
In-Memory Grid Files on Graphics Processors 
Ke Yang, Bingsheng He, Rui Fang, Mian Lu, Naga Govindaraju*, Qiong Luo, Pedro Sander, Jiaoying Shi† 

HKUST, China 
{keyang, saven, rayfang, mianlu, luo, psander} 

@cse.ust.hk 

*Microsoft Corporation, USA 
nagag@microsoft.com 

†Zhejiang University                             
jyshi@cad.zju.edu.cn 

ABSTRACT 
Recently, graphics processing units, or GPUs, have become a 
viable alternative as commodity, parallel hardware for general-
purpose computing, due to their massive data-parallelism, high 
memory bandwidth, and improved general-purpose programming 
interface.  In this paper, we explore the use of GPU on the grid 
file, a traditional multidimensional access method. Considering 
the hardware characteristics of GPUs, we design a massively 
multi-threaded GPU-based grid file for static, memory-resident 
multidimensional point data. Moreover, we propose a hierarchical 
grid file variant to handle data skews efficiently. Our 
implementations on the NVIDIA G80 GTX graphics card are able 
to achieve two to eight times’ higher performance than their CPU 
counterparts on a single PC.  

1. INTRODUCTION 
Multidimensional access methods, such as grid files [16] and R-
trees [10], usually involve more complex data structures as well 
as more computation- and data-intensive operations than single-
dimensional ones. For such multidimensional access methods, 
new generation graphics processors (GPUs) are a promising 
hardware platform due to their high memory bandwidth and 
massively parallel computation.  For instance, in an NVIDIA G80 
GTX graphics card, there are 16 multiprocessors, each containing 
8 processors and supporting up to 512 threads. The observed 
overall performance is 330 GFLOPS and the device memory (of a 
size 768MB) bandwidth 86GB/sec. 
Encouraged by the hardware features of GPUs, we study their use 
on the grid file, a representative multidimensional point access 
method.  As a first step, we look at static multidimensional point 
data, such as those in the On-Line Analytical Processing (OLAP) 
environments or in CAD (Computer-Aided Design). These 
environments are query-intensive and have infrequent 
reorganizations on the data.  Furthermore, we assume such data 
are brought into the GPU device memory from the main memory 
before access and are device memory resident throughout the 
query time. 
Targeting at in-memory static data, we present a GPU 
acceleration of grid file for multidimensional point queries. To 
efficiently handle data skews, we adopt a hierarchical strategy by 
recursively constructing a sub-grid for a skewed cell that contains 
a large number of points. We have implemented the grid file on 

the CPU and the GPU. Our implementations achieve two to eight 
times speedup on the G80 GPU compared with their CPU 
counterparts.  
This paper makes the following three contributions. First, we 
adapt the traditional, CPU-based grid file structure to fit for in-
memory parallel environments, and provide a massively 
multithreaded GPU-based design. Second, we propose a 
hierarchical grid file variation that handles skewed data efficiently. 
This variation works both on the CPU and on the GPU, with a 
more significant performance improvement on the GPU due to 
GPU’s inherent parallelism. Third, we empirically evaluate our 
GPU-based implementations in comparison with their CPU-based 
counterparts using an off-the-shelf PC equipped with the G80 
graphics card. 
The remainder of the paper is organized as follows. In Section 2, 
we briefly review the grid file structure, database processing on 
GPUs and the programming features of new generation GPUs. In 
Section 3, we describe the mapping of the basic grid structure on 
GPUs. In Section 4, we describe the hierarchical grid structure for 
skew handling. We present our experimental results in Section 5 
and conclude in Section 6. 

2. BACKGROUND 
Multidimensional Access Methods 
Multidimensional access falls into two categories [6]: point access, 
which searches multidimensional points, and spatial access, which 
handles extended objects such as polyhedra. As a start to study 
the multidimensional access, we focus on point access methods. 
The following are three typical kinds of point access queries and 
their examples: 
Exact match query. In such a query, the values of all attributes are 
given in equality predicates, and the query result is the record that 
exactly matches all the attribute values. E.g., find the student 
seated at Row 5, Column 3.  
Partial match query. Such a query is a generalization of the exact 
match query. All predicates in a partial match query are equality 
predicates, but some attributes of the data points are absent in the 
query. Therefore, a partial match query retrieves all records that 
match on the specified attributes. E.g., find all students seated in 
Row 5. 
Range query. A range query specifies a d-dimensional query box 
using range predicates and retrieves all records whose attributes 
represent a d-dimensional point located in the query box. E.g., 
find all students seated between Rows 1 to 3 and Columns 2 to 5.  

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee.  
Proceedings of the Third International Workshop on Data Management 
on New Hardware (DaMoN 2007), June 15, 2007, Beijing, China. 
Copyright 2007 ACM 978-1-59593-772-8 ...$5.00. 

There have been various multidimensional point access methods, 
including hashing-based methods [4][13][14][27], tree-structured 
methods [5][22][24] and space-filling curves [23]. Generally, the 
storage of hashing-based structures can be easily distributed, 
which is suitable for parallelization. Moreover, hashing-based 
methods require a constant access time to retrieve a record, 

mailto:nagag@microsoft.com


whereas tree structures often require a logarithmic function of the 
data size. Considering the GPU’s parallel computation and high-
bandwidth memory access features, we investigate further into 
hashing-based methods. 

Grid Files 
According to the classification by Geade et al. [6], the grid file 
[16] is a hashing-based multidimensional access method, even 
though the units of each dimension of a grid can be determined by 
range partitioning. There have been a number of variants of the 
grid file [3][12][18][25][28], and some parallelized methods 
[15][17]. In its basic form, a grid file superimposes a d-
dimensional orthogonal grid on the d-dimensional data space. It 
partitions the space into hyper-rectangular cells using splitting 
hyper-planes that are parallel to the axes. These splitting hyper-
planes follow the data distribution and the splitting positions may 
not be uniform across dimensions. As such, the positions along 
each axis indicating where to split are maintained in an ordered 
array called a scale. Finally, there is a grid directory to associate 
each grid cell to a bucket in the storage.  
Figure 1 illustrates a 2D grid file. When accessing a point through 
the grid, we first use the scales to locate the cell that the point 
falls in, and then follow the pointer in the cell to the bucket in the 
storage, and scan the bucket for a match.  
Traditional grid files are able to handle dynamic insertions and 
deletions. They split overflowed cells and merge underoccupied 
cells, to distribute the data to the buckets evenly so that a single 
record retrieval can be answered in at most two storage accesses. 
However, the splitting may lead to superlinear directory growth 
[21], and the merging can result in deadlocks [12][24]. Since we 
deal with static, memory-resident data in this paper, we leave 
dynamic insertions and deletions as future work. 

Database Processing on GPUs 
There has been intensive research on general-purpose computing 
using the GPU (GPGPU) [19]. One branch of our particular 
interest is on GPU-based database processing [2][7][8][9][26]. 
The existing work mainly utilizes the 3D graphics pipeline by 
drawing primitives such as a quad with OpenGL/DirectX 
programs. Our work, in contrast, exploits the most recent advance 
of the graphics hardware, and is implemented as general-purpose 
computing programs without utilizing any graphics APIs. Free 
from the constraints given by the graphics pipeline, our design 
and implementation is much more practical and flexible. 
Furthermore, to our best knowledge, this work is the first to 
develop multidimensional index structures on GPUs. 

Programming on New Generation GPUs 
We take the NVIDIA GeForce 8800 series (G80) graphics card, 
which was available on the market starting from Nov 2006 and 
has been used in our implementation, as an example to introduce 
the new generation GPUs. In comparison with its most advanced 
predecessors, G80 has made significant improvements for 
general-purpose processing. The computing resource consists of 
tens of SIMD multiprocessors, each of which contains a group of 
processors and registers that support a massive number of 
concurrent threads. Processors in the same multiprocessor share a 
cache called the shared memory, which is fully exposed to the 
programmer. The device memory could be accessed as textures in 
traditional graphics applications. Furthermore, it can be accessed 
as global memory in general-purpose computing programs, in a 
way similar to main memory. In addition, there is a constant 

memory that is shared by all multiprocessors and is cached on 
each multiprocessor.   
The G80 card is released with a Compute Unified Device 
Architecture (CUDA) [1] for general data-parallel computing. 
CUDA provides a programming interface as an extension of the C 
language, with a runtime library for multithreaded parallel 
computing. This API treats the GPU as a general-purpose 
computing device as opposed to a programmable graphics 
pipeline, thus allows non-graphics researchers to utilize the GPU 
hardware features easily. Specifically, CUDA allows the 
programmer to specify the usage of the GPU resources such as the 
number of thread blocks (groups), and to write kernel programs 
that are executed on all threads. 

3. BASIC STRUCTURES 
In this section, we present the mapping of the grid file structure 
on the GPU and describe its construction and query processing. 

3.1 Construction 
To build a static grid file from a given data set, we first partition 
the data space in order to balance the bucket size of each cell as 
much as possible. Denote the numbers of splits along the d 
dimensions as p1, p2, …, pd, respectively, then the total number of 
grid cells c = p1 p2… pd. Given the average number of records in 
each bucket, H, we have cH = N, where N is the number of 
records of relation R. 
We build a grid for R and rearrange R such that the records 
belonging to the same cell are clustered into one bucket. First, we 
obtain a scale in each dimension i (i=1, 2, …, d) by sorting R 
along that dimension and sampling pi quantiles as the elements of 
the scale. Then, for each record, we use the scales to identify the 
bucket it belongs to. This procedure is done in the LocateCell 
routine, which performs binary search into each ordered scale 
array for the location of the record. Second, to get the starting 
position of each bucket in R, we build a histogram of number of 
records in each bucket. This is done by scanning R once and using 
the scales to identify the bucket each record belongs to. Third, a 
prefix sum routine translates the histogram into bucket offsets in 
the rearranged relation. Then the records are scanned again to be 
scattered into the corresponding buckets with given starting 
offsets. After the construction, the rearranged R stores the buckets, 
the grid directory entries contain the bucket offsets, as illustrated 
in Figure 1. In this example, d = 2, N = 10, H = 2, and p1 = p2 =2.  

 
Figure 1. Structure of a 2D grid file. 

4 

3 

0

0 

0 4 

xscale 

5 6 

storage 

ys
ca

le
 

offset: 



We have implemented the construction with the GPU co-
processing on the sorting step. On a relation consisting of 16 
million 2D records, the pure CPU-based construction takes about 
12 seconds, among which 8 seconds are spent on sorting. We 
employ the GPU sort primitive [11] and reduce the sorting to 3 
seconds.  

3.2 Query Processing 
After a grid file is ready on the GPU, we can process the three 
kinds of multidimensional point queries using the grid, namely 
the exact match queries, the partial match queries, and the range 
queries. Note that a partial match query is similar to an exact 
match query on the equality predicates and to a range query on an 
unbounded attribute where a range box extends throughout the 
entire domain of the attribute. As a result, our implementation on 
the processing of partial match queries is similar to that of the 
other two types. In the following, we will mainly discuss the 
exact match and the range queries.  
Since the GPU is a data-parallel computing device, we use a pool 
of threads, which is tuned to fully utilize the hardware 
computation power, to handle a large number of queries in 
parallel. Each thread takes charge of a query independently, and 
after finishing one, it handles another. In specific, the thread with 
index t starts its i-th query by reading in the (t + iT)’s query from 
the device memory, where T is the number of threads. This 
strategy of assignment is called coalesced read [1], which can 
speed up the device memory access. 
For an exact match query, a thread scans the bucket 
corresponding to the cell that contains the query record to search 
for a match. This search is achieved by a LocateCell followed by a 
sequential scan in the bucket. The termination condition of the 
scan, i.e., the boundary of the bucket, is marked by the offset of 
the next bucket. 
For a range query, a thread scans all the buckets that correspond 
to the cells that overlap the query box. Given the two end points, 
L and H, of the major diagonal of the box, the thread calls 
LocateCell on L and H to obtain the two corresponding end cells, 
CL and CH. The coordinates of CL and CH bound the cells whose 
coordinates fall in the multidimensional range. Then the thread 
sequentially scans these cells. For the points in the boundary cells 
(those having at least one coordinate equal to that of an end cell), 
the thread further takes a point-level test to check if they are 
located in the query box. 
To avoid the conflict among multiple threads that concurrently 
write query results to the shared output region, we perform the 
write in a three-step scheme similar to that in our previous work 
[11]. For completeness, we briefly present the scheme here. In the 
first step, each thread executes the query and counts the number 
of query results it generated. In this step, each thread only outputs 
the count but does not produce the actual query result records. 
Then a prefix sum routine gathers these local counts and 
translates them into an array of global write locations, each of 
which contains the start position for the corresponding thread to 
output. In the last step, each thread computes the query result 
records and writes the results to its slot in the global memory. 

4. SKEW HANDLING 
4.1 Hierarchical Grid File 
When partitioning the data space in the construction process of a 
grid file (described in Section 3.1), the data distribution in the 
resulting buckets may not be necessarily balanced after a single 
partitioning pass. For example, the two buckets starting from 0 
and 6 in Figure 1 are more crowded than the other two. As a result 
of data skews, querying a grid cell that corresponds to a crowded 
bucket is more expensive than querying a less crowded one. This 
imbalance has significant performance implications on the GPU, 
because the processors of the GPU are SIMD. Therefore, we 
propose a hierarchical scheme to further divide the crowded cells. 
This division is done recursively until the bucket size of a 
resulting cell is below a given threshold. 
Our proposed hierarchical grid structure is similar to two existing 
schemes, the multilevel grid file [28] and the buddy tree [24]. The 
common idea among the three schemes is to divide crowded 
regions recursively. However, our scheme has two major 
differences from the existing work. First, both existing structures 
cover only those cells that contain data points, and maintain a 
directory entry for each non-empty cell. In contrast, our 
hierarchical grid covers the entire data space, and locates cells 
through shared scales. This structure is relatively simpler and 
more suitable for bulk loading in a parallel computing 
environment. Second, as dynamic maintenance techniques, the 
two existing methods split an overflowed bucket into two at each 
level, thus the structures contain a relative large number of levels 
in the tree or in the grid. In comparison, our hierarchical grid is a 
static structure, and the number of levels of sub-grids in a 
crowded cell is relatively small. 
To build a hierarchical grid for relation R, we first perform the 
splitting and the data rearrangement of R in the same way as 
described in Section 3.1. We then store the information about the 
grid, such as the scales, the bucket sizes and offsets, in the 
directory. Next we check the size of each bucket in this grid: if 
the size of a bucket is larger than a given threshold, we perform 
another round of splitting, and the information of the newborn 
sub-grid is appended to the directory. The offset of the parent 
bucket is now redirected to the offset of the sub-grid in the 
directory. To distinguish the offset of a sub-grid from that of a 
bucket, we add a sign bit flag to the offset of the sub-grid. The 
pseudo code for constructing a hierarchical grid is given in Figure 
2. The average bucket size H is pre-specified as a constant. For 
simplicity, here the routine PNum assumes the same number of 
splits on all dimensions, i.e. p1 = p2 = … = pd = p. This can be 
generalized to cases where p1, p2 … pd  are functions of p. 



 
Figure 2. Pseudo code for building a hierarchical grid file. 

An example hierarchical grid is illustrated in Figure 3, obtained 
through splitting the original grid in Figure 1. After identifying 
the two crowed cells, we construct a sub-grid for each cell and 
change the offset in the storage into the flagged offset in the 
directory, i.e., -12 and -24.  

 
Figure 3. Structure of a hierarchical grid file. 

4.2 Query Processing 
Query processing over a hierarchical grid is similar to that over an 
original grid, except that each thread recursively decodes the 
offset of a sub-grid in the directory until it reaches the final 
bucket. Pseudo code is given in Figure 4. Note that, recursion is 
not supported in a GPU kernel program, due to the hardware 
limitations. In our implementation, we rewrite the code to a while 
loop with offset[i]<0 as the condition. Furthermore, flow control 
instructions can cause threads to diverge, and different execution 
paths have to be serialized. Since our grid hierarchy usually has a 

low level, the kernel requires only a small number of branches 
(less than five in our tests). Additionally, the hierarchy greatly 
improves the worst cases of bucket imbalance, thus effectively 
limits the serialization cost. 

int PNum(int size) // decide the number of partition on a dimension 
{ 

p = 2;  // number of partitions 
while(size/H > pd) p++; // pd: total number of cells 
return p; 

} 
BuildGrid(void* dir, rec R[n], int p)  // build a grid directory for R 
{ 
  compute scales, bucket offsets and sizes; append them to dir; 
  rearrange R; 
  for each bucket i of size[i]/H > 2d // the threshold to split 

BuildGrid(dir, R + offset[i], PNum(size[i])); 
offset[i] = 0 - dir’s current offset; 

}  

Search(rec q, int cur) //search q from current position of directory 
{ 

i = LocateCell(dir + cur, q);  // bucket id 
if(offset[i] > 0)  // a bucket 

scan the bucket for a match; 
else  // a sub-grid 

Search(q, - offset[i]); // grid offset 
} 

Figure 4. Pseudo code for query in a hierarchical grid file. 

5. EXPERIMENTS 
5.1 Experimental setup 
We have implemented and tested our algorithms on a PC with a 
G80 GPU and an Intel P4 Dual-Core processor running Windows 
XP. The hardware configuration of the PC is shown in Table 1.  

Table 1. Hardware configuration 

GPU CPU
Processors 1350MHz 8 16 × × 3.2GHz (Dual-core)
DRAM (MB) 768 1024 
DRAM latency (cycle) 200-300 300 
Bus width (bit) 384  64  
Memory clock (GHz) 1.8 0.8  

Each multiprocessor on the GPU has a piece of constant memory 
sized 64KB. The accesses to the constant memory are cached. 
The constant cache on each multiprocessor is 8KB. Since the 
scales of the grid file are frequently accessed, we store the scales 
of the first level of the grid in the constant memory for fast access. 
In our GPU programs, the numbers are tuned for the best 
performance. We use a configuration of 5120 thread blocks, each 
containing 256 threads. 
We consider two kinds of workloads in our experiments, the exact 
match query and the range query. For exact match queries, we 
first generate uniform datasets with number of tuples and number 
of dimensions varied. Then we test on skewed data sets, some 
synthetic, and some real-world. For range queries, we use a 
uniform dataset and vary the selectivity of the range query.  
The synthetic skewed data follows the Gaussian distribution with 
the parameter standard deviation varied. The smaller the standard 
deviation, the more skewed the data distribution is. The real-
world skewed data sets are from 3D point cloud models, which 
have been used extensively in graphics and computational 
geometry studies. 
The data structure for a d-dimensional record is an integer id 
followed by d 32-bit unsigned integer keys. We set the average 
bucket size to be H=8 in all experiments. In each experiment, the 
time cost for the CPU and the GPU executions are separately 
measured for comparison.  

4 

3 

0 

0 

storage

0 4 5 6 

0 2 

6 
4 

4 6 

2 7 8 9 

directory

directory offset: 
0 4, 0 3; 0 4 5 6; 4 1 1 4 

0 2, 0 1; 0 2 2 2; 2 0 0 2 4 6, 4 6; 6 7 8 9; 1 1 1 1 

scales;    offset;   size 

scales;    offset;    size scales;    offset;    size 

0 

12 24 

Level 1 

Level 2 

-12 -24 

1 
0 



5.2 Results 
5.2.1 Exact match query 
Figure 5 demonstrates the performance of evaluating 1 million 
exact match queries on a relation with the number of tuples varied. 
As the number of tuples increases, the performance speedup of 
the GPU-based algorithm over the CPU-based one increases 
slightly. In particular, the performance speedup is 6.5x on the data 
set of one million tuples and is 7.7x on the one of 16 million 
tuples. We also test the GPU grid file without the optimization of 
storing scales into the constant memory, and the comparison 
shows this optimization greatly reduces the memory stalls, and 
improves the overall performance by 40% on average.  
Figure 6 shows the performance of evaluating 1 million exact 
match queries on a relation of 16 million tuples with the number 
of dimensions varied. Because the overhead of LocateCell is 
proportional to the number of scale arrays, the time cost increases 
with the number of dimensions. The GPU-based grid file is 2-5 
times faster than the CPU-based grid file. 
Figure 7 shows the measurements on the synthetic skewed data, 
with the standard deviation ranging from 103 to 107. Both CPU- 
and GPU-based implementations suffer when the data skew is 
severe. As the data is becoming less skewed, the maximum level 
of the hierarchical grid decreases accordingly. The GPU-based 
hierarchical grid file is generally more than five times faster than 
the CPU-based one. 
Finally, we evaluate the exact match query on the skewed data 
using 3D point cloud models. We use two models, Sphere and 
Dragon, as shown in Figure 8. We varied the number of points in 
each model from 1 to 16 million, and issued 1 million queries 
with random search keys. The performance results on these two 
models are shown in Figure 9 and Figure 10, respectively. On 
both the CPU and the GPU, we compare the performance with 
and without the hierarchical scheme, denoted as “Y” or “N” for 
with or without a hierarchy, respectively. In general, the GPU 
versions are 2x-5x faster than their CPU counterparts. 
For the sphere model (Figure 9), the performance of the grid file 
with the hierarchical scheme is similar to that without, both on the 
CPU and on the GPU. This performance similarity is because the 
sphere model is a uniformly distributed point cloud within a 
sphere, which is of low skewness. The maximum level of the grid 
file is one. This shows that our partition scheme can handle 
slightly skewed data in a single-level grid. Similar to the 
performance speedup of GPU over CPU on the uniform data set, 
the performance speedup on the sphere model increases slightly 
as the number of points in the model increases.  
The dragon model is the point cloud on the surface of a dragon, 
which is of high correlation and skewness. The maximum level in 
this grid file is 3. The CPU-based grid file has an improvement of 
1.2x-1.5x by utilizing a hierarchy, whereas the GPU-based grid 
file gains an improvement of 2.3x-4.5x by utilizing a hierarchy. 
The main reason for this different degree of improvement is that 
the GPU benefits more from load balance than the CPU does. On 
the GPU, when threads are severely load-unbalanced and thus 
greatly diverged, the less loaded threads have to wait for the busy 
threads. Since the hierarchy helps balancing the load, the waste on 
waiting among threads is largely reduced. Thus the GPU benefits 
much from load balance. 

Exact match query

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 4 8 12 16
Number of tuples (million)

Ti
m

e(
se

c)

CPU
GPU (w/o optimization)

GPU (w/ optimization)

 
Figure 5.  Exact match query on uniform data sets with the 

number of tuples varied. 

Exact match query 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2D 3D 4D 5D
Dimension of space

Ti
m

e(
se

c)

CPU
GPU w/o optimization
GPU w/ optimization

 
Figure 6. Exact match query on uniform data sets with the 

number of dimensions varied. 

5.2.2 Range query 
Figure 11 shows the performance of evaluating 100k range 
queries to the grid of a relation of 16 million randomly generated 
2D tuples. Both the width and the length of the rectangles are 
varied from 0.1% to 1% of the integer range. As the selectivity 
increases, the execution time of both the CPU- and GPU-based 
grid files increases almost linearly. The GPU-based grid file is 
around 4x-6x faster than the CPU-based one. 

5.2.3 Discussion 
We have shown that our GPU-based algorithm outperforms its 
CPU counterpart in all our tests, with a 2x-8x speedup. The 
reasons for the performance improvement are as follows: (1) We 
utilize the GPU as a parallel device with a large number (more 
than 1 million) of lightweight threads. This massive-threading 
model well matches the query-intensive workloads. (2) Our GPU-
based grid file structure is relatively simple, and the record type is 
regular. This storage structure fits the array-based GPU memory 
access. (3) Each single query operation is relatively simple, and 
the hierarchical structure further improves the load balance. Such 
workload takes full advantage of the SIMD GPU processing and 
alleviates the high cost on branches or inter-thread load 
unbalancing. For these reasons, the GPU is more suitable for grid 
files than a multi-core CPU, which is equipped with a powerful 
instruction set but executes a small number of heavyweight 
threads. 



Synthesized skew

0

1

2

3

4

0.
E+

00

1.
E+

04

2.
E+

04

3.
E+

04

4.
E+

04

5.
E+

04

6.
E+

04

7.
E+

04

8.
E+

04

9.
E+

04

1.
E+

05

1.
E+

07

standard deviation of Gaussian distribution

Ti
m

e(
se

c)

0

1

2

3

4

5

M
ax

 le
ve

l

CPU
GPU
Max level

 
Figure 7. Exact match query on skewed data sets with the 

standard deviation in the Gaussian distribution varied. 

 
Figure 8. Visualization of the 3D real-world datasets: (left) 

Sphere; (right) Dragon. 

Sphere model, with-hierarchy (Y) vs. without-hierarchy (N) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 4 8 12

The number of points (million)

Ti
m

e(
se

c)

16

CPU N
GPU N
CPU Y
GPU Y

 
Figure 9. Exact match query on the Sphere model with the 

number of points varied. 

Dragon model, with-hierarchy(Y) vs. without-hierarchy(N) 

0

0.3

0.6

0.9

1.2

1.5

1.8

0 4 8 12 16
The number of points (million)

Ti
m

e 
(s

ec
)

CPU N
GPU N
CPU Y
GPU Y

 
Figure 10. Exact match query on the Dragon model with the 

number of points varied. 

Range query 

0

2

4

6

8

10

12

14

16

18

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Selectivity (%)

Ti
m

e(
se

c)

CPU
GPU

 
Figure 11. Range query on uniform data set with the 

selectivity varied. 

6. CONCLUSIONS AND FUTURE WORK 
We have developed in-memory grid files on the GPU and have 
shown that the new generation of GPUs is a well-suited parallel 
platform for accelerating this traditional multidimensional point 
access method. Moreover, we have proposed a static hierarchical 
grid file structure that handles skewed data efficiently. 
Experimental results show that our GPU algorithms greatly 
outperform their CPU counterparts in processing exact match and 
range queries, and that they work well up to five dimensions. As 
future work, we plan to study alternatives for dynamic insertion 
and deletion operations for grid files. Also, we are interested in 
designing multidimensional spatial access methods, such as R-
trees [10], on GPUs. 

7. ACKNOWLEDGEMENTS 
We thank the anonymous reviewers for their insightful comments 
and suggestions. We also thank people at the NVIDIA CUDA 
Forum, especially Mark Harris, for their help with the G80 
implementation issues. Finally, we thank Dr. Lidan Shou of 
Zhejiang University for his lectures on multidimensional access 
methods. 

8. REFERENCES 
[1] NVIDIA CUDA (Compute Unified Device Architecture), 

http://developer.nvidia.com/object/cuda.html. 
[2] Bandi, N., Sun, C., Agrawal, D. and El Abbadi, A., 

Hardware acceleration in commercial databases: A case 
study of spatial operations. VLDB, 2004. 

[3] Blanken, H., Ijbema, A., Meek, P. and van den Akker, B., 
The generalized grid file: Description and performance 
aspects. In Proc. 6th IEEE Int. Conf. on Data Eng., pp. 380-
388. 1990. 

[4] Fagin, R., Nievergelt, J., Pippenger, N. and Strong, R., 
Extendible hashing: A fast access method for dynamic files. 
ACM Trans. Database Systems 4 (3), 315-344. 1979. 

[5] Finkel, R. and Bentley, J. L., Quad trees: A data structure for 
retrieval of composite keys. Acta Informatica 4(1), 1-9. 1974. 

[6] Gaede V, Gunther O, Multidimensional Access Methods. 
ACM Computing Surveys,1998, 30(2). 

http://developer.nvidia.com/object/cuda.html


[7] Govindaraju, N., Gray, J., Kumar, R. and Manocha, D., 
GPUTeraSort: high performance graphics coprocessor 
sorting for large database management. SIGMOD, 2006. 

[8] Govindaraju, N., Lloyd, B., Wang, W., Lin, M. and Manocha, 
D., Fast computation of database operations using graphics 
processors. SIGMOD, 2004. 

[9] Govindaraju, N., Raghuvanshi, N. and Manocha, D., Fast 
and approximate stream mining of quantiles and frequencies 
using graphics processors. SIGMOD, 2005. 

[10] Guttman, A. R-trees: A dynamic index structure for spatial 
searching. In Proc. ACM SIGMOD Int. Conf. on 
Management of Data, pp. 47-54. 1984. 

[11] He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q. 
and Sander, P., Relational Joins on Graphics Processors. 
Technical report, Department of Computer Science and 
Engineering, HKUST, March 2007. 

[12] Hinrichs, K., Implementation of the grid file: Design 
concepts and experience. BIT 25, 569-592. 1985. 

[13] Kriegel, H.-P. and Seeger. B., Multidimensional order 
preserving linear hashing with partial expansions. In Proc. 
Int. Conf. on Database Theory, Number 243 in LNCS, 
Berlin/Heidelberg/New York. Springer-Verlag. 1986. 

[14] Kriegel, H.-P. and Seeger, B., Multidimensional quantile 
hashing is very efficient for non-uniform record distributions. 
In Proc. 3rd IEEE Int. Conf. on Data Eng., pp. 10-17. 1987. 

[15] Li, J., Rotem, D., Srivastava, J., Algorithms for Loading 
Parallel Grid Files. SIGMOD Conference 1993: 347-356 

[16] Nievergelt, J., Hinterberger, H., and Sevcik, K. C., The grid 
file: An adaptable, symmetric multikey file structure. ACM 
Trans. Database Systems 9 (1), 38-71, 1984. 

[17] Mohammed, S., Srinivasan, B., Bozyigit, M., Phu, D,. Novel 
parallel join algorithms for grid files. 3rd International 

Conference on High Performance Computing. Dec 1996, pp 
144-149. 

[18] Ouksel, M., The interpolation based grid file. In Proc. 4th 
ACM SIGACT-SIGMOD Symp. on Principles of Database 
Systems, pp. 20-27. 1985. 

[19] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., 
Krüger, J., A. E. Lefohn and T. J. Purcell. A survey of 
general-purpose computation on graphics hardware. 
Computer Graphics Forum, Volume 26, 2007. 

[20] Rao, J. and Ross. K. A., Cache conscious indexing for 
decision-support in main memory. VLDB, 1999. 

[21] Regnier, M. Analysis of the grid file algorithms. BIT 25, 
335-357. 1985. 

[22] Robinson, J. T. The K-D-B tree: A search structure for large 
multidimensional dynamic indexes. In Proc. ACM SIGMOD 
Int. Conf. on Management of Data, pp. 10-18. 1981. 

[23] Sagan, H., Space-Filling Curves. Berlin/Heidelberg/New 
York: Springer-Verlag, 1994. 

[24] Seeger, B. and Kriegel, H.-P., The buddy-tree: An efficient 
and robust access method for spatial data base systems. In 
Proc 16th Int. Conf. on Very Large Data Bases, pp. 590-601. 
1990. 

[25] Six, H. and Widmayer, P., Spatial searching in geometric 
databases. In Proc.4th IEEE Int. Conf. on Data Eng., pp. 
496-503. 1988. 

[26] Sun, C., Agrawal, D. and El Abbadi, A., Hardware 
acceleration for spatial selections and joins. SIGMOD, 2003. 

[27] Tamminen, M. The extendible cell method for closest point 
problems. BIT 22, 27-41. 1982. 

[28] Whang, K.-Y. and Krishnamurthy, R., Multilevel grid files. 
Yorktown Heights, NY: IBM Research Laboratory. 1985.

 


	1. INTRODUCTION
	2. BACKGROUND
	3. BASIC STRUCTURES
	3.1 Construction
	3.2 Query Processing

	4. SKEW HANDLING
	4.1 Hierarchical Grid File
	4.2 Query Processing

	5. EXPERIMENTS
	5.1 Experimental setup
	5.2 Results
	5.2.1 Exact match query
	5.2.2 Range query
	5.2.3 Discussion


	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

