
A General Framework for Improving Query Processing
Performance on Multi-Level Memory Hierarchies

Bingsheng He† Yinan Li‡ Qiong Luo† Dongqing Yang‡
†Hong Kong Univ. of Science and Technology ‡Peking University

{saven,luo}@cse.ust.hk {liyinan,dqyang}@pku.edu.cn

ABSTRACT
We propose a general framework for improving the query process-
ing performance on multi-level memory hierarchies. Our motiva-
tion is that (1) the memory hierarchy is an important performance
factor for query processing, (2) both the memory hierarchy and
database systems are becoming increasingly complex and diverse,
and (3) increasing the amount of tuning does not always improve
the performance. Therefore, we categorize multiple levels of mem-
ory performance tuning and quantify their performance impacts.
As a case study, we use this framework to improve the in-memory
performance of storage models, B+-trees, nested-loop joins and
hash joins. Our empirical evaluation verifies the usefulness of the
proposed framework.

1. INTRODUCTION
For the last two decades, processor speeds have been growing

at a much faster rate (60% per year) than memory speeds (10%
per year) [1]. Due to this widening speed gap, the memory hier-
archy has become an important factor for the overall performance
of relational query processing [3, 10]. Meanwhile, both relational
database systems and hardware platforms are becoming increas-
ingly complex and diverse. It is important and challenging to auto-
matically and consistently achieve a good query processing perfor-
mance across platforms.

In this paper, we propose a general framework to quantify the
relationships between the performance improvement and the auto-
maticity of in-memory query processing techniques. Intuitively, an
algorithm that knows much about a specific memory hierarchy can
utilize this knowledge to improve its efficiency, but it may require a
large amount of tuning due to its dependency on platform-specific
parameters, and its performance may also differ on different plat-
forms. Considering these issues, we categorize in our framework
the automaticity of an algorithm by the amount of knowledge about
the memory hierarchy.

A memory hierarchy has quite a few parameters that affect the
query processing performance. The common ones include (1) the
number of levels of the hierarchy and (2) the capacity, block size,
associativity, and access latency of each level. Other characteris-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Third International Workshop on Data Management on
New Hardware (DaMoN 2007) June 15, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-772-8 ...$5.00.

tics include prefetching and non-blocking data transfers between
two adjacent levels of the memory hierarchy. Some of these char-
acteristics are correlated and others are independent.

So far, various cache-conscious techniques [1, 10, 31] have con-
sidered one or two of these parameters individually and have demon-
strated a high performance with suitable parameter values and fine
tuning on a specific memory hierarchy. In contrast, there has emerged
initial work on cache-oblivious algorithms [5, 7, 11, 12, 18], which
assume no knowledge about a specific memory hierarchy and usu-
ally have provable upper bounds on the number of block transfers
between any two adjacent levels of an arbitrary memory hierarchy.

Considering both the memory hierarchy characteristics and the
existing algorithms, we define the tuning levels in our framework
corresponding to the memory hierarchy characteristics and study
the performance of the algorithms at different tuning levels. Specif-
ically, we start from a cache-oblivious algorithm, which requires no
tuning, and gradually add more knowledge about the memory hier-
archy and thus more tuning to the algorithm. Finally, we compare
the performance of these algorithms at each tuning level and across
platforms. The algorithms we studied include in-memory storage
models, the B+-tree, the non-indexed nested-loop join and the hash
join. Our empirical evaluation verifies the usefulness of the pro-
posed framework.

In brief, this paper makes the following three contributions. First,
we propose a general framework for improving the query process-
ing performance on multilevel memory hierarchies. To our best
knowledge, this is the first work on quantifying the correlations be-
tween the performance improvement and the amount of tuning for
the memory hierarchy. Second, we use our framework to study four
common data structures and algorithms for in-memory query pro-
cessing. As a result, we develop a series of algorithms that carry
different degrees of tuning for in-memory databases. Third, we
empirically evaluate the in-memory performance of the algorithms.
Our results demonstrate the effectiveness of our framework.

The remainder of this paper is organized as follows. In Section
2, we briefly review the background and related work. In Section 3,
we present our framework. In Section 4, we use our framework to
study in-memory storage models, B+-trees, nested-loop joins and
hash joins. We experimentally verify our framework in Section 5.
Finally, we conclude in Section 6.

2. PRELIMINARY AND RELATED WORK
In this section, we first introduce the background on the memory

hierarchy. Next, we review the related work on cache-conscious
and cache-oblivious techniques.

2.1 Memory hierarchies
The memory hierarchy in modern computers typically contains

1

multiple levels of memory from bottom up: disks, the main mem-
ory, the L2 cache, the L1 cache and registers. Each level has a
larger capacity and a slower access speed than its higher levels. We
use the cache and the memory to represent any two adjacent levels
in the memory hierarchy.

We summarize the following static characteristics of a memory
hierarchy.

P0. The number of levels in the hierarchy.

P1. The cache configuration: <C, B, A>, where C is the cache
capacity in bytes, B the cache line size in bytes, and A the
degree of set-associativity.

P2. The transfer latency of the cache, l.

P3. Transfer characteristic between two adjacent levels: support-
ing software prefetching or not and the non-blocking capa-
bility to support multiple transfers simultaneously. We use
the number of concurrent transfers supported, D, to quantify
the non-blocking capability.

Compared with static characteristics, the dynamic ones such as
the number of concurrent threads are more difficult to capture but
are important in multi-task systems, such as databases [22, 23]. In
this study, we focus on the static characteristics and leave the study
on the dynamic characteristics as future work.

The notations used throughout this paper are summarized in Ta-
ble 1. For readability, we will simply use C, B, A, l, d, D (i.e.,
without subscript i) whenever we refer to any level of the memory
hierarchy without explicitly specifying a level.

Table 1: Notations used in this paper
Parameter Description

Pi Characteristics of the memory hierarchy, 0 ≤ i ≤ 3
Γi The knowledge about the memory hierarchy, Γ0 = φ or

Γi ⊆ {P0, ..., Pi}, 1 ≤ i ≤ 3.
Ti The levels of tuning corresponding to Γi in our frame-

work, 0 ≤ i ≤ 3
L Number of levels in the memory hierarchy considered for

tuning
Ci Cache capacity of the ith level (bytes)
Bi Cache line size of the ith level (bytes)
Ai Cache associativity of the ith level
li Access latency of the ith level for random accesses (ns)
di Prefetching distance (number of cache blocks to prefetch

ahead)
Di Number of concurrent transfers supported by the non-

blocking capability
R, S Outer and inner relations of the join
r,s Tuple sizes of R and S (bytes)

|R|,|S| Cardinalities of R and S
||R||,||S|| Sizes of R and S (bytes)

2.2 Cache-centric query processing
Due to the widening speed gap between the processor and the

main memory, the CPU caches, especially the L2 cache, have be-
come a bottleneck for in-memory relational query processing [3,
10]. Consequently, many contributions have focused on optimizing
the L2 cache performance using cache-centric techniques including
cache-conscious [10, 13, 31] and cache-oblivious ones [7, 24].

Cache-conscious techniques have been the leading approach to
optimizing the cache performance. Specialized data structures, such
as cache-conscious B+-trees [9, 30], R-trees [27] and storage mod-
els [2, 20], have been proposed to reduce cache misses. Typical

cache-conscious techniques, including blocking [31], data parti-
tioning [28, 31], compression [9], data clustering [31], prefetch-
ing [13–16], staging [23] and buffering [33], were proposed for im-
proving the cache behavior of traditional database workloads. Most
of these studies optimize a single level on a multi-level memory hi-
erarchy, e.g., the L2 data cache.

With the same focus on reducing cache stalls, cache-oblivious al-
gorithms do not require the knowledge of cache parameters or any
tuning on the cache parameters. Representatives of existing cache-
oblivious techniques include recursive partitioning [18] and buffer-
ing [11, 18] for temporal locality, and recursive clustering [5] for
spatial locality. For relational query processing, He et al. [24, 25]
proposed cache-oblivious join algorithms, including nested-loop
joins with and without indexes, sort-merge joins and hash joins.
Both theoretical results and empirical evaluation show that cache-
oblivious algorithms can match the performance of their manually
optimized, cache-conscious counterparts [7, 12, 24].

In contrast with the existing cache-centric techniques that are
tuned based on a certain amount of knowledge about a specific
memory hierarchy, we propose a general framework to quantify
the correlations between the amount of tuning and the potential
performance gain. The framework serves as a guide for optimiz-
ing a cache-centric algorithm given a certain amount of knowledge
about a specific memory hierarchy.

3. FRAMEWORK
In this section, we present our framework and a cost model for

applying the framework to an algorithm on the memory hierarchy.
Our framework quantifies the performance impact of the tuning us-
ing a certain amount of knowledge about the memory hierarchy.
The basic idea of our categorization is that the more knowledge
about the memory hierarchy considered, the more tuning can be
involved to improve the performance. Given a certain amount of
knowledge about the memory hierarchy, we can apply certain kinds
of optimizations to improve the query processing performance.

3.1 Categorization
Figure 1 illustrates the spectrum of tuning for the memory hier-

archy. Techniques on the left of the spectrum require less tuning
than the ones on the right. Based on our categorization on the char-
acteristics of a memory hierarchy, we divide the spectrum into the
following four levels of memory performance tuning.

T0 No knowledge about the cache parameters, i.e., cache-oblivious.

T1 Having the knowledge of the cache capacity and/or cache block
size of the target level.

T2 Having the knowledge of the latency, in addition to T1.

T3 Having the knowledge of software prefetching and/or non-blocking
capability of the target level, in addition to T2.

T1–T3 implicitly have the knowledge of P0. At T1, we can deter-
mine the highest level of cache that can hold the working set of the
algorithm. Let this level of cache be x. Thus, T1–T3 knows the
number of levels of the cache considered for tuning, L = x.

In our categorization, Ti (0 ≤ i ≤ 3) requires a set of character-
istics of the target level of cache, Γi. Thus, the levels of tuning in
our framework are in a total order according to the required amount
of knowledge about the memory hierarchy. A Ti with a larger i
value requires more information about the memory hierarchy and
involves more tuning, i.e., T0 < T1 < T2 < T3. Tuning T0 is
cache-oblivious, since it requires no tuning on the hardware de-
pendent parameters. In contrast, T1–T3 are cache-conscious. For

2

T0 T1 T2 T3
P1 P2 P3

No
tuning

Fine
tuning

Recursive
clustering,
recursive
partitioning

Blocking,
buffering

Tiling,
grouping

Software
prefetching

Figure 1: The spectrum of tuning. T0 on the left of the spectrum
is cache-oblivious, and T1–T3 on the right of the spectrum are
cache-conscious. On the bottom of the figure show some exist-
ing techniques belonging to each level of tuning.

instance, if T3 applies software prefetching to a technique, it re-
quires the tuning based on the cache capacity and the block size
(T1) as well as the latency (T2). The block size is used to deter-
mine the size of the data to be prefetched. The cache capacity and
the latency are used to determine the prefetch distance so that the
memory latency is fully hidden by prefetching.

We have categorized existing techniques according to our frame-
work, as shown in Table 2. The majority of cache-conscious tech-
niques belong to T1 and T2.

Table 2: Categorizing existing cache-centric techniques
Knowledge Tuning Representative techniques

Γ0 T0 CO B+-trees [5, 6], funnel sort [11],
CO nested-loop join [24, 25] and stor-
age models [6]

Γ1 T1 Blocking [31], buffering [33], partition-
ing [10, 31], compression [9, 27], clus-
tering [17]

Γ2 T2 Tiling [19], grouping [2, 20, 29, 30]
Γ3 T3 Loop unrolling [28], prefetching [13–

16]

In this tuning hierarchy, a higher level of tuning can potentially
achieve a higher performance at the price of a larger amount of tun-
ing. Given a technique at the tuning level, Ti, we consider higher
tuning levels, Tj (j > i), to optimize this technique with more
knowledge about the memory hierarchy. We briefly describe the
basic use for each level of tuning: (a) T0 mainly uses the divide-
and-conquer methodology to improve the cache locality. (b) T1

packs the data into the cache or a cache block. Additionally, we
can estimate the number of cache misses on each level of cache.
(c) T2 determines the most significant levels of cache for the to-
tal execution time and applies techniques to those levels of cache.
(d) T3 applies software prefetching to hide the cache stalls. As
we will demonstrate in Section 4, we apply our framework to four
case studies. We optimize each base technique with the knowledge
about the memory hierarchy and without much modification to the
base technique.

3.2 Determining the target levels of caches
Because a memory hierarchy consists of multiple levels, we need

to determine the target level for a cache-conscious algorithm. Note
that cache-oblivious techniques do not require determining the tar-
get levels due to their automaticity.

Since the complexity of tuning dramatically increases with the
number of levels of caches considered, we choose one or two levels

of caches that are most significant for the overall performance to
be the target levels of caches for tuning. The following are two
representative cases:

Case Γ = {P0, P1}. Since we do not know the latency informa-
tion, we can not determine which levels of caches are significant in
the overall performance. In practice, we choose the lowest level of
caches that can not hold the working set of the algorithm, (L− 1),
to be the target level, because the lower levels have a larger latency
(even though the actual latency is unknown) and are likely to be
significant in the overall performance.

Case Γ ⊇ {P0, P1, P2}. With the latency information of the
memory hierarchy, we develop our overall cache performance model
for a memory hierarchy. This model estimates the overall cache
performance, which is defined to be the total cache stalls of an algo-
rithm on all levels of the memory hierarchy. Suppose the cost func-
tion Fi(P1, ..., P3, T0, ..., T3) gives the number of cache misses
on the ith level of the memory hierarchy caused by the algorithm.
Since caches at different levels of the memory hierarchy are inde-
pendent with each other, the cost functions for two distinct cache
levels may be different due to different levels of tuning applied. Eq.
1 gives the cache stalls on the ith level. Thus, the overall cache per-
formance of the algorithm on the entire memory hierarchy is given
in Eq. 2.

τi = Fi(P1, ..., P3, T0, ..., T3)× li+1 (1)

τ =

L−1∑
i=1

τi (2)

To determine the target levels, we rank the levels of caches ac-
cording to τi. The larger τi, the more significant the ith level of
caches.

4. CASE STUDIES
In this section, we use in-memory storage models, the B+-tree,

the nested-loop join without indexes (NLJ) and the hash join as case
studies to illustrate the applicability of our framework. We start the
tuning process at a certain level of tuning and apply the upper levels
of tuning to the algorithm. Additionally, we have developed cost
functions for each algorithm at different tuning levels. These cost
functions are used in our cost model to determine the significant
level of cache.

4.1 Storage models
We consider two kinds of storage models, the array for static data

and the linked list (LL) for dynamic data. Especially, we consider
optimizing the scan on the storage models.

Array scan. Since the array has a good spatial locality on
any level of the memory hierarchy, T1 and T2 do not have any
performance improvement on the array scan. We consider T3 to
see whether software prefetching helps reduce the number of cache
misses for loading the array. Given the prefetching distance, d, the
algorithm issues a prefetching instruction on the (i + d)th cache
block, before processing the ith cache block.

LL scan. At T1, the algorithm determines the suitable node
size for the linked list according to the cache block size of the low-
est level of caches so that the spatial locality of each node is max-
imized. At T2, the algorithm determines the suitable node size for
the linked list according to the cache block size of the target level.
At T3, the algorithm determines the suitable prefetching distance.
Similar to the array scan, the algorithm prefetches the (i + d/z)th
node (z is the node size in number of cache blocks) when it pro-
cesses the ith node. The algorithm keeps a jump-pointer array, J ,
to maintain the addresses of the nodes in the linked list. The idea

3

LL0LL0 LL1LL1 LL2LL2 LLnLLn

Jump-pointer
array, J

Linked
list, LL

Figure 2: The jump-pointer array for the linked list.

T1

T2 Tt

...
T1 T2 Tt

...

Cut1

Figure 3: The VEB layout.

of the jump-pointer array is shown in Figure 2. J [i] stores the start
address of the ith node in the linked list.

With the jump-pointer array, we apply the prefetching technique
to scan the linked list. Given the prefetching distance, d, the algo-
rithm issues prefetch instructions for the node at J [i+d/z] in order
to prefetch the (i + d/z)th node.

4.2 B+-trees
We start with a cache-oblivious B+-tree at T0. A COB+-tree

[6] consists of two arrays. One stores the data leaves of the B+-
tree, and the other one stores the directory. The index nodes in the
directory are organized into a binary tree stored in the van Emde
Boas (VEB) layout [5] without considering any specific memory
parameters.

The VEB layout proceeds as follows. Let h be the number of
levels in the tree. We split the tree at the middle level (Cut 1 in
Figure 3) and obtain around N1/2 subtrees, each of which contains
roughly N1/2 index nodes (T1, ..., Tt in Figure 3). The resulting
layout of the tree is obtained by recursively storing each subtree
in the order of T1, ..., Tt. The recursion stops when the subtree
contains only one node. In the VEB layout, an index node and its
child nodes are stored close to each other. Thus, the spatial locality
of the tree index is improved.

At T1, each tree node has the exact size of B. It is a small binary
tree stored in the VEB layout. Additionally, the entire tree is stored
according to the VEB layout. This idea of “tree within a tree” is
similar to the fractal tree structure [16]. The difference is that we
use the VEB layout to store each node so that the node has a good
spatial locality for all levels of caches above the target level. At
T2 and T3, the B+-tree is similar to that at T1 except that the node
size is the cache block size at the target level of cache at T2, and is
(D ×B) at T3.

4.3 Nested-loop joins
We use the cache-oblivious non-indexed nested-loop joins (CO NLJ)

[24] as NLJ at T0. CO NLJ first divides each of the inner and outer
relations (denoted as S and R, respectively) into two equal-sized
sub-relations. Next, it performs joins on the pairs of inner and outer
sub-relations. This partitioning and joining process goes on recur-
sively, until it reaches the base case when |S| is no larger than the
base case size, CS (default CS = 1). It then applies the tuple-based
non-indexed nested-loop join algorithm to evaluate the base case.

At T1 or T2, the algorithm sets the base case to be the cache
capacity of the target level depending on the level of cache to be

optimized. Thus, the inner relation of the base case can fit into the
cache. At T3, the algorithm sets the prefetching distance to be a
small constant so that prefetching does not interfere with the cache
locality tuned at T1. The optimal prefetching distance is l

w
, given

the computation time on each cache block, w. With this prefetching
distance, the prefetching can fully hide the cache stall.

4.4 Hash joins
We start with the simple hash join. We use two techniques to im-

prove its cache performance, cache partitioning [10,31] and prefetch-
ing [13]. The former one belongs to T1 or T2 depending on its
target level of cache, whereas the latter one belongs to T3.

Since these two techniques are independent with each other, we
have implemented two variants of cache-optimized hash joins: (1)
we first implement the partitioned hash join, and then apply prefetch-
ing within the join on each partition pair. (2) we apply the prefetch-
ing in both the partitioning and the probing.

4.5 Summary
We derive the cost function of each level of tuning for each case,

as shown in Table 3. These cost functions are used to determine the
target levels of caches.

5. EVALUATION
We verified the usefulness of the proposed framework by imple-

menting and evaluating the case studies in Section 4.

5.1 Experimental setup
Our empirical study was conducted on three machines of differ-

ent architectures, namely P4, AMD and Ultra-Sparc. Some features
of these machines are listed in Table 4. The row DTLB gives the
number of entries in the data TLB (Translation Look-aside Buffer).
The Ultra-Sparc does not support hardware prefetching data from
the main memory [32], whereas both P4 and AMD do. AMD
performs prefetching for ascending sequential accesses only [4]
whereas P4 supports prefetching for both ascending and descend-
ing accesses [26].

Table 4: Machine characteristics
Name P4 AMD Ultra-Sparc

OS Windows XP Linux 2.6.15 Solaris 8
Processor Intel P4 1.8GHz AMD Opteron 1.8GHz Ultra-Sparc III 900Mhz

L1 DCache <32K, 64, 4> <64K, 64, 2> <64K, 32, 4>
L2 cache <2M, 64, 8> <1M, 128, 16> <8M, 64, 8>

DTLB 64 1024 64
Memory 1.0 GB 15.0 GB 8.0 GB

We performed calibration on these machines to obtain the cache
latency. For instance, the latency of the L1 and L2 caches on P4 is
12 and 42 cycles, respectively.
Workload design. The workloads in our study contain (1) one
selection query on table R, and (2) two join queries each on two
tables R and S. Each of tables R and S consists of n integer at-
tributes, a1, a2, ..., and an. Each field was a randomly generated
4-byte integer. We varied n to scale up or down the tuple size of
the table. These workloads are similar to those in a the previous
study [3].

We consider the following selection query, “SELECT R.a1 FROM
R WHERE R.a1 = 1 and...and R.an = 1”. We used a full scan
on R to evaluate this selection query. All fields of the table are in-
volved in the predicate so that an entire tuple is brought into the
cache for the evaluation of the predicate.

The join queries considered in our experiments are “SELECT
R.a1 FROM R, S WHERE <predicate>”. There are two

4

Table 3: Cost functions. z is the size of an index entry in the B+-tree node (bytes).
Cases Array scan LL scan NLJs B+-Trees Hash join (1) Hash join (2)
T0

||R||
B

|R| ·B 3||R||·||S||
C·B 2 log B

z
|R| |R| · (1 + s

B
) + ||R||

B
|R| · (1 + s

B
) + ||R||

B

T1
||R||

B
||R||

B
||R||·||S||

C·B log B
z
|R| (||R||+ ||S||) · log C

B
|S| (||R||+ ||S||) · log C

B
|S|

T2
||R||

B
||R||

B
||R||·||S||

C·B log B
z
|R| (||R||+ ||S||) · log C

B
|S| (||R||+ ||S||) · log C

B
|S|

T3
||R||
D·B

||R||
D·B

||R||·||S||
D·C·B logD·B

z
|R| (||R||+ ||S||) · log C

B
|S| 1

D
· (||R||+ ||S||) · log C

B
|S|

predicates, R.a1 = S.a1 for an equi-join and R.a1 < S.a1 and
...and R.an < S.an for a non-equijoin. We used the non-indexed
NLJ algorithm to evaluate the non-equijoin, and the hash join as
well as the B+-tree to evaluate the equi-join.

Metrics. Table 5 lists the main performance metrics used in our
experiments. We used the C/C++ function clock() to obtain the
total execution time on all three platforms. In addition, we used a
hardware profiling tool, PCL [8], to count cache misses on P4 only,
because we did not have privileges to perform profiling on AMD
or Ultra-Sparc.

Table 5: Performance metrics
Metrics Description

TOT CYC Total execution time on all three platforms in milliseconds (ms)
L1 DCM Number of L1 data cache misses on P4 in billions (109)
L2 DCM Number of L2 data cache misses on P4 in millions (106)
TLB DM Number of TLB misses on P4 in millions (106)

5.2 Results
We present the experimental results on the three platforms. In

general, the results on AMD are similar to those on P4. Addition-
ally, the prefetching technique achieves a considerable performance
improvement on P4 and AMD, whereas the prefetching technique
has little performance improvement on Ultra-Sparc.

5.2.1 Storage models
Array. Figure 4 shows the execution time of the array scan with

the software prefetching when |R| = 8M . We varied the tuple size.
For each tuple size, we varied the prefetching distance in number of
L2 cache lines. Software prefetching improves the array scan on P4
and AMD, whereas it has little performance impact on Ultra-Sparc.

Since hardware prefetching is enabled on P4 and AMD, software
prefetching does not necessarily improve the performance. When
the tuple size is small, the memory stalls are fully hidden with suf-
ficient computation in the presence of hardware prefetching. For
example, when r = 8B, each cache line contains 8 tuples. Soft-
ware prefetching degrades the performance due to its computation
overhead on P4. In contrast, when the tuple size is large, software
prefetching further improves the scan performance in addition to
hardware prefetching. Figure 5 shows the performance of array
scan with the tuple size varied. The performance improvement
of software prefetching increases as the tuple size increases. On
P4, when the tuple size is larger than 16 bytes, software prefetch-
ing starts to improve the performance of the array scan. Note, on
AMD, software prefetching improve the performance of the array
scan when the tuple size is larger than 8 bytes. One possible reason
is that the AMD has a larger memory latency than P4.

Software prefetching requires tuning on the prefetching distance
in order to achieve the best performance on P4 and AMD. When
the prefetching distance is small, the memory stalls are not com-
pletely hidden. When the prefetching distance is larger than the L1
cache capacity, a performance slowdown occurs due to the cache

Array scan

0

20

40

60

80

100

120

0 128 256 384 512 640 768 896 1024
Prefetching distance (#cache lines)

T
im

e
(m

s
)

(a) r = 8B on P4

Array scan

0

50

100

150

200

250

0 128 256 384 512 640 768 896 1024

Prefetching distance (#cache lines)

T
im

e
(m

s
)

(b) r = 64B on P4

Array scan

0

20

40

60

80

100

120

140

160

0 128 256 384 512 640 768 896 1024
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=8B

(c) r = 8B on AMD

Array scan

0

50

100

150

200

250

300

350

400

450

0 128 256 384 512 640 768 896 1024
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=64B

(d) r = 64B on AMD

Array scan

0

50

100

150

200

250

300

350

400

450

0 128 256 384 512 640 768 896 1024
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=8B

(e) r = 8B on Ultra-Sparc

Array scan

0

500

1000

1500

2000

2500

3000

0 128 256 384 512 640 768 896 1024
Prefetching distance (#cache
lines)

T
im

e
(m

s
)

r=64B

(f) r = 64B on Ultra-Sparc

Figure 4: Array scan at the tuning level T3: varying the
prefetching distance.

thrashing in the L1 cache. A similar performance slowdown is ob-
served when the prefetching distance is larger than the number of
cache lines in the L2 cache. Thus, to develop an efficient prefetch-
ing scheme, we need to (1) the latency and the cache block size to
determine whether software prefetching can help hide the memory
stalls; (2) the cache capacity to avoid prefetch too many cache lines.
This validates our framework that T3 includes the lower levels of
tuning, T1 and T2.

Linked list. We first investigated the performance of the linked
list scan without software prefetching. We varied the node size and
found that the stable node size is 128B on P4 and AMD, and 64B
on Ultra-Sparc. When the node size is the stable node size, the
execution time becomes stable.

We next evaluated the prefetching technique on the linked list
scan. The execution time of the linked list scan with software

5

Array scan

0

20

40

60

80

100

120

140

160

180

200

8 16 24 32 40 48 56 64
Tuple size (bytes)

T
im

e
(m

s
)

w/o prefetching
w/ prefetching

(a) On P4

Array scan

0

50

100

150

200

250

8 16 24 32 40 48 56 64

Tuple size (bytes)

T
im

e
(m

s
)

w/o prefetching
w/ prefetching

(b) On AMD

Figure 5: Array scan with and without prefetching: varying
the tuple size.

prefetching is shown in Figure 6. Due to the random nature of the
linked list scan, hardware prefetching has little performance im-
pact. The software prefetching technique helps reduce the cache
stalls on P4 and AMD, whereas it does not help on Ultra-Sparc.
The performance improvement on a relation with a large tuple size
is larger than that with a small tuple size. This is because, memory
stalls are more significant and software prefetching better hides the
memory stalls on a relation with a large tuple size. Similar to the
array scan, software prefetching on the linked list requires the tun-
ing on the cache block size, the cache capacity and the latency in
order to determine the suitable prefetching distance.

5.2.2 B+-trees
We used B+-tree indexing to evaluate the equijoin query. The

measurements are shown in Figure 7. The reported results were
obtained when |R| = 200K, |S| = 32M and r = s = 8 bytes.
|R| was much smaller than |S|, since we focused on the spatial
locality of the B+-tree index. This setting was comparable to the
previous study [29, 30]. Since the tree index is static, we did not
store the pointers in its internal nodes and used implicit addressing
like CSS-trees [29]. In this implementation, the performance of our
B+-trees at T1 was similar to that of CSS-trees.

On all platforms, T3 is the best among all variants; T0 is 20%–
30% slower than T3. The reason for this phenomenon is that B+-
trees at T0 has a good spatial locality with the VEB layout using
implicit addressing. In our experiments, the COB+-tree is a binary
tree. Each internal node is 4 bytes. Suppose a L2 cache line is 128
bytes (the cache line size on P4 or AMD). It can hold 32 nodes.
Ignoring the cache block alignment, a subtree of five levels can
fit into one cache line. This good spatial locality of VEB layout
greatly reduces the cache misses on the index probes.

Comparing the performance gain of each level of tuning, we
find that T2 has little performance impact on the B+-trees. Finally,
the software prefetching technique, T3, considerably improves the
overall performance (except on Ultra-Sparc). The performance im-
provement is due to (1) the software prefetching hiding the cache
stalls, and (2) the small tree height. The performance improvement
is 20%–30%, which is comparable to that shown in previous studies
on simulators [15].

We investigated the cache performance of the index probes on
P4. Figure 8 shows the time breakdown of the index probes at
different levels of tuning. T1–T3 have a stable busy time, and T0

has a larger busy time than other levels of tuning due to the larger
amount of computation required by the VEB layout. T0–T2 have a
similar cache performance. Among all levels of tuning, T3 has the
best cache performance.

LL scan

0

50

100

150

200

250

0 64 128 192 256 320 384 448 512
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=8B

(a) r = 8B on P4

LL scan

0

100

200

300

400

500

600

700

0 64 128 192 256 320 384 448 512
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=64B

(b) r = 64B on P4

LL scan

0

50

100

150

200

250

300

350

0 64 128 192 256 320 384 448 512
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=8B

(c) r = 8B on AMD

LL scan

0

500

1000

1500

2000

2500

3000

0 64 128 192 256 320 384 448 512
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=64B

(d) r = 64B on AMD

LL scan

0

200

400

600

800

1000

1200

1400

1600

1800

0 64 128 192 256 320 384 448 512
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=8B

(e) r = 8B on Ultra-Sparc

LL scan

0

2000

4000

6000

8000

10000

12000

14000

0 64 128 192 256 320 384 448 512
Prefetching distance (#cache lines)

T
im

e
(m

s
)

r=64B

(f) r = 64B on Ultra-Sparc

Figure 6: Linked list scan at the tuning level T3: varying the
prefetching distance.

5.2.3 NLJs
Figure 9 shows the time comparison for non-indexed nested-loop

joins with different levels of tuning. The reported results were ob-
tained when ||R|| = ||S|| = 32M bytes and r = s = 128 bytes
(both relations have 256K tuples).

According to our cost model, T1 chooses the L2 cache as its
target level, whereas T2 chooses the L1 cache as its target level.
T1 is even slower than T0, because T1 chooses the incorrect target
level at the absence of the knowledge of the latency. Note that the
L1 cache is the most significant level of the cache according to our
cost function in Table 3. This is evidence that a higher level of
tuning does not guarantee a higher performance. We illustrate this
result by comparing the performance of T1 when the target level of
cache is the L2, the L1 or the TLB, as shown in Figure 10.

T3 applies software prefetching to both of the outer and the inner
relations in the join. The prefetching distance was set to be one on
the three platforms. The join performance improvement by soft-
ware prefetching is insignificant, because the blocking technique
has achieved a good cache locality.

5.2.4 Hash joins
Figure 11 shows the performance of hash joins when |R| =

|S| = 8M and r = s = 8 bytes. Note, in Figure 11 (a)(d), the
prefetching distance being zero means that the result is obtained
from the simple hash join (without prefetching). We do not show
the results on Ultra-Sparc, because the performance impact of soft-

6

(a) P4

(b) AMD

(c) Ultra-Sparc

0

50

100

150

200

250

T0 T1(L2) T2(L2) T3(L2)

E
la

p
s
e
d
 t
im

e
 (

m
s
)

0

50

100

150

200

250

T0 T1(L2) T2(L2) T3(L2)

E
la

p
s
e
d
 t
im

e
 (

m
s
)

0

100

200

300

400

500

T0 T1(L2) T2(L2) T3(L2)

E
la

p
s
e
d
 t
im

e
 (

m
s
)

Figure 7: B+-trees

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

0

50

100

150

200

250

T0 T1(L2) T2(L2) T3(L2)

E
la

p
s
e

d
 t

im
e

(m
s
)

TLB_DM

L1_DCM

L2_DCM

xxx
xxx
xxx Busy

Figure 8: B+-trees: time breakdown on P4

ware prefetching is insignificant.
We summarize the results in two aspects. First, both partition-

ing and prefetching improve the performance of the hash join. The
prefetching hash join achieves the best performance when the prefetch-
ing distance is 16 and four on P4 and AMD, respectively. The par-
titioned hash join achieves the best performance when the partition
granularity is 4K and 16K tuples, respectively. The performance
trend with a single technique is concave. Thus, the suitable setting
of these techniques requires tuning according to the cache capacity.

Second, the performance improvements of applying prefetching
only, applying partitioning only and applying both techniques over
the simple hash join are 40%, 47% and 30%, respectively, on P4
and are 40%, 85% and 69%, respectively, on AMD. The cumula-
tive performance improvement of the two techniques can be smaller
than that of applying a single technique. It indicates that prefetch-
ing hurts the performance of the optimized partitioned hash join.

5.2.5 Summary
Through the four case studies, we observed the following three

results. First, among the four levels of tuning in our framework,
T3 utilizes the complete knowledge of a specific memory hierar-

0

200

400

600

800

1000

1200

1400

T0 T1(L2) T2(L1) T3(L1)

E
la

p
s
e
d
 t
im

e
 (

m
s
)

0

500

1000

1500

2000

2500

T0 T1(L2) T2(L1) T3(L1)

E
la

p
s
e
d
 t
im

e
 (

m
s
)

0

1000

2000

3000

4000

5000

6000

7000

T0 T1(L2) T2(L1) T3(L1)

E
la

p
s
e
d
 t
im

e
 (

m
s
)

(a) P4

(b) AMD

(c) Ultra-Sparc

Figure 9: Non-indexed nested-loop joins

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0

1000

2000

3000

4000

5000

6000

7000

P4 AMD Ultra-Sparc

E
la

p
s
e

d
 t

im
e

 (
m

s
)

xx
xx
xx T1(L2)

T1(L1)

T1(TLB)

Figure 10: Non-indexed nested-loop joins at T1

chy and achieves the best performance on all the four case studies
except the hash join. Second, T1 and T2 in our framework do not
necessarily improve the performance over T0 due to the possible
ineffective tuning based on the incomplete knowledge of the mem-
ory hierarchy. Third, T0 achieves a comparable performance to its
higher levels of tuning, whose execution time is less than twice that
of the fine-tuned algorithm.

6. CONCLUSION
As the memory hierarchy becomes an important factor for the

performance of database applications, it is imperative to improve
the memory performance of relational query processing. Cache-
oblivious techniques optimize all levels of any memory hierarchies
without knowledge of cache parameters of a specific memory hier-
archy, whereas cache-conscious techniques can potentially achieve
a better performance with careful tuning based on the cache char-
acteristics. Considering the strengths and weaknesses of both tech-
niques, we propose a general framework to quantify the perfor-
mance impact of different degrees of tuning. Through studying on
several basic data structures and algorithms in query processing,
we show that our framework is useful in this process of tuning.

As future work, we are interested in extending our framework to

7

Prefetching hash join

0

1

2

3

4

5

6

7

8

9

0 1 2 4 8 16 32 64 128
Prefetching distance

T
im

e
 (

s
e
c
)

Build

Probe

(a) T3 (prefetching only) on P4

Partitioned hash join

0

1

2

3

4

5

6

7

8

9

2 4 8 16 32 64 128 256 512 10242048 40968192
Partition size (K)

T
im

e
 (

s
e
c
)

Join

Partition

(b) T1 (also T2, partitioning only) on
P4

Partitioned hash join + Prefetching

0

1

2

3

4

5

6

7

8

9

2 4 8 16 32 64 128 256 512 1024 204840968192
Partition size (K)

T
im

e
 (

s
e
c
)

Join

Partition

(c) T3 (partitioning+prefetching) on
P4

Prefetched hash join

0

1

2

3

4

5

6

7

8

9

0 1 2 4 8 16 32 64 128
Prefetching distance

T
im

e
 (

s
e
c
)

Build

Probe

(d) T3 (prefetching only) on AMD

Partitioned hash join

0

1

2

3

4

5

6

7

8

9

2 4 8 16 32 64 128 256 512 10242048 4096 8192

Partition size (K)

T
im

e
 (

s
e
c
)

Join

Partition

(e) T1 (also T2, partitioning only) on
AMD

Partitioned hash join + Prefetching

0

1

2

3

4

5

6

7

8

9

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Partition size (K)

T
im

e
 (

s
e
c
)

Join

Partition

(f) T3 (partitioning+prefetching) on
AMD

Figure 11: Hash joins

the dynamic characteristics of the memory hierarchy on the chip-
multiprocessors [21]. We are also interested in tuning the cache-
conscious algorithm adapting to the runtime dynamics of the mem-
ory hierarchy based on the hardware profile.

7. ACKNOWLEDGEMENT
We thank the anonymous reviewers for their comments on the

earlier versions of this paper. This work was supported by grants
DAG05/06.EG11, HKUST6263/04E, and 617206, all from the Hong
Kong Research Grants Council.

8. REFERENCES
[1] A. Ailamaki. Database architectures for new hardware. In

ICDE ’05: Proceedings of the 21st International Conference
on Data Engineering (ICDE’05), page 1148, Washington,
DC, USA, 2005. IEEE Computer Society.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB ’01:
Proceedings of the 27th International Conference on Very
Large Data Bases, pages 169–180, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a modern processor: Where does time go? In
VLDB ’99: Proceedings of the 25th International Conference
on Very Large Data Bases, pages 266–277, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[4] AMD Corp. Software Optimization Guide for AMD64
Processors, 2005.

[5] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious B-trees. In FOCS ’00: Proceedings of the
41st Annual Symposium on Foundations of Computer
Science, page 399, Washington, DC, USA, 2000. IEEE
Computer Society.

[6] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A

locality-preserving cache-oblivious dynamic dictionary. J.
Algorithms, 53(2):115–136, 2004.

[7] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul.
Cache-oblivious string B-trees. In PODS ’06: Proceedings of
the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 233–242, New
York, NY, USA, 2006. ACM Press.

[8] R. Berrendorf, H. Ziegler, and B. Mohr. PCL: Performance
Counter Library. http://www.fz-juelich.de/zam/PCL/, 2002.

[9] P. Bohannon, P. Mcllroy, and R. Rastogi. Main-memory
index structures with fixed-size partial keys. In SIGMOD
’01: Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 163–174, New
York, NY, USA, 2001. ACM Press.

[10] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck: Memory
access. In VLDB ’99: Proceedings of the 25th International
Conference on Very Large Data Bases, pages 54–65, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

[11] G. S. Brodal and R. Fagerberg. Cache oblivious distribution
sweeping. In ICALP ’02: Proceedings of the 29th
International Colloquium on Automata, Languages and
Programming, pages 426–438, London, UK, 2002.
Springer-Verlag.

[12] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a
cache-oblivious sorting algorith. In ALENEX/ANALC, pages
4–17, 2004.

[13] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving hash join performance through prefetching. In
ICDE ’04: Proceedings of the 20th International Conference
on Data Engineering, page 116, Washington, DC, USA,
2004. IEEE Computer Society.

[14] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Inspector joins. In VLDB ’05: Proceedings of the 31st

8

international conference on Very large data bases, pages
817–828. VLDB Endowment, 2005.

[15] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index
performance through prefetching. SIGMOD Rec.,
30(2):235–246, 2001.

[16] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin.
Fractal prefetching B+-trees: optimizing both cache and disk
performance. In SIGMOD ’02: Proceedings of the 2002
ACM SIGMOD international conference on Management of
data, pages 157–168, New York, NY, USA, 2002. ACM
Press.

[17] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. In PLDI ’99: Proceedings of the ACM
SIGPLAN 1999 conference on Programming language
design and implementation, pages 1–12, New York, NY,
USA, 1999. ACM Press.

[18] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In FOCS ’99: Proceedings of
the 40th Annual Symposium on Foundations of Computer
Science, page 285, Washington, DC, USA, 1999. IEEE
Computer Society.

[19] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim,
A. Nguyen, Y.-K. Chen, and P. Dubey. Cache-conscious
Frequent Pattern Mining on a Modern Processor. VLDB,
2005.

[20] R. A. Hankins and J. M. Patel. Data morphing: An adaptive,
cache-conscious storage technique. In VLDB, pages
417–428, 2003.

[21] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
S. Harizopoulos, A. Ailamaki, and B. Falsafi. Database
servers on chip multiprocessors: Limitations and
opportunities. In CIDR ’07: Proceedings of the Third
International Conference on Innovative Data Systems
Research, Asilomar, CA, USA, 2007.

[22] S. Harizopoulos and A. Ailamaki. Improving instruction
cache performance in OLTP. ACM Trans. Database Syst.,
31(3):887–920, 2006.

[23] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A
Simultaneously Pipelined Relational Query Engine. In
SIGMOD Conference, pages 383–394, 2005.

[24] B. He and Q. Luo. Cache-oblivious nested-loop joins. In
CIKM ’06: Proceedings of the ACM Fifteenth Conference on
Information and Knowledge Management, 2006.

[25] B. He and Q. Luo. Cache-oblivious query processing. In
CIDR ’07: Proceedings of the Third International
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, 2007.

[26] Intel Corp. Intel(R) Itanium(R) 2 Processor Reference
Manual for Software Development and Optimization, 2004.

[27] K. Kim, S. K. Cha, and K. Kwon. Optimizing
multidimensional index trees for main memory access.
SIGMOD Rec., 30(2):139–150, 2001.

[28] S. Manegold, P. Boncz, and M. Kersten. Optimizing
Main-Memory Join on Modern Hardware. IEEE
Transactions on Knowledge and Data Engineering,
14(4):709–730, 2002.

[29] J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In VLDB ’99:
Proceedings of the 25th International Conference on Very
Large Data Bases, pages 78–89, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[30] J. Rao and K. A. Ross. Making B+-trees cache conscious in
main memory. In SIGMOD ’00: Proceedings of the 2000
ACM SIGMOD international conference on Management of
data, pages 475–486, New York, NY, USA, 2000. ACM
Press.

[31] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious
algorithms for relational query processing. In VLDB ’94:
Proceedings of the 20th International Conference on Very
Large Data Bases, pages 510–521, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[32] Sun Corp. UltraSPARC (R) III Cu Users Manual, 1997.
[33] J. Zhou and K. A. Ross. Buffering accesses to

memory-resident index structures. In VLDB ’03:
Proceedings of the 29th International Conference on Very
Large Data Bases, pages 405–416, 2003.

9

