
The five-minute rule twenty years later,
and how flash memory changes the rules

Goetz Graefe
HP Labs, Palo Alto, CA

Abstract
In 1987, Gray and Putzolo presented the five-minute

rule, which was reviewed and renewed ten years later in
1997. With the advent of flash memory in the gap between
traditional RAM main memory and traditional disk systems,
the five-minute rule now applies to large pages appropriate
for today’s disks and their fast transfer bandwidths, and it
also applies to flash disks holding small pages appropriate
for their fast access latency.

Flash memory fills the gap between RAM and disks in
terms of many metrics: acquisition cost, access latency,
transfer bandwidth, spatial density, and power consump-
tion. Thus, within a few years, flash memory will likely be
used heavily in operating systems, file systems, and data-
base systems. Research into appropriate system architec-
tures is urgently needed.

The basic software architectures for exploiting flash in
these systems are called “extended buffer pool” and “ex-
tended disk” here. Based on the characteristics of these
software architectures, an argument is presented why oper-
ating systems and file systems on one hand and database
systems on the other hand will best benefit from flash
memory by employing different software architectures.

1 Introduction
In 1987, Gray and Putzolo published their now-famous

five-minute rule [GP 87] for trading off memory and I/O
capacity. Their calculation compares the cost of holding a
record (or page) permanently in memory with the cost to
perform disk I/O each time the record (or page) is accessed,
using appropriate fractions of prices for RAM chips and for
disk drives. The name of their rule refers to the break-even
interval between accesses. If a record (or page) is accessed
more often, it should be kept in memory; otherwise, it
should remain on disk and read when needed.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or commer-
cial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on serv-
ers or to redistribute to lists, requires prior specific permission
and/or a fee.
Proceedings of the Third International Workshop on Data
Management on New Hardware (DaMoN 2007), June 15,
2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-772-8 ...$5.00.

Based on then-current prices and performance charac-
teristics of Tandem equipment, they found that the price of
RAM memory to hold a record of 1 KB was about equal to
the (fractional) price of a disk drive required to access such
a record every 400 seconds, which they rounded to
5 minutes. The break-even interval is about inversely pro-
portional to the record size. Gray and Putzolo gave 1 hour
for records of 100 bytes and 2 minutes for pages of 4 KB.

The five-minute rule was reviewed and renewed ten
years later in 1997 [GG 97]. Lots of prices and performance
parameters had changed, e.g., the price for RAM memory
had tumbled from $5,000 to $15 per megabyte. Nonethe-
less, the break-even interval for pages of 4 KB was still
around 5 minutes. The first purpose of this paper is to re-
view the five-minute rule after another ten years.

Of course, both prior papers acknowledge that prices
and performance vary among technologies and devices at
any point in time, e.g., RAM for mainframes versus mini-
computers, SCSI versus IDE disks, etc. Therefore, inter-
ested readers are invited to re-evaluate the appropriate for-
mulas for their environments and equipment. The values
used in this paper, e.g., in Table 1, are meant to be typical
for today’s technologies rather than universally accurate.

RAM Flash disk SATA disk
Price and
capacity

$3 for
8x64 Mbit

$999 for
32 GB

$80 for
250 GB

Access
latency 0.1 ms ? 12 ms

average
Transfer

bandwidth
66 MB/s

API
300 MB/s

API
Active
power 1 W 10 W

Idle power 0.1 W 8 W
Sleep
power 0.1 W 1 W

Table 1. Prices and performance of flash and disks.
In addition to quantitative changes in prices and per-

formance, qualitative changes already underway will affect
the software and hardware architectures of servers and in
particular of database systems. Database software will
change radically with the advent of new technologies: vir-
tualization with hardware and software support as well as
higher utilization goals for physical machines, many-core
processors and transactional memory supported both in
programming environments and in hardware [LR 07], de-
ployment in containers housing 1,000s of processors and
many TB of data [H 07], and flash memory that fills the gap
between traditional RAM and traditional rotating disks.

Flash memory falls between traditional RAM and per-
sistent mass storage based on rotating disks in terms of ac-
quisition cost, access latency, transfer bandwidth, spatial
density, power consumption, and cooling costs [GF 07].
Table 1 and some derived metrics in Table 2 illustrate this
point. (From dramexchange.com, dvnation.com, buy.com,
seagate.com, and samsung.com; all 4/11/2007).

Given that the number of CPU instructions possible
during the time required for one disk I/O has steadily in-
creased, an intermediate memory in the storage hierarchy is
very desirable. Flash memory seems to be a highly probable
candidate, as has been observed many times by now.

Many architecture details remain to be worked out. For
example, in the hardware architecture, will flash memory be
accessible via a DIMM memory slot, via a SATA disk in-
terface, or via yet another hardware interface? Given the
effort and delay in defining a new hardware interface, adap-
tations of existing interfaces are likely.

A major question is whether flash memory is consid-
ered a special part of main memory or a special part of per-
sistent storage. Asked differently: if a system includes 1 GB
traditional RAM, 8 GB flash memory, and 250 GB tradi-
tional disk, does the software treat it as 250 GB persistent
storage and a 9 GB buffer pool, or as 258 GB persistent
storage and a 1 GB buffer pool? The second purpose of this
paper is to answer this question, and in fact to argue for
different answers in file systems and in database systems.

NAND
Flash

SATA
disk

Price and capacity $999 for
32 GB

$80 for
250 GB

Price per GB $31.20 $0.32
Time to read
a 4 KB page 0.16 ms 12.01 ms

4 KB reads
per second 6,200 83

Price per 4 KB
read per second $0.16 $0.96

Time to read
a 256 KB page 3.98 ms 12.85 ms

256 KB reads
per second 250 78

Price per 256 KB
read per second $3.99 $1.03

Table 2. Relative costs for flash memory and disks.
Many design decisions depend on the answer to this

question. For example, if flash memory is part of the buffer
pool, pages must be considered “dirty” if their contents
differ from the equivalent page in persistent storage. Syn-
chronizing the file system or checkpointing a database must
force disk writes in those cases. If flash memory is part of
persistent storage, these write operations are not required.

Designers of operating systems and file systems will
want to employ flash memory as extended buffer pool (ex-
tended RAM memory), whereas database systems will

benefit from flash memory as extended disk (extended per-
sistent storage). Multiple aspects of file systems and of da-
tabase systems consistently favor these two designs.

Moreover, the characteristics of flash memory suggest
some substantial differences in the management of B-tree
pages and their allocation. Beyond optimization of page
sizes, we argue that B-trees will use different units of I/O
for flash memory and for disks. Presenting the case for this
design is the third purpose of this paper.

2 Assumptions
Forward-looking research always relies on many as-

sumptions. This section attempts to list the assumptions that
lead to our conclusions. Some of the assumptions seem
fairly basic while others are more speculative.

One of our assumptions is that file systems and data-
base systems assign to the flash memory between RAM and
the disk drive. Both software systems favor pages with
some probability that they will be touched in the future but
not with sufficient probability to warrant keeping them in
RAM. The estimation and administration of such probabili-
ties follows the usual lines, e.g., LRU.

We assume that the administration of such information
employs data structures in RAM memory, even for pages
whose contents have been removed from RAM to flash
memory. For example, the LRU chain in a file system’s
buffer pool might cover both RAM memory and the flash
memory, or there might be two separate LRU chains. A
page is loaded into RAM and inserted at the head of the
first chain when it is needed by an application. When it
reaches the tail of the first chain, the page is moved to flash
memory and its descriptor to the head of the second LRU
chain. When it reaches the tail of the second chain, the page
is moved to disk and removed from the LRU chain. Other
replacement algorithms would work mutatis mutandis.

Such fine-grained LRU replacement of individual
pages is in contrast to assigning entire files, directories,
tables, or databases to different storage units. It seems that
page replacement is the appropriate granularity in buffer
pools. Moreover, proven methods exist to load and replace
buffer pool contents entirely automatically, without assis-
tance by tuning tools and without directives by users or
administrators. An extended buffer pool in flash memory
should exploit the same methods as a traditional buffer
pool. For truly comparable and competitive performance
and administration costs, a similar approach seems advis-
able when flash memory is used as an extended disk.

2.1 File systems
In our research, we assumed a fairly traditional file sys-

tem. Many file systems differ in some way or another from
this model, but it seems that most usage of file systems still
follows this model in general.

Each file is a large byte stream. Files are often read in
their entirety, their contents manipulated in memory, and
the entire file replaced if it is updated at all. Archiving, ver-
sion retention, hierarchical storage management, data
movement using removable media, etc. all seem to follow
this model as well.

Based on that model, space allocation on disk attempts
to employ contiguous disk blocks for each file. Metadata
are limited to directories, a few standard tags such as a crea-
tion time, and data structures for space management.

Consistency of these on-disk data structures is achieved
by careful write ordering, fairly quick write-back of up-
dated data blocks, and expensive file system checks after
any less-than-perfect shutdown or media removal. In other
words, we assume that the absence of transactional guaran-
tees and transactional logging, at least for file contents. If
log-based recovery is supported for file contents such as
individual pages or records within pages, a number of our
arguments need to be revisited.

2.2 Database systems
We assume fairly traditional database systems with B-

tree indexes as the “work horse” storage structure. Similar
tree structures capture not only traditional clustered and
non-clustered indexes but also bitmap indexes, columnar
storage, contents indexes, XML indexes, catalogs (meta-
data), and allocation data structures.

With respect to transactional guarantees, we assume
traditional write-ahead logging of both contents changes
(such as inserting or deleting a record) and structural
changes (such as splitting B-tree nodes). Efficient log-based
recovery after failures is enabled by checkpoints that force
dirty data from the buffer pool to persistent storage.

Variations such as “second chance” checkpoints or
fuzzy checkpoints are included in our assumptions. In addi-
tion, “non-logged” (allocation-only logged) execution is
permitted for some operations such as index creation. These
operations require appropriate write ordering and a “force”
buffer pool policy [HR 83].

2.3 Flash memory
We assume that hardware and device drivers hide

many implementation details such as the specific hardware
interface to flash memory. For example, flash memory
might be mounted on the computer’s mother board, on a
memory DIMM slot, on a PCI board, or within a standard
disk enclosure. In all cases, we assume DMA transfers (or
something better) between RAM and flash memory. More-
over, we assume that either there is efficient DMA data
transfer between flash and disk or there is a transfer buffer
in RAM. The size of such transfer buffer should be, in a
first approximation, about equal to the product of transfer
bandwidth and disk latency. If it is desirable that disk writes

should never delay disk reads, the increased write-behind
latency must be included in the calculation.

We also assume that transfer bandwidths of flash
memory and disk are comparable. While flash write band-
width has lagged behind read bandwidth, some products
claim a difference of less than a factor of two, e.g., Sam-
sung’s Flash-based solid state disk also used in Table 1. If
necessary, the transfer bandwidth can be increased by use
of array arrangements as well known for disk drives
[CLG 94]. Even redundant arrangement of flash memory
may prove advantageous in some cases [CLG 94].

Since the reliability of current NAND flash suffers af-
ter 100,000 – 1,000,000 erase-and-write cycles, we assume
that some mechanisms for “wear leveling” are provided.
These mechanisms ensure that all pages or blocks of pages
are written similarly often. It is important to recognize the
similarity between wear leveling algorithms and log-
structured file systems [OD 89, W 01], although the former
also move stable, unchanged data such that their locations
can also absorb some of the erase-and-write cycles.

Also note that traditional disk drives do not support
more write operations, albeit for different reasons. For ex-
ample, 6 years of continuous and sustained writing at
100 MB/sec overwrites an entire 250 GB disk less than
80,000 times. In other words, assuming a log-structured file
system as appropriate for RAID-5 or RAID-6 arrays, the
reliability of current NAND flash seems comparable. Simi-
larly, overwriting a 32 GB flash disk 100,000 times at
30 MB/s takes about 3½ years.

In addition to wear leveling, we assume that there is an
asynchronous agent that moves fairly stale data from flash
memory to disk and immediately erases the freed up space
in flash memory to prepare it for write operations without
further delay. This activity also has an immediate equiva-
lence in log-structured file systems, namely the clean-up
activity that prepares space for future log writing. The dif-
ference is disk contents must merely be moved, whereas
flash contents must also be erased before the next write
operation at that location.

In either file systems or database systems, we assume
separate mechanisms for page tracking and page replace-
ment. A traditional buffer pool, for example, provides both,
but it uses two different data structures for these two pur-
poses. The standard design relies on a LRU list for page
replacement and on a hash table for tracking pages, i.e.,
which pages are present in the buffer pool and in which
buffer frames. Alternative algorithms and data structures
also separate page tracking and replacement management.

We assume that the data structures for the replacement
algorithm are small, high-traffic data structures and are
therefore kept in RAM memory. We also assume that page
tracking must be as persistent as the data; thus, a buffer
pool’s hash table is re-initialized during a system reboot but
page tracking information for pages on a persistent store
such as a disk must be as be stored with the data.

As mentioned above, we assume page replacement on
demand. In addition, there may be automatic policies and
mechanisms for prefetch, read-ahead, write-behind.

Based on these considerations, we assume that the con-
tents of a flash memory are pretty much the same, whether
the flash memory extends the buffer pool or the disk. The
central question is therefore not what to keep in cache but
how to manage flash memory contents and its lifetime.

In database systems, flash memory can also be used for
recovery logs, because its short access times permit very
fast transaction commit. However, limitations in write
bandwidth discourage such use. Perhaps systems with dual
logs can combine low latency and high bandwidth, one log
on a traditional disk and one log on an array of flash chips.

2.4 Other hardware
In all cases, we assume RAM memory of a substantial

size, although probably less than flash memory or disk. The
relative sizes should be governed “five-minute rule”
[GP 87]. Note that, despite similar transfer bandwidth, the
short access latency of flash memory compare to disk re-
sults in surprising retention times for data in RAM memory,
as discussed below.

Finally, we assume sufficient processing bandwidth as
provided by modern many-core processors. Moreover, we
believe that forthcoming transactional memory (in hardware
and in the software run-time system) permits highly concur-
rent maintenance of complex data structures. For example,
page replacement heuristics might employ priority queues
rather than bitmaps or linked lists. Similarly, advanced lock
management might benefit from more complex data struc-
tures. Nonetheless, we do not assume or require data struc-
tures more complex than those already in common use for
page replacement and location tracking.

3 The five-minute rule
If flash memory is introduced as an intermediate level

in the memory hierarchy, relative sizing of memory levels
requires renewed consideration.

Tuning can be based on purchasing cost, total cost of
ownership, power, mean time to failure, mean time to data
loss, or a combination of metrics. Following Gray and Put-
zolo [GP 87], we focus here on purchasing cost. Other met-
rics and appropriate formulas to determine relative sizes can
be derived similarly, e.g., by replacing dollar costs with
energy use for caching and for moving data.

Gray and Putzolo introduced the formula BreakEvenIn-
tervalinSeconds = (PagesPerMBofRAM / AccessesPer-
SecondPerDisk) × (PricePerDiskDrive / PricePerM-
BofRAM) [GG 97, GP 87]. It is derived using formulas for
the costs of RAM to hold a page in the buffer pool and of a
(fractional) disk to perform I/O every time a page is needed,
equating these two costs, and solving the equation for the
interval between accesses.

Assuming modern RAM, a disk drive using pages of
4 KB, and the values from Table 1 and Table 2, this pro-
duces (256 / 83) × ($80 / $0.047) = 5,248 seconds =
90 minutes = 1½ hours1. This compares to 2 minutes (for
pages of 4 KB) 20 years ago.

If there is a surprise in this change, it is that the break-
even interval has grown by less than two orders of magni-
tude. Recall that RAM memory was estimated in 1987 at
about $5,000 per MB whereas today the cost is about $0.05
per MB, a difference of five orders of magnitude. On the
other hand, disk prices have also tumbled ($15,000 per disk
in 1987) and disk latency and bandwidth have improved
considerably (from 15 accesses per second to about 100 on
SATA and about 200 on high-performance SCSI disks).

For RAM and flash disks of 32 GB, the break-even in-
terval is (256 / 6,200) × ($999 / $0.047) = 876 seconds =
15 minutes. If today’s price for flash disks includes a “nov-
elty premium” and comes down closer to the price of raw
flash memory, say to $400 (a price also anticipated by Gray
and Fitzgerald [GF 07]), then the break-even interval is
351 seconds = 6 minutes.

An important consequence is that in systems tuned us-
ing economic considerations, turn-over in RAM memory is
about 15 times faster (90 minutes / 6 minutes) if flash mem-
ory rather than a traditional disk is the next level in the stor-
age hierarchy. Much less RAM is required resulting in
lower costs for purchase, power, and cooling.

Perhaps most interestingly, applying the same formula
to flash and disk gives (256 / 83) × ($80 / $0.03) =
8,070 seconds = 2¼ hours. Thus, all active data will remain
in RAM and flash memory.

Without doubt, 2 hours is longer than any common
checkpoint interval, which implies that dirty pages in flash
are forced to disk not by page replacement but always by
checkpoints. Pages that are updated frequently must be
written much more frequently (due to checkpoints) than is
optimal based on Gray and Putzolo’s formula.

In 1987, Gray and Putzolo speculated 20 years into the
future and anticipated a “five-hour rule” for RAM and
disks. For records of 1 KB, today’s devices suggest 20,978
seconds or a bit less than 6 hours. Their prediction was
amazingly accurate.
Page size 1KB 4KB 16KB 64KB 256KB
RAM-SATA 20,978 5,248 1,316 334 88
RAM-flash 2,513 876 467 365 339
Flash-SATA 32,253 8,070 2,024 513 135
RAM-$400 1,006 351 187 146 136
$400-SATA 80,553 20,155 5,056 1,281 337

Table 3. Break-even intervals [seconds].
All break-even intervals are different for larger page

sizes, e.g., 64 KB or even 256 KB. Table 3 shows the
break-even intervals, including ones cited above, for a vari-
ety of page sizes and combinations of storage technologies.

1 The “=” sign often indicates rounding in this paper.

“$400” stands for a 32 GB NAND flash drive available in
the future for $400 rather than for $999 today.

The old five-minute rule for RAM and disk now ap-
plies to page sizes of 64 KB (334 seconds). Five minutes
had been the approximate break-even interval for 1 KB in
1987 [GP 87] and for 8 KB in 1997 [GG 97]. This trend
reflects the different rates of improvement in disk access
latency and transfer bandwidth.

The five-minute break-even interval also applies to
RAM and today’s expensive flash memory for page sizes of
64 KB and above (365 and 339 seconds). As the price pre-
mium for flash memory decreases, so does the break-even
interval (146 and 136 seconds).

The two new five-minute rules promised in the abstract
are indicated with values in bold italics in Table 3. We will
come back to this table and these rules in the discussion on
optimal node sizes for B-tree indexes.

4 Page movement
In addition to I/O to and from RAM memory, a three-

level memory hierarchy also requires data movement be-
tween flash memory and disk storage.

The pure mechanism for moving pages can be realized
in hardware, e.g., by DMA transfer, or it might require an
indirect transfer via RAM memory. The former case prom-
ises better performance, whereas the latter design can be
realized entirely in software without novel hardware. On
the other hand, hybrid disk manufacturers might have cost-
effective hardware implementations already available.

The policy for page movement is governed or derived
from demand-paging and LRU replacement. As discussed
above, replacement policies in both file systems and data-
base systems may rely on LRU and can be implemented
with appropriate data structures in RAM memory. As with
buffer management in RAM memory, there may be differ-
ences due to prefetch, read-ahead, and write-behind, which
in database systems may be directed by hints from the
query execution layer, whereas file systems must detect
page access patterns and worthwhile read-ahead actions
without the benefit of such hints.

If flash memory is part of the persistent storage, page
movement between flash memory and disk is very similar
to page movement during defragmentation, both in file sys-
tems and in database systems. Perhaps the most significant
difference is how page movement and current page loca-
tions are tracked in these two kinds of systems.

5 Tracking page locations
The mechanisms for tracking page locations are quite

different in file systems and database systems. In file sys-
tems, pointer pages keep track of data pages or of runs of
contiguous data pages. Moving an individual page may
require breaking up a run. It always requires updating and
then writing a pointer page.

In database systems, most data is stored in B-tree in-
dexes, including clustered and non-clustered indexes on
tables, materialized views, and metadata catalogs. Bitmap
indexes, columnar storage, and master-detail clustering can
readily and efficiently be represented in B-tree indexes
[G 07]. Tree structures derived from B-trees are also used
for binary large objects (“blobs”) and are similar to the stor-
age structures of some file systems [CDR 89, S 81].

For B-trees, moving an individual page can range from
very expensive to very cheap. The most efficient mecha-
nisms are usually found in utilities for defragmentation or
reorganization. Cost or efficiency result from two aspects of
B-tree implementation, namely maintenance of neighbor
pointers and logging for recovery.

First, if physical neighbor pointers are maintained in
each B-tree page, moving a single page requires updating
two neighbors in addition to the parent node. If the
neighbor pointers are logical using “fence keys,” only the
parent page requires an update during a page movement
[G 04]. If the parent page is in memory, perhaps even
pinned in the buffer pool, recording the new location is
rather like updating an in-memory indirection array. The
pointer change in the parent page is logged in the recovery
log, but there is no need to force the log immediately to
stable storage because this change is merely a structural
change, not a database contents change.

Second, database systems log changes in the physical
database, and in the extreme case both the deleted page
image and the newly created page image are logged. Thus,
an inefficient implementation produces two full log pages
whenever a single data page moves from one location to
another. A more efficient implementation only logs alloca-
tion actions and delays de-allocation of the old page image
until the new image is safely written in its intended location
[G 04]. In other words, moving a page from one location,
e.g., on persistent flash memory, to another location, e.g.,
on disk, requires only a few bytes in the database recovery
log.

The difference between file systems and database sys-
tems is the efficiency of updates enabled by the recovery
log. In a file system, the new page location must be saved
as soon as possible by writing a new image of the pointer
page. In a database system, only a few short log records
must be added to the log buffer. Thus, the overhead for a
page movement in a file system is writing an entire pointer
page using a random access, whereas a database system
adds a log record of a few dozen bytes to the log buffer that
will eventually be written using large sequential write op-
erations.

If a file system uses flash memory as persistent store,
moving a page between a flash memory location and an on-
disk location adds substantial overhead. Thus, we believe
that file system designers will prefer flash memory as ex-
tension to the buffer pool rather than extension of the disk,
thus avoiding this overhead.

A database system, however, has built-in mechanisms
that can easily track page movements. These mechanisms
are inherent in the “work horse” data structure, B-tree in-
dexes. In comparison to file systems, these mechanisms
permit very efficient page movement. Each page movement
requires only a fraction of a sequential write (in the recov-
ery log) rather than a full random write.

Moreover, the database mechanisms are also very reli-
able. Should a failure occur during a page movement, data-
base recovery is driven by the recovery log, whereas a file
system requires checking the entire storage during reboot.

6 Checkpoint processing
To ensure fast recovery after a system failure, database

systems employ checkpoints. Their effect is that recovery
only needs to consider database activity later than the most
recent checkpoint plus some limited activity explicitly indi-
cated in the checkpoint information. This effect is achieved
partially by writing dirty pages in buffer pool.

If pages in flash memory are considered part of the
buffer pool, dirty pages must be written to disk during data-
base checkpoints. Common checkpoint intervals are meas-
ured in seconds or minutes. Alternatively, if checkpoints are
not truly points but intervals, it is even reasonable to flush
pages and perform checkpoint activities continuously, start-
ing the next one as soon as one finishes. Thus, many writes
to flash memory will soon require a write to disk, and flash
memory as intermediate level in the memory hierarchy fails
to absorb write activity. This effect may be exacerbated if,
as discussed in the previous section, RAM memory is kept
small due to the presence of flash memory.

If, on the other hand, flash memory is part of the per-
sistent storage, writing to flash memory is sufficient. Write-
through to disk is required only as part of page replacement,
i.e., when a page’s usage suggests placement on disk rather
than in flash memory. Thus, checkpoints do not incur the
cost of moving data from flash memory to disk.

Checkpoints might even be faster in systems with flash
memory because dirty pages in RAM memory need to be
written merely to flash memory, not to disk. Given the very
fast random access in flash memory relative to disk drives,
this difference might speed up checkpoints significantly.

To summarize, database systems benefit if the flash
memory is managed as part of the persistent storage. In
contrast, traditional file systems do not have system-wide
checkpoints that flush the recovery log and any dirty data in
the buffer pool. Instead, they rely on carefully writing
modified file system pages due to the lack of a recovery log
protecting file contents.

7 Page sizes
In addition to the tuning based on the five-minute rule,

another optimization based on access performance is sizing
of B-tree nodes. The optimal page size combines a short

access time with a high reduction in remaining search
space. Assuming binary search within each B-tree node, the
latter is measured by the logarithm of records within a
node. This measure was called a node’s “utility” in our ear-
lier work [GG 97]. This optimization is essentially equiva-
lent to one described in the original research on B-trees
[BM 70].

Page size Records
/ page

Node
utility

Access
time

Utility
/ time

4 KB 140 7 12.0ms 0.58
16 KB 560 9 12.1ms 0.75
64 KB 2,240 11 12.2ms 0.90

128 KB 4,480 12 12.4ms 0.97
256 KB 8,960 13 12.9ms 1.01
512 KB 17,920 14 13.7ms 1.02

1 MB 35,840 15 15.4ms 0.97
Table 4. Page utility for B-tree nodes on disk.

Table 4 illustrates this optimization for records of 20
bytes, typical if prefix and suffix truncation [BU 77] are
employed, and nodes filled at about 70%.

Not surprisingly, the optimal page size for B-tree in-
dexes on modern high-bandwidth disks is much larger than
traditional database systems have employed. The access
time dominates for all small page sizes, such that additional
byte transfer and thus additional utility are almost free.

B-tree nodes of 256 KB are very near optimal. For
those, Table 3 indicates a break-even time for RAM and
disk of 88 seconds. For a $400-flash disk and a traditional
rotating hard disk, Table 3 indicates 337 seconds or just
over 5 minutes. This is the first of the two five-minute rules
promised in the abstract.

Page
size

Records
per page

Node
utility

Access
time

Utility
/ time

1 KB 35 5 0.11ms 43.4
2 KB 70 6 0.13ms 46.1
4 KB 140 7 0.16ms 43.6
8 KB 280 8 0.22ms 36.2

16 KB 560 9 0.34ms 26.3
64 KB 2,240 11 1.07ms 10.3

Table 5. Page utility for B-tree nodes on flash memory.
Table 5 illustrates the same calculations for B-trees on

flash memory. Due to the lack of mechanical seeking and
rotation, the transfer time dominates even for small pages.
The optimal page size for B-trees on flash memory is 2 KB,
much smaller than for traditional disk drives.

In Table 3, the break-even interval for pages of 4 KB is
351 seconds. This is the second five-minute rule promised
in the abstract.

The implication of two different optimal page sizes is
that a uniform node size for B-trees on flash memory and
traditional rotating hard disks is sub-optimal. Optimizing
page sizes for both media requires a change in buffer man-
agement, space allocation, and some of the B-tree logic.

Fortunately, O’Neil already designed a space allocation
scheme for B-trees in which neighboring leaf nodes usually

reside within the same contiguous extent of pages [O 92].
When a new page is needed for a node split, another page
within the same extent is allocated. When extent overflows,
half its pages moved to a newly allocated extent.

Using O’Neil’s SB-trees, extents of 256 KB are the
units of transfer between flash memory and disk, whereas
pages of 4 KB are the unit of transfer between RAM and
flash memory.

Similar notions of self-similar B-trees have also been
proposed for higher levels in the memory hierarchy, e.g., in
the form of B-trees of cache lines for the indirection vector
within a large page [L 01]. Given that there are at least 3
levels of B-trees and 3 node sizes now, i.e., cache lines,
flash memory pages, and disk pages, research into cache-
oblivious B-trees [BDC 05] might be very promising.

8 Query processing
Self-similar designs apply both to data structures such

as B-trees and to algorithms. For example, sort algorithms
already employ algorithms similar to traditional external
merge sort in multiple ways, not only to merge runs on disk
but also to merge runs in memory, where the initial runs in
memory are sized to limit run creation to the CPU cache
[G 06, NBC 95].

The same technique might be applied three times in-
stead of two, i.e., runs in memory are merged into runs in
flash memory, and for very large sort operations, runs on
flash memory are merged into runs on disk. Read-ahead,
forecasting, write-behind, and page sizes all deserve a new
look in a multi-level memory hierarchy consisting of cache,
RAM, flash memory, and traditional disk drives. These
page sizes can then inform the break-even calculation for
page retention versus I/O and thus guide the optimal capaci-
ties at each memory level.

It may be surmised that a variation of this sort algo-
rithm will not only be fast but also energy-efficient. While
energy efficiency has always been crucial for battery-
powered devices, research into energy-efficient query proc-
essing on server machines is only now beginning [RSK 07].
For example, both for flash memory and for disks, the en-
ergy-optimal page sizes might well differ from the perform-
ance-optimal page sizes.

The I/O pattern of external merge sort is similar (albeit
in the opposite direction) to the I/O pattern of external parti-
tion sort as well as to the I/O pattern of partitioning during
hash join and hash aggregation. The latter algorithms, too,
require re-evaluation and -design in a three-level memory
hierarchy, or even a four-level memory hierarchy is CPU
caches are also considered [SKN 94].

Flash memory with its very fast access times may re-
vive interest in index-based query execution [DNB 93,
G 03]. Optimal pages size and turn-over times are those
derived in the earlier sections.

9 Record and object caches
Page sizes in database systems have grown over the

years, although not as fast as disk transfer bandwidth. On
the other hand, small pages require less buffer pool space
for each root-to-leaf search. For example, consider an index
with 20,000,000 entries. With index pages of 128 KB and
4,500 records, a root-to-leaf search requires 2 nodes and
thus 256 KB in the buffer pool, although half it that (the
root node) can probably be shared with other transactions.
With index pages of 8 KB and 280 records per page, a root-
to-leaf search requires 3 nodes or 24 KB in the buffer pool,
or one order of magnitude less.

In the traditional database architecture, the default page
size is a compromise between efficient index search (using
large B-tree nodes as discussed above and already in the
original B-tree papers [BM 70]) and moderate buffer pool
requirements for each index search. Nonetheless, the exam-
ple above requires 24 KB in the buffer pool for finding a
record of perhaps only 20 bytes, and it requires 8 KB of the
buffer pool for retaining these 20 bytes in memory. An al-
ternative design employs large on-disk pages and a record
cache that serves applications, because record cache mini-
mize memory needs yet provide the desired data retention.

The introduction of flash memory with its fast access
latency and its small optimal page size may render record
caches obsolete. With the large on-disk pages in flash
memory and only small pages in the in-memory buffer
pool, the desired compromise can be achieved without the
need for two separate data structures, i.e., a transacted B-
tree and a separate record cache.

In object-oriented applications that assemble complex
objects from many tables and indexes in a relational data-
base, the problem may be either better or worse, depending
on the B-tree technology employed. If traditional indexes
are used with a separate B-tree for each record format, as-
sembling a complex object in memory requires many root-
to-leaf searches and thus many B-tree nodes in the buffer
pool. If records from multiple indexes can be interleaved
within a single B-tree based on their common search keys
and sort order [G 07, H 78], e.g., on object identifier plus
appropriate additional keys, very few or even a single B-
tree search may suffice. Moreover, the entire complex ob-
ject may be retained in a single page within the buffer pool.

10 Directions for future work
Several directions for future research suggest them-

selves. We plan on pursuing multiple of these in the future.
First, the analyses in this paper are focused on purchas-

ing costs. Other costs could be taken into consideration in
order to capture total cost of ownership. Perhaps most inter-
estingly, a focus on energy consumption may lead to differ-
ent break-even points or even entirely different conclusions.
Along with CPU scheduling, algorithms for staging data in
the memory hierarchy, including buffer pool replacement

and compression, may be the software techniques with the
highest impact on energy consumption.

Second, the five-minute rule applies to permanent data
and their management in a buffer pool. The optimal reten-
tion time for temporary data such as run files in sorting and
overflow files in hash join and hash aggregation may be
different. For sorting, as for B-tree searches, the goal should
be to maximize the number of comparisons per unit of I/O
time or per unit of energy spent on I/O. Focused research
may lead to new insights about query processing in multi-
level memory hierarchies.

Third, Gray and Putzolo offered further rules of thumb,
e.g., the ten-byte rule for trading memory and CPU power.
These rules also warrant revisiting for both costs and en-
ergy. Compared to 1987, the most fundamental change may
be that CPU power should be measured not in instructions
but in cache line replacements. Trading off space and time
seems like a new problem in this environment.

Fourth, what are the best data movement policies? One
extreme is a database administrator explicitly moving entire
files, tables and indexes between flash memory and tradi-
tional disk. Another extreme is automatic movement of
individual pages, controlled by a replacement policy such
as LRU. Intermediate policies may focus on the roles of
individual pages within a database or on the current query
processing activity. For example, catalog pages may be
moved after schema changes to facilitate fast recompilation
of all caches query execution plans, and upper B-tree levels
may be prefetched and cached in RAM memory or in flash
memory during execution of query plans relying on index
navigation.

Fifth, what are secondary effects of introducing flash
memory into the memory hierarchy of a database server?
For example, short access times permit a lower multi-
programming level, because only short I/O operations must
be “hidden” by asynchronous I/O and context switching. A
lower multi-programming level in turn may reduce conten-
tion for memory in sort and hash operations and for locks
and latches (concurrency control for in-memory data struc-
tures). Should this effect prove significant, effort and com-
plexity of using a fine granularity of locking may be re-
duced.

Sixth, how will flash memory affect in-memory data-
base systems? Will they become more scalable, affordable,
and popular based on memory inexpensively extended with
flash memory rather than RAM memory? Will they become
less popular due to very fast traditional database systems
using flash memory instead of (or in addition to) disks? Can
a traditional code base using flash memory instead of tradi-
tional disks compete with a specialized in-memory database
system in terms of performance, total cost of ownership,
development and maintenance costs, time to market of fea-
tures and releases, etc.?

Finally, techniques similar to generational garbage col-
lection may benefit storage hierarchies. Selective reclama-
tion applies not only to unreachable in-memory objects but

also to buffer pool pages and favored locations on perma-
nent storage. Such research also may provide guidance for
log-structured file systems, for wear leveling for flash
memory, and for write-optimized B-trees on RAID storage.

11 Summary and conclusions
In summary, the 20-year-old “five minute rule” for

RAM and disks still holds, but for ever larger disk pages.
Moreover, it should be augmented by two new five-minute
rules, one for large pages moving between RAM and flash
memory and for small pages moving between flash memory
and disks. For small pages moving between RAM and disk,
Gray and Putzolo were amazingly accurate in predicting a
five-hour break-even point 20 years into the future.

Research into flash memory and its place in system ar-
chitectures is urgent and important. Within a few years,
flash memory will be used to fill the gap between tradi-
tional RAM memory and traditional disk drives in many
operating systems, file systems, and database systems.

Flash memory can be used to extend RAM or to extend
persistent storage. These models are called “extended buffer
pool” and “extended disk” here. Both models may seem
viable in operating systems, file systems, and in database
systems. Due to the characteristics of these systems, how-
ever, they will employ different usage models.

In both models, contents of RAM and of flash will be
governed by LRU-like replacement algorithms that attempt
to keep the most valuable pages in RAM and the least valu-
able pages on traditional disks. The linked list or other data
structure implementing the replacement policy for the flash
memory will be maintained in RAM.

Operating systems and file systems will employ flash
memory mostly as transient memory, e.g., as a fast backup
store for virtual memory and as a secondary file system
cache. Both of these applications fall into the extended
buffer pool model. During an orderly system shutdown, the
flash memory contents might be written to persistent stor-
age. During a system crash, however, the RAM-based de-
scription of flash memory contents will be lost and must be
reconstructed by a contents analysis very similar to a tradi-
tional file system check. Alternatively, flash memory con-
tents can be voided and be reloaded on demand.

Database systems, on the other hand, will employ flash
memory as persistent storage, using the extended disk
model. The current contents will be described in persistent
data structures, e.g., parent pages in B-tree indexes. Tradi-
tional durability mechanisms, in particular logging and
checkpoints, ensure consistency and efficient recovery after
system crashes. An orderly system shutdown has no need to
write flash memory contents to disk.

There are two reasons for these different usage models
for flash memory. First, database systems rely on regular
checkpoints during which dirty pages in the buffer pool are
flushed to persistent storage. If a dirty page is moved from
RAM to the extended buffer pool in flash memory, it cre-

ates substantial overhead during the next checkpoint. A free
buffer must be found in RAM, the page contents must be
read from flash memory into RAM, and then the page must
be written disk. Adding such overhead to checkpoints is not
attractive in database systems with frequent checkpoints.
Operating systems and file systems, on the other hand, do
not rely on checkpoints and thus can exploit flash memory
as extended buffer pool.

Second, the principal persistent data structures of data-
bases, B-tree indexes, provide precisely the mapping and
location tracking mechanisms needed to complement fre-
quent page movement and replacement. Thus, tracking a
data page when it moves between disk and flash relies on
the same data structure maintained for efficient database
search. In addition to avoiding buffer descriptors etc. for
pages in flash memory, avoiding indirection in locating a
page also makes database searches as efficient as possible.

Finally, as the ratio of access latencies and transfer
bandwidth is very different for flash memory and for disks,
different B-tree node sizes are optimal. O’Neil’s SB-tree
exploits two nodes sizes as needed in a multi-level storage
hierarchy. The required inexpensive mechanisms for mov-
ing individual pages are the same as those required when
moving pages between flash memory and disk.

Acknowledgements
This paper is dedicated to Jim Gray, who has suggested

this research and has helped me and many others many
times in many ways. – Barb Peters, Lily Jow, Harumi
Kuno, José Blakeley, Mehul Shah, and the reviewers sug-
gested multiple improvements after reading earlier versions
of this paper.

References
[BDC 05] Michael A. Bender, Erik D. Demaine, Martin

Farach-Colton: Cache-Oblivious B-Trees. SIAM J.
Comput. 35(2): 341-358 (2005).

[BM 70] Rudolf Bayer, Edward M. McCreight: Organiza-
tion and Maintenance of Large Ordered Indexes. SIG-
FIDET Workshop 1970: 107-141.

[BU 77] Rudolf Bayer, Karl Unterauer: Prefix B-Trees.
ACM TODS 2(1): 11-26 (1977).

[CDR 89] Michael J. Carey, David J. DeWitt, Joel E.
Richardson, Eugene J. Shekita: Storage Management in
EXODUS. Object-Oriented Concepts, Databases, and
Applications 1989: 341-369.

[CLG 94] Peter M. Chen, Edward L. Lee, Garth A. Gibson,
Randy H. Katz, David A. Patterson: RAID: High-
Performance, Reliable Secondary Storage ACM Com-
put. Surv. 26(2): 145-185 (1994).

[DNB 93] David J. DeWitt, Jeffrey F. Naughton, Joseph
Burger: Nested Loops Revisited. PDIS 1993: 230-242.

[G 03] Goetz Graefe: Executing Nested Queries. BTW
2003: 58-77.

[G 04] Goetz Graefe: Write-Optimized B-Trees. VLDB
2004: 672-683.

[G 06] Goetz Graefe: Implementing Sorting in Database
Systems. ACM Comput. Surv. 38(3): (2006).

[G 07] Goetz Graefe: Master-detail clustering using merged
indexes. Informatik – Forschung und Entwicklung
(2007).

[GF 07] Jim Gray, Bob Fitzgerald: FLASH Disk Opportu-
nity for Server-Applications. http://research.micro-
soft.com/~gray/papers/FlashDiskPublic.doc.

[GG 97] Jim Gray, Goetz Graefe: The Five-Minute Rule
Ten Years Later, and Other Computer Storage Rules of
Thumb. SIGMOD Record 26(4): 63-68 (1997).

[GP 87] Jim Gray, Gianfranco R. Putzolu: The 5 Minute
Rule for Trading Memory for Disk Accesses and The
10 Byte Rule for Trading Memory for CPU Time.
SIGMOD 1987: 395-398.

[H 78] Theo Härder: Implementing a Generalized Access
Path Structure for a Relational Database System. ACM
TODS 3(3): 285-298 (1978).

[H 07] James Hamilton: An Architecture for Modular Data
Centers. CIDR 2007.

[HR 83] Theo Härder, Andreas Reuter: Principles of Trans-
action-Oriented Database Recovery. ACM Comput.
Surv. 15(4): 287-317 (1983).

[L 01] David B. Lomet: The Evolution of Effective B-tree
Page Organization and Techniques: A Personal Ac-
count. SIGMOD Record 30(3): 64-69 (2001).

[LR 07] James R. Larus, Ravi Rajwar: Transactional Mem-
ory. Synthesis Lectures on Computer Architecture,
Morgan & Claypool (2007).

[NBC 95] Chris Nyberg, Tom Barclay, Zarka Cvetanovic,
Jim Gray, David B. Lomet: AlphaSort: A Cache-
Sensitive Parallel External Sort VLDB J. 4(4): 603-627
(1995).

[OD 89] John K. Ousterhout, Fred Douglis: Beating the I/O
Bottleneck: A Case for Log-Structured File Systems.
Operating Systems Review 23(1): 11-28 (1989).

[O 92] Patrick E. O'Neil: The SB-Tree: An Index-
Sequential Structure for High-Performance Sequential
Access. Acta Inf. 29(3): 241-265 (1992).

[RSK 07] Suzanne Rivoire, Mehul Shah, Partha Rangana-
than, Christos Kozyrakis: JouleSort: A Balanced En-
ergy-Efficiency Benchmark. SIGMOD 2007.

[S 81] Michael Stonebraker: Operating System Support for
Database Management. CACM 24(7): 412-418 (1981).

[SKN 94] Ambuj Shatdal, Chander Kant, Jeffrey F. Naugh-
ton: Cache Conscious Algorithms for Relational Query
Processing. VLDB 1994: 510-521.

[W 01] David Woodhouse: JFFS: the Journaling Flash File
System. Ottawa Linux Symposium, Red Hat Inc, 2001.

