, which serves as a history description of the 
changing environment. 

2.3 Context layer 

The perceptible events in the environment are treated 
as the contexts of the activities of the host device in 
this layer. The current contexts can be derived from 
several cues, deduced from former or other current 
contexts, or combine the two approaches together. The 
system employs semantic nets to represent the former 
and current contexts. This semantic nets are designed 
with a limited verb set and probability description, for 
example, the current contexts can be represented like 
that “At 10:32, with 85% probability, (it) starts to 
walk, in the office”. Each context keeps a value of its 
own respond frequency, which can be adjusted by the 
user according to his needs. More deep 
reconfigurations of the context, such as add a new 
context or training the context layer to recognize your 
new office room, need the cognition and deduce fusion 
approaches in context layer are self-adaptive or can be 
trained manually. Artificial neutral networks are good 
tools to support the deep reconfigurations of the 
context, because they can be trained through the 
examples automatically. The decision tree is another 
possible method to reconfigure the deduce algorithms. 
The context layer keeps the history of the contexts, 
which can be rewritten into the nodes in semantic nets 
to perform certain deduce algorithms. 

2.4 Application layer 

The application layer is developed within the 
operation system of the host and uses the result of the 
fusion system to improve the services of the host 
devices. 

2.5 Interfaces 

The communications between different layers rely on 
the fixed interfaces defined in the architecture. The 
interface between signal layer and cue layer is called 
signal interface. Through signal interface, the cue 
layer can read the data from each available channel 
and set the sampling frequencies of it. On the other 
hand, the signal layer can sent messages to activate the 
cue layer whenever the data is updated or the sensors 
are switched on/off. The cue interface is designed to 
keep contact between the cue layer and the context 
layer. By using this interface, the context layer can not 



only access the current cues, but also has access to the 
stored history cues. The information about the 
updating of the respond frequency of the context can 
be sent to cue layer and further extended to the signal 
layer. Similar as in the signal interface, the cue 
interface also supports to send the cue-updating 
message from the cue layer to the context layer. The 
interface between the context layer and the application 
layer is the context interface. In order to apply the 
multi-sensor awareness device to different mobile 
devices, the context interface is designed as a one way 
interface, which offers the access only from the 
application layer to context layer. It offers a rich set of 
functions to the host applications, including reading 
current and history contexts, setting the respond 
frequencies of the contexts, setting the attributes of the 
contexts, recording the samples and training the 
algorithms in the context layer, adding a new context 
or deleting an old one, and so on.  

Figure 2. Reconfigure information feedback 

2.6 Reconfigure information feedback 

The information to reconfigure the system can be 
transmitted both ways: from the signal layer to the 
context layer and from the application layer to the 
signal layer.  

The both feedback processes are depicted in figure 2. 
When the host application wants to modify the 
response frequency of a certain context, it sends a 
command to the context layer through context 
interface. In the context layer, first, the respond 
frequency of the specified context will be updated to 
the new value according to the command, if this new 
value is valid. And then, the new value will be 
transmitted to the related cues in the cue layer. 
Because one context may be the fusion result of 
several cues, and one cue may also be employed by 
different contexts, in the cue layer, the related cues 
decides whether they should adjust themselves to 
adapt the change of this context while do not affect 
other related contexts. If the cue chooses to change its 
respond frequency to the new value, this value will be 
transmitted to the corresponding channel in the signal 
layer. The channel, which receives this information, 
may adjust its sampling frequency after checking all 
the cues extracted from this channel.  

When a sensor is switched off, the corresponding 
software channel should detect it and informs all the 
cues that based on this channel. This channel will be 
disabled under the signal layer management, but the 
related cues are still enabled because the history of 
these cues can be used for the future awareness. If a 
sensor is switched on, the signal layer will detect its 
signal, enable the channel and recover to send the 
updating message to the related cues. The context 
layer will check the time stamp of the cues before 
using them. A cue, which has not been updated for a 
long time according to its own respond frequency, will 
be regarded as unavailable resource. If this happens, 
the related algorithms in the context layer will be 
reconfigured with predefined methods. 

3. Evaluation 

In the experiment described in this section, we 
deployed the prototypical tea-device [14], a sensor-
board that reads environmental parameters using a 
number of low cost sensors.  
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3.1 Hardware 

The board consists of four major blocks: the sensors, 
the analog-to-digital converter, the microcontroller, 
and the serial line. The sensors measure the conditions 
in the environment and translate them into analog 
voltage signals on a fixed scale. These analog signals 
are then converted to digital signals and passed to the 
microcontroller. The microcontroller oversees the 
timing of the analog-to-digital converter and the 
sensors as well as manipulating the data from the 
analog-to-digital converter's bus to the serial line. 
Finally, the serial line connects to the higher layer, see 
Figure 3. In terms of the architecture described earlier, 
the hardware incorporates sensor and parts of the 
sensor dependent drivers (signal layer) implemented in 
a microcontroller. The communication between the 
sensor board and the mobile device is using a serial-
line in a multiplex mode. In this prototype, the higher 
layers are emulated with a laptop, which connected 
between tea-device and the host device to control the 
experiment easily. 

 

Figure 3. Schematic 

3.2 Software and Interfaces 

The context, cue, and signal interface are offered as 
C++ methods to the next higher layer. The context and 
cue layers are implemented entirely in C++, too. For 
the host application layer we used different host 
dependent implementations. The signal layer is partly 
implemented in C on the microcontroller and partly in 
C++.  

3.3 Experiments and Results 

In the experiment, we collected data of all sensors in 
different contexts cycle by cycle, as described in Table 
1. Within each cycle, the sensors were activated and 
read according to their sampling frequency to feed the 

environmental parameters. The data for each context 
was collected over a time of about 100 seconds, or 
about 120 records. Selected parts of the data are 
depicted in the following figures. 

Table 1. Contexts samples 
 

Context Description 
Inside-1 office, artificial light, stationary 
Inside-2 office, artificial light, walking 

Outside-1 outdoors, daytime, cloudy, stationary 
Outside-2 outdoors, daytime, cloudy, walking 

 

Looking at the light data sample in Figure 4, it shows 
the values of brightness at cloudy outside and inside 
with artificial light. It is obvious to find the difference 
between inside and outside on the level of light as well 
as on the oscillation of the light. Comparing the 
acceleration data for a stationary device in figure 5. 
with the one for a moving device in figure 6, it can be 
seen that they differ significantly. 

 

Figure 4. Light sensor data 

 

Figure 5. Acceleration sensor for stationary device. 



 

Figure 6. Acceleration sensor for moving device. 

3.3.1 Cue extraction & context awareness 

There also other sensors on the sensor board, such as 
the sensors of the temperature, the air pressure, the 
passive infrared and so on. Each cue is extracted from 
the data of one corresponding sensor with proper 
algorithm. In the figure 7, we can see a typical period 
data from passive infrared sensor when the user moves 
the device in hand (the X-axis represents the time & 
the Y-axis represent the value of the passive infra 
data). Using the sequence analysis algorithm, the cues 
leaving and closing can be recognized within one 

sampling cycle. 

Figure 7. Passive infrared sensor for moving in hand 

The data from some sensors, especially from light 
sensor, involves some random noises that usually 
occur with no more than two sequential values in one 
sampling cycle. Before analyzing the data from this 
kind of sensors, we suggest to use a mid value filter 
with 5-value-size window to do the preprocess.  

Except for the cues extracted in time domain, the cue 
can also be the feature in frequency domain, for 
example the cue - base frequency. Base frequency 

represents the main frequency of oscillation of the 
light. The data from light sensor was transformed into 
frequency domain through FFT, and then used a linear 
window to find out the base frequency of in the date. 
This base frequency should be a stable value when 
there is artificial light near the light sensor. 

Most of the awareness of the contexts is based on 
more than one cue and even other contexts. The cues 
and contexts are regarded as different dimensions of 
input vector of the fusion algorithm. Artificial neutral 
network and decision tree are investigated to fuse the 
input vectors into contexts. To describe the position of 
the mobile device, we employed three contexts: the 
device is in hand, the device is on the table, and the 
device is in a suitcase. The input vector has 15 
dimensions, which corresponds with 15 cues from the 
sensor of gas (CO), temperature, pressure, light, 
passive infrared, and 2-dimensions acceleration. 
Automating the recognition, we used 297 samples 
(three classes, hand, table, suitcase; 99 vectors each) to 
train a neural network on them in a supervised mode. 
The other 297 samples were then used to test the 
recognition performance. With a standard back-
propagation neural network we achieved a recognition 
rate of about 90 percent. Using a modular neural 
network, as described in [15], consisting of two input 
modules and on decision network we achieved a 
recognition rate of more than 97 percent. 

3.2.2 Reconfiguration 

The context “inside/outside” is used to describe the 
rough location of the host device is out door, inside of 
a building or a vehicle. The distinction of the inside 
and outside depends on the fusion result from the cues 
and contexts related with the light sensor and 
temperature sensor. The output data of the light sensor 
and temperature sensor are showed in the figure 3. 
Many cues are derived from the light sensor data in a 
standard period, such as the average brightness, 
standard deviation, base frequency, and so on. From 
the temperature sensor data, we get the cues: maximal 
and minimal temperature, average temperature. As 
showed in figure 8, two kinds of context are also 
useful to decide the context inside/outside. 
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Figure 8. Deriving context inside/outside 

The context “artificial light” indicates whether there 
are artificial lights in the current environment. The 
contexts “temperature in recent 24 h” describe the 
long-term statistic result of the temperatures in the 
past. We will simplify the decision process of 
“inside/outside” to show the reconfiguration of the 
awareness system. 

In a normal situation, the decision tree of 
“inside/outside” is optimized by using the stored 
samples with all the attributes. In this decision tree, 
both the context artificial light and temperature related 
cues and contexts play important rolls (see figure 9). 

Figure 9. Decision tree for inside/outside 

We discuss two reconfigure situations activated by 
disabling the context “artificial light” and switching 
off the temperature sensor. If the context “artificial 
light” is disabled by the host application, the decision 
tree has to be rebuilt according to the same stored 
samples but without the attribute “artificial light”. The 
similar reconfigure process will also be done when the 
temperature sensor is switched off. The decision trees 
in these three situations can produce the recognition 
results, which are described in table 2. 

Table 2. Recognition results 

 
context Total 

number of 
test samples 

Recogni-
tion rate-
normal 

Artificial 
light 

disable 

Without 
tempera-

ture 
inside 512 93.0% 81.7% 91.2% 
outside 512 98.0% 89.4% 87.6% 

4. Conclusions & future work 

The architecture presented in this paper is designed 
with a four-layer structure for multi-sensor fusion in 
mobile environments. The layered structure of the 
architecture allows the algorithms of the fusion system 
to be developed independently with sensors, data and 
the application demands. Through the interface 
defined between layers, the fusion algorithm face 
inputs with similar structure no matter whether they 
are real sensor data or the results of the other 
algorithms. The design of the layered architecture 
aims not only to develop the model to fuse the data 
from multi-sensor, but also to investigate the model to 
fuse the methods and techniques developed in the area 
of information fusion and other research area. 
Moreover, the layered structure makes it feasible to 
reconfigure the algorithms in each layer, which is 
important to enable awareness in mobile 
environments. The algorithms in the fusion system can 
be reconfigured properly to adapt the environment 
changes caused by the “movement” of the mobile 
devices, and produce more robust awareness results. 
Finally, the architecture keeps the interactions of host 
applications through different layers, which gives the 
opportunity for the host application to adjust the 
functions of the awareness device while also gives the 
chance for the fusion system to learn from the host.  

Experimental results show that the awareness system 
we developed in this layer architecture performs 
robustly if all the possible situations of the mobile 
environment are known. If unknown situations occur 
in the environment, it is difficult for the system to 
produce the right and stable awareness results. The 
reason is that the awareness system can not find the 
new useful contexts in the environment by itself. Our 
future research will focus on application of data 
mining techniques in building the multi-sensor fusion 
system, which can adapt to unknown situations 
automatically. Furthermore, because the 
communication plays an increasingly important role in 
the application area of mobile devices, techniques for 
fusing the information from sensors with the 
information from communication channels will be 
investigated in our future work. 
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