A Proposal for Parallel Self-Adjusting Computation

Matthew Hammer Umut A. Acar
Toyota Technological Institute,
Chicago, IL
{hammer ,umut }@tti-c.org.

ABSTRACT

We present an overview of our ongoing work on paralleliz-
ing self-adjusting-computation techniques. In self-adjusting
computation, programs can respond to changes to their data
(e.g., inputs, outcomes of comparisons) automatically by
running a change-propagation algorithm. This ability is
important in applications where inputs change slowly over
time. All previously proposed self-adjusting computation
techniques assume a sequential execution model. We de-
scribe techniques for writing parallel self-adjusting programs
and a change propagation algorithm that can update compu-
tations in parallel. We describe a prototype implementation
and present preliminary experimental results.

1. INTRODUCTION

Self-adjusting computations [1] describe programs that
have the inherent ability to respond to changes in their
computational environment. Typical examples of changes
include changes to the input data of a program and changes
in the intermediate data generated during a run. Exist-
ing work on self-adjusting computation has demonstrated
that this paradigm can lead to significant improvements in
the running time of applications that are based on a broad
range of regular algorithms [2]. This paradigm seems es-
pecially attractive for multi-core platforms given the fact
that many parallel programs, games and media-processing
kernels use algorithms that tend to be relatively stable un-
der small changes to their data (e.g., [4])—stable algorithms
benefit from self-adjusting computations [1]. Since existing
techniques implicitly assume sequential execution semantics
they can not directly be applied to these fundamentally par-
allel applications. What makes this particularly interesting
is the fact that it is not obvious if existing techniques can be
parallelized efficiently. This paper presents the first attempt
at developing techniques for parallel self-adjusting computa-
tion. Preliminary results demonstrate the potential for this
approach for multi-core platforms.

There are two key aspects in making a program self-adjusting:

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Mohan Rajagopalan

Anwar Ghuloum
Programming Systems Lab, Intel,
Santa Clara, CA.
{mohan.rajagopalan,anwar.ghuloum}@intel.com.

first, to identify data that can change and second, to pro-
vide efficient mechanisms to track these changes at runtime.
Generally, data that can change over time is abstracted out
into a modifiable reference, or modifiable for short, and the
underlying run-time system tracks operations on modifiables
by recording the dynamic dependence graph of operations.
Internally, a change propagation algorithm is used to update
computations as well as outputs in response to changes in
the modifiable state (inputs or new modifiables that created
during execution). Fundamentally, this algorithm identi-
fies all affected read operations, which track operations that
depend on the value of a modifiable, and re-executes them.
Note that each re-execution can change the contents of other
modifiables and thus “wake up” other read operations. Pre-
vious work shows that when combined with a particular form
of memoization, change propagation can be effective for a
reasonably broad range of applications undergoing both dis-
crete [2] and kinetic changes [5].

A key challenge for parallelizing self-adjusting computa-
tions is the fact that existing techniques have been crafted
assuming sequential execution semantics. For example, con-
sider change propagation: since any read operation can po-
tentially change the modifiable state and, in the presence of
control-flow branches, can even invalidate other read oper-
ations, for correctness it is critical that the read operations
be executed in their sequential order. In a serial execu-
tion setting, change propagation can be done efficiently by
using totally ordered timestamps to represent crucial invari-
ants in the execution trace [3]. Note that while this mech-
anism enables optimality (O(1)-overheads) in a sequential
setting, the serialization constraints prevent parallelization.
Another challenge concerns the fact that existing approaches
treat modifiables declaratively. * For efficient paralleliza-
tion, it may be desirable to explore an imperative semantics
for modifiables. Such a semantics can allow modifiables to
be named before they are written and to be written directly.
For example, this approach enables writing a parallel version
of quick-sort without an append operation.

This paper describes a proposal for parallelizing self-adjus-
ting computation techniques and presents some preliminary
results. For expressing parallelism, we rely on a letpar
primitive whose bindings evaluate in parallel. This primitive
suffices to express series-parallel computations that are seen
in many divide-and-conquer algorithms. Section 2 formal-
izes a tiny language, called PAL that extends an the untyped

In previous work modifiables are essentially purely func-
tional language constructs: observationally they are pure
(their implementation, however, is imperative).

Values v
Expressions e

x|z |l|fun f z is e end
v | v v
letpar x =eand y =e in e end
mod z in e end
write v into (
read v as x in e end
Traces T ::= writel« v|mod [T
| readlﬂz:u.e T
| letpar T; and T2.T3

Figure 1: The abstract syntax of PAL.

lambda calculus with the letpar primitive and with support
for imperative modifiables and parallel change propagation.
Section 3 outlines algorithmic techniques for constructing
dependence graphs and for parallel change propagation. The
change-propagation algorithm takes advantage of the paral-
lelism expressed by the program (which is recorded in the
dependence graph) by executing parallel reads in parallel.
In Section 4, we describe a prototype implementation and
present some preliminary experimental results.

2. LANGUAGE

Parallel Adaptive Language (PAL) is a small language,
analogous to AFL [3] that was developed to describe se-
quential self-adjusting computations. Figure 1 shows the
abstract syntax. Apart from the standard functional con-
structs, the language includes three constructs mod, read,
and write for creating, reading and writing modifiables rep-
sectively, and a letpar construct for writing parallel expres-
sions. The PAL language treats modifiables imperatively—
they are named before being written—rather than purely
functional. We note, however, that for correctness of change
propagation, it is required that modifiables be written at
most once, and never be read before they are written. These
properties can be ensured by constructing a substructural
type system with capabilities [12][9]. Due to space con-
straints we do not present the type system in this paper.

Figure 2 shows the big-step dynamic semantics of PAL.
Evaluation of an expression yields a trace, written by T and
its variants. A trace records the operations on modifiables
and the letpar operations. Syntax for traces is given in
Figure 1.

The interesting evaluation judgements concern letpar and
the operations on modifiables. The evaluation of mod,read
and write constructs are similar to the previous work on the
AFL language [3] except that PAL treats modifiables impera-
tively. To evaluate a letpar construct, we first evaluate the
bindings in parallel, and then evaluate the body after substi-
tuting the values of parallel expressions. Before evaluating
the body, the modifiables created by the parallel evaluations
must be combined in the same store by a store-combine op-
eration, written as X(o,01,02). Although the evaluations
are in parallel, it is critical that the freshness of allocated
modifiables be preserved across parallel evaluations. > We
assume that (o, 01, 02) “alpha-varies” the stores to ensure
freshness. Due to space constraints, we do not formalize the
(-, -,) operation here.

2Since memory allocation is treated sequentially even in the
parallel setting, this property is guaranteed trivially in a real
implementation.

(values)
o,v{v,oe

(apply)
(v1 = fun f = is e end) o,[v1/f,v2/x] e y v,0', T

o,v1 v2 yv,0',T

(letpar)

(0,e1 4 o1,v1,T1) || (0,e2 | 02,02, T2)
X(o,01,02), [vi/z,v2/y] e2 | 03,v3, T3
o,letpar x =e; and y = ez in ez end |
03,v3,letpar T and T2.T3

(mod)
ofl = O, [/a] e ¥ o', T
o,mod = in e end |} ¢’,1,mod I.T

(read)
o, [ol)/a] e b o' %, T
o,readl as x ine end || 0/, x,read; ,,—, . .T

(write)
o,write v into I | o[l « v],*,write [«— v

Figure 2: Dynamic semantics for PAL.

(empty)
0,E M0, E

(letpar)
(0,T1 ~ o1, T)) || (0,T2 ~ 02, Th)
E(O’, 0'1,0'2),T3 mag,Tg
o,letpar Ty and T2.Ts ~ 03, letpar T} and T5.T§

(mod)
o, T~ T

o,mod I.T ~ ¢’ ,mod I.T/

(read/no ch.)

olll]=wv o, T~ao T

o,read;_,z—p e .T~o' read; ,—p . T

(read/ch.)
oll] #v

7 7
o,read; z=ye - T~ 0o 7readl~>z:a[l].e T

o, [ofl]/z] e ~ o', T/

(write)
o,write l «— v ~o,write |l «— v

Figure 3: Parallel change propagation.

Figure 3 shows the judgements for parallel change-propagation.

Change propagation mimics the dynamic semantics. It tra-
verses the trace and seeks for affected reads that read lo-
cations whose contents have changed. Affected reads are
re-evaluated and the resulting trace is substituted in place
of the original trace. As in the dynamic semantics, the par-
allel parts of letpar expression are change propagated in
parallel.

3. PARALLELIZATION

Since the change-propagation judgements given in Fig-
ure 3 scan the whole trace, they do not translate to an ef-
ficient algorithm—mnot even a serial one. In the case of se-
quential computation, change-propagation can be performed
efficiently by representing traces via dynamic dependence
graphs [3]. This representation hinges on a total ordering
of the read operations and thus crucially relies on sequen-
tial execution. We outline a representation for traces that is
suitable for parallel computation and give a parallel change-
propagation algorithm.

Representing traces. We represent a trace as a dependence
graph consisting of modifiables, a computation-tree, and
read and write edges between modifiables and the nodes
of the computation tree. A trace of the form mod [.T is rep-
resented by a modifiable labeled with [, and a computation-
tree representing T. A trace of the form read; .,—, . .T is
represented by the computation-tree of T and an edge from [
to the root of the tree of T. A trace of the form write [l « v
is represented by a computation-tree consisting of a single
node and an edge from that node to the modifiable [.

The computation-tree consists of par (¢), seq (A), and read

(o), and write (¢) nodes. A trace of the form letpar T and T5.T3

is represented as a computation-tree with a seq node whose
left child is a par node and whose right child is the represen-
tation for 73. The children of the par node are the represen-
tations for 77 and T5. We represent the computation-tree
for the trace of the form read;_.,—... .T with a tree with root
s (a read node), whose only child is the root of the subtree
that represents T. We tag s with x,v,e. The computation-
tree for a trace of the form write [«+— v is a leaf.

We summarize the mapping from a trace T into a DDG,
written as |T], as follows.

A ~N
S
|[letpar T; and T2.T3] = P © \ [Ts]
[T:] T2

[read)—o—v.c .T {

[mod 1.T] {

[write [«— v] = o

——7

Figure 4 shows the computation tree of a code snippet
with inputs x and y and result r. The code computes 2 *
2’ — 3%y’ where ' and y’ are the contents of the modifiables
z and y.

Parallel change propagation. After a self-adjusting pro-
gram executes, the contents of any of the modifiables can be
changed and the computation can be updated by running a
parallel change-propagation algorithm. As described in the
formal semantics (Figure 3), this process involves systemat-
ically finding affected reads (those which read a modifiable
whose contents have changed) and re-executing these in a
safe order. The process finishes when every affected read
has been handled. We first give an algorithm for perform-

) Q2

Q

Figure 5: split(Q, p) yields disjoint sub-queues Q1, Q2
and Q3 = Q3,1 U --U Q3 which are constrained to
only hold reads in the respective sub-trees.

propagate(Q, s) =
z «— next(Q,s) in
case x of
NONE = (Q, s)
| SERIAL(r) =
Q> — Q\ {r}
@Q’’ <« exec r under Q’
propagate(Q’’, s)
| PARALLEL(r1, ro) =
p — LCA(r1, m2)
s1, s2 < children(p)
Q1, Q2, Q3 < Split(Q7 p)
in parallel do {
Q1° < propagate(Q1, s1)
. Q2’ «— propagate(Q2, s2)
Q' — Q1’ UQ2 UQs
propagate(Q’, s)

Figure 6: Abstracted change propagation algorithm.

ing parallel change propagation. We then describe how the
algorithm can be implemented efficiently.

Specifically, we are interested in the following operations
on sub-trees and queues:

e next(Q, s) indicates the kind of work that remains to
be performed in the computation-tree rooted at s. The
operation returns NONE if there are no affected reads in
the subtree. It returns SERIAL(r) if r is an affected
read that must be executed before all the other af-
fected reads. It returns PARALLEL(r1,72) if two inde-
pendent /parallel reads, r1 and 72, are the earliest af-
fected reads.

e split(Q, p), returns three sub-queues, Q1,Q2 and Qs.
The @1 and Q2 are queues consisting of the reads in
Q@ that are in the left and in the right subtree of p
respectively. The queue @3 holds remaining reads of
Q. Figure 5 illustrates the operation.

Once we assume these operations are available the algorithm
itself is a straightforward (Figure 6): each invocation of the
algorithm is given a queue @, which is initialized to contain
the reads that are first affected by any changed modifiables,
as well as a sub-tree s which constrains the invocation to re-
execute reads only under s. The initial invocation has s as

mod 7 in 0
mod a in
mod b in
letpar
read x as z’ in
write 2 *x x’ into a end
and read y as y’ in (<31
write 3 x y’ into b end
in read a as a’ in ‘
read b as b’ in .
write a’ — b’ into r (
end end --- end

\ A-Order:

o3 Po 1o 1a P 25 24 pa 3p 4s 44 34
Z-Order: ps 25 24 P 1y 14 pq 3p 4p 44 34

Where n, and ng denote the start and end
times-tamps for node n, respectively; if n is
a par-node, then n denotes the middle time-
stamp.

02

|
. / |
(D (I]

Figure 4: A code snippet and its computation tree and total orderings, which make up its DDG.

the root of the entire program’s computation-tree. For each
invocation, we query) by using next and case on its result.
In the serial case we re-execute the given read and continue
propagating changes. In the parallel case we find a suitable
split node as the least-common-ancestor of the parallel reads
r1 and r2 and continue, in parallel, to propagate changes in
each sub-queue after using split. Once these sub-queues are
exhausted we merge the results and again continue. The re-
cursive/parallel process finishes when every queue has been
exhausted.

We describe data-structures for implementing the parallel
change propagation algorithm efficiently. In this paper, we
only consider non-parallel (sequential) data structures. Al-
though these data structures may suffice for a multi-core im-
plementation with small (< 100) number of cores, a scalable
implementation may require concurrent versions of these
data structures.

Two total orders. To enable change propagation, we main-
tain two separate total orderings, A-order and Z-order, of
the computation-tree. Each total order is consistent with
an in-order traversal of seg-nodes. In the A-order, the left
subtree of par-nodes come before the right subtree. In the
Z-order, the right subtree of the par-nodes come before the
left subtree. Using these orderings, we assign an A- and a
Z- interval to each read. The A-interval (Z-interval) con-
sists of two time stamps corresponding to the start and end
time of that read in the A-order (Z-order). We maintain
each ordering by using a constant-time order-maintenance
data structure [10][6]. Using these orderings, for all pairs of
reads 71, r2 we can check in constant time if re-execution
of r1 must precede r2 or not: r; precedes r2 in both order-
ings if this is the case, and if the orderings disagree then
r1 and r2 are independent. Again, in Figure 4 we give the
corresponding orderings.

Although we define the orderings by a transversal of a
completed computation tree it should be noted that in prac-
tice the orderings are created and updated as the tree is
grown (i.e., the tree and total orderings are created and al-
tered together using mutable data structures for an efficient
implementation).

Priority queues. We require a priority queue that supports
findMin, deleteMin, split, and merge operations. These
operations can be performed in logarithmic time in the size
of the queue by using binary search trees (e.g., treaps [11]).

propagate (Qq, Qz, ta, tz) =
1 if Qq =0 then
2 return ()

rq « findMin (Qg)
ry < findMin (Q:)
if ro =r, then
Q! « deleteMin (Qq)
Q. «— deleteMin (Q.)
((t9,t1), (19,t1)) « interval rq
9 deleteInterval (t9,tl)

10 deleteInterval (t0 tl)

z2)'%z
1 Q7 — @\ {r | (interval(m) C (12,t1) }
12 QF — QI\{r | (mvervar(m) C (14¢]) }
13 A «— execute rq with tq,t.) in ((t,t1),(¢2,t1))
14 (QU,A) — merge (A,Ql,tn)
15 (OV A7) — merge (A1, 0F,1.)
16 Ap «— propagate (QV, QY ta,tz)
17 return A” U A,

0w ~NoO oW

18 else

19 s « LCA(rq,rz)

20 (30,151 ,15%) «— timeStampsA (s)
21 (50,151, 45%) «— timeStampsZ (s)

22 (QF,QF.QF) « split (Qa,t3',t5%)
23 (QF,QF,Q7) « split (Q:,t3',t5%)

24

25 in parallel do

26 AY — propagate (QL,QL, et t51)
27 All) < propagate (Qg,Qf,tiQ,tzz)

28 A — AQuU AL
29 (/a7A/) < merge (A7anata)
30 (QL,A") «— merge (A,Q7,t:)

31 A2 — propagate (Q,, Q., ta, t:)
32 return A" U A%

Figure 7: The pseudo-code for change propagation.

Least-common ancestors The parallel change-propagation
algorithm requires a dynamic data structure for finding least
common ancestors of read-nodes of the computation-tree.
Such a data structure requires O(1) time [8].

The algorithm revisited. Now we give a more detailed ac-
count of the parallel change propagation algorithm. Figure 7
shows the pseudo-code for the algorithm. The algorithm
takes as arguments two priority queues @, and @), and the
time stamps t, and t.. The queue Q, (Q.) prioritizes the
reads with respect to their start time in the A-ordering (Z-

ordering). The time stamps ¢, and t. are the last time
stamps that the reads in each queue can have in both or-
derings. These queues are initialized to the reads of the
modifiables whose values are changed externally and ¢, and
t, are set to the greatest time stamps in each ordering.

The algorithm completes when there are no more reads to
execute and returns the set of reads that become affected
during change propagation (due to executed writes) and
that have timestamps greater than t, (and symmetrically
t.). The algorithm starts by accessing the minimum reads,
rq and 7., in each queue. If the reads (r, and r.) are equal,
then the read is re-executed after the time stamps within
its interval are deleted and the reads contained in the inter-
val are removed from the queues. Re-execution returns the
reads that become affected as a set (A). After re-execution,
the affected reads are inserted into each queue if they start
before t, and t, respectively. Change propagation then con-
tinues on the updated queues and the algorithm finishes by
returning all affected reads that start after ¢, (or symmet-
rically t.). This part of change propagation is similar to
the sequential case, except that the affected reads have to
be treated somewhat differently because modifiables may be
allocated and written imperatively.

If the reads (rq and 7.) are not equal, then the algorithm
finds their least common ancestor s (a letpar node) in the
DDG. The algorithm then finds the time stamps of s (since
s is a letpar node it has three time stamps) and splits the
queues into three parts, left (L), right (R), and other (O).
The left queues QL, QL contain the reads in the intervals
(£0,¢51) and (51, 432); the right queues QF, QF contain the
reads in the intervals (t3',t5%) and (¢°,£5'); and the rest
of the reads are placed into the queues QY, QY. The three
parts L, R and O correspond to the three subtrees of the
letpar node s (this roughly corresponds to the split oper-
ation discussed earlier and illustrated in Figure 5). The
algorithm then performs change propagation on the left and
the right subtrees in parallel, and updates the queues for
the rest of the reads by inserting the reads that become af-
fected. The algorithm then continues change propagation
on the rest of the reads and returns the set of affected reads
greater than t, (and symmetrically ¢.).

4. |IMPLEMENTATION

Our prototype implementation is still being developed and
thus uses mostly sub-optimal versions of the data-structures
discussed in Section 3. In order to give a preliminary eval-
uation of the algorithm we thus substitute wall-clock times
with results obtained by using counters for work (denoted
as W) and depth (denoted as D). We measure work of a
computation as the number of reads in its trace; and in-
tuitively, the depth of a computation measures the work of
the longest sequential execution path, ignoring parallel tasks
with smaller work. Formally work and depth can be found
recursively given a trace as follows:

D(write | «— v) =
D(mod I.T) = D()
D(read;—z=v. .T) = D(T) +1

D(letpar T: and T2.T3) = max {D(T1), D(T2)} + D(T3)

The crucial distinction between these definitions is how they
treat parallel sub-traces: their work is summed whereas their
depth is taken as a max. During change-propagation, we
again measure work and depth, but this time we limit the
trace nodes that are counted to only those that correspond
to nodes in the DDG which are re-executed are newly cre-
ated during re-execution.

Evaluation. By using work and depth as metrics for evalu-
ating the algorithm we can estimate the theoretical running-
time given an implementation that actually uses the data-
structures we described earlier. Moreover, by examining the
ratio of W/D for a given program, we can estimate the ex-
pected amount of parallelism in both initial runs of programs
written in PAL as well as the amount of parallelism to expect
from the fully-implemented change-propagation algorithm.

Previous work [2] considers varying batch-sizes for running
change-propagation, where a batch is simply a set of changes
that are fed to the change-propagation algorithm simulta-
neously. This work showed empirically that larger batch
sizes hide the overhead of adaptive runtime bookkeeping
and change-propagation by amortizing this cost across many
changes that would otherwise require re-execution “from-
scratch” outside of the adaptive framework. Here we con-
sider varying batch-sizes to estimate how parallelism of the
change-propagation algorithm increases as batch-sizes in-
crease. We are also interested in showing, again using our
metrics, that the parallel change-propagation algorithm as
well as the initial runs of a program aren’t affected aversely
by the introducing parallelism to each. As we will show,
our parallel approach accomplishes these goals: the work
of initial runs and change-propagation are asymptotically
equivalent to serial versions of previous work and still yield
varying levels of parallelism for each.

Figure 8 shows measurements of the quick-sort algorithm
implemented in our C library. In this implementation the
inputs, outputs and intermediate results are represented as
linked-lists interlaced with modifiables, as in previous work.
In our experiments we use randomly generated inputs. For
all six graphs, we consider input sizes from 1 to 2'¢ (64k).
The first three graphs concern the initial runs of the quick-
sort algorithm on these input sizes, whereas the later three
graphs concern change-propagation on these initial runs with
batch-sizes plotted as separate lines and ranging from 1 to
212 (4k). The change-propagation plots are given in log-
scale in the y-axis. Since the run-time of quick-sort varies
with the quality of the pivot choices, there is some variation
in our results. Each data-point thus results from an average
of 64 runs.

In the first graph we see that, as we would expect from a
quick-sort implementation, the work done for the initial run
is O(nlogn). In the second graph we consider the depth

3This version of quick-sort exploits the fact that modifiables
in PAL are treated imperatively by building its sorted output
list in-place and in parallel rather than using an additional
append operation to join sorted lists found recursively.

1.6e+06y T T
1.4e+06[I
1.2e+06 -
x le+06 -
30 800000 B
600000 B
400000 —
200000 —
o4 1 1
k 16k 32k 64k
Input Size
E=
a
O
o
0
1k 16k 32k 64k
Input Size

[N
T T 19

Work/Depth
w
ol

1 1
1k 16k 32k
Input Size

@
5
=

{
o
2
1
1k 16k 32k 64k
Input Size
=
=
lv
[a)
1
1k 16k 32k 64k
Input Size
=
a
@
Q
<
(=}
=

Input Size

Figure 8 W, D and W/D for initial runs (top 3)
and change-propagation runs of various batch sizes
(bottom 3) for Quick-Sort

as a function of input-size and see that this grows linearly.
This is what we would expect from a list-based implemen-
tation of quick-sort since each level of recursion does half
the work of the previous level, in expectation, and the first

level does linear work. Finally, in the third graph we take
the ratio of work and depth to plot the theoretical amount
of parallelism that this version of quick-sort exhibits. As we
can see, this grows logarithmically, as we would expect from
W/D = (nlogn)/n = logn.

In the second group of graphs, we consider the same initial
runs and plot the work and depth of change-propagation for
various batch-sizes. In these experiments we setup change-
propagation by creating a new list of the given batch-size
and append it as a change to the original input list. Then
we run change-propagation which eventually modifies the
sorted output list, putting the new elements in their proper
positions there. By propagating m new elements through
these traces we would expect to execute O(mlogn) reads
in total since we have an expected O(logn) levels of quick-
sort, and each of these has m new elements to handle. In
the forth graph we see that our results confirm this.

It is not difficult to show that the depth of change-propagation

for quick-sort with m changes is O(m + logn). As can be
seen in the fifth graph, the experiments confirm this bound.

In the last graph we consider the ratio of the previous two
graphs, as before for the initial run graphs. The ratio W/D
gives us a measure of parallelism given an initial list size and
a batch-size for changes. When the batch-size is very low
(e.g., 1), we see no parallelism at all, as W/D = 1. However,
when the batch sizes increase we note that the parallelism
of the change-propagation algorithm approaches that of the
initial run itself. We expect, and confirm experimentally,
that W/D = (mlogn)/m = logn when m > logn, and oth-
erwise find that W/D = (mlogn)/logn = m for smaller m.

Given a sufficiently large n and m, we see parallelism that
is suitable for machines with several cores. The parallelism
can be further increased beyond this by moving from list
representations to trees [7] for storing input, output and
intermediate results.

5. FUTURE WORK

Static semantics. We've given syntax and dynamic seman-
tics for PAL as well as an informal description of “proper
usage”, which includes ensuring that modifiables are always
written before being read, and that each modifiable is writ-
ten at most once. Future work should include a static se-
mantics which ensures that these conventions are followed
and an associated soundness result. We suspect a substruc-
tural type system which gives unwritten modifiables linear
types will suffice for this, which may resemble type systems
used for ensuring safe but explicit memory management in
other work [12][9].

Concurrent data structures. The key data structures re-
quired by the dependence tracking and the change-propagation
algorithm can be implemented in constant time in the se-
quential case, except for the priority queue data structure
that requires logarithmic time. In the parallel case, it would
be possible to use the same data structures with proper lock-
ing techniques, but it is important to develop parallel data
structures that scale as the number of processors increase.

Memoization. In the serial version of change-propagation
from previous work [2], a special type of memoization is
used to avoid re-executing nested reads when these reads

aren’t affected by changes even if their ancestors in the DDG
are affected. This technique requires special annotations
in the code, additional runtime data-structures as well as
additional details in the change-propagation algorithm itself.
To provide a similar technique in the parallel case, we must
extend our approach similarly.

Other features. Our PAL language offers limited support
for writing parallel programs: they can essentially fork and
later synchronize, but parallel threads of control can’t oth-
erwise communicate. It may be interesting to provide com-
munication features such as message-passing and/or shared
memory in future iterations of PAL while still giving useful
semantics for adapting to changes.

6. CONCLUSION

This paper describes techniques for parallel self-adjusting
computation. We describe a language PAL with a fork-based
parallelism primitive for writing parallel self-adjusting pro-
grams. Programs written in PAL can be executed in parallel
on a given input. In addition, the input can be changed,
and the changes can be propagated to update the output by
using a parallel change propagation algorithm. We describe
the parallel change propagation algorithm and describe some
data structures for implementing the algorithm. The paral-
lel change-proapgation algorithm executes tasks in parallel
whenever possible. We present preliminary experimental re-
sults based on simulations. The experiments show that the
approach realizes the parallelism expressed in the program
accurately both during execution and during change propa-
gation.

7. REFERENCES

[1] Umut A. Acar. Self-Adjusting Computation. PhD
thesis, Department of Computer Science, Carnegie
Mellon University, May 2005.

[2] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and
Kanat Tangwongsan. An experimental analysis of
self-adjusting computation. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, 2006.

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper.
Adaptive functional programming. In Proceedings of
the 29th Annual ACM Symposium on Principles of
Programming Languages, pages 247-259, 2002.

[4] Umut A. Acar, Guy E. Blelloch, Robert Harper,
Jorge L. Vittes, and Maverick Woo. Dynamizing static
algorithms with applications to dynamic trees and
history independence. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2004.

[5] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan,
and Jorge L. Vittes. Kinetic algorithms via
self-adjusting computation. Technical Report
CMU-CS-06-115, Department of Computer Science,
Carnegie Mellon University, March 2006.

[6] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert,
and Charles E. Leiserson. On-the-fly maintenance of
series-parallel relationships in fork-join multithreaded
programs. In SPAA ’04: Proceedings of the sizteenth
annual ACM symposium on Parallelism in algorithms
and architectures, pages 133-144, New York, NY,
USA, 2004. ACM Press.

[7] Guy E. Blelloch. Vector models for data-parallel
computing. MIT Press, Cambridge, MA, USA, 1990.

[8] Richard Cole and Ramesh Hariharan. Dynamic lca
queries on trees. SIAM Journal on Computing,
34(4):894-923, 2005.

[9] Karl Crary, David Walker, and Greg Morrisett. Typed
memory management in a calculus of capabilities. In
Conference Record of POPL 99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Antonio, Texas, pages
262-275, New York, NY, 1999.

[10] P. F. Dietz and D. D. Sleator. Two algorithms for
maintaining order in a list. In Proceedings of the 19th
ACM Symposium on Theory of Computing, pages
365-372, 1987.

[11] Raimund Seidel and Cecilia R. Aragon. Randomized
search trees. Algorithmica, 16(4-5):464-497, 1996.

[12] David Walker and Greg Morrisett. Alias types for
recursive data structures. Lecture Notes in Computer
Science, 2071, 2001.

