
Pipelined Hash-Join on Multithreaded Architectures

Philip Garcia
University of Wisconsin-Madison

Madison, WI 53706 USA
pcgarcia@wisc.edu

Henry F. Korth
Lehigh University

Bethlehem, PA 18015 USA
hfk@lehigh.edu

ABSTRACT
Multi-core and multithreaded processors present both op-
portunities and challenges in the design of database query
processing algorithms. Previous work has shown the poten-
tial for performance gains, but also that, in adverse circum-
stances, multithreading can actually reduce performance.
This paper examines the performance of a pipeline of hash-
join operations when executing on multithreaded and multi-
core processors. We examine the optimal number of threads
to execute and the partitioning of the workload across those
threads. We then describe a buffer-management scheme that
minimizes cache conflicts among the threads. Additionally
we compare the performance of full materialization of the
output at each stage in the pipeline versus passing pointers
between stages.

1. INTRODUCTION
Recently, multi-core and multithreaded processors have

reached the mainstream market. Unfortunately, software
designs must be restructured to exploit the new architec-
tures fully. Doing so presents both opportunities and chal-
lenges in the design of query-processing algorithms. In this
paper, we describe some of the challenges presented to data-
base system designers by modern computer architectures.
We then propose parallelization techniques that speed up in-
dividual database operations, and improve overall through-
put, while avoiding some of the problems such as those de-
scribed in [18], that can limit performance gains on multi-
threaded processors.

This study builds on the work in [9, 7, 24], but instead
of focusing solely on optimizing a single join operation, we
examine a pipeline of join operations on uniform hetero-
geneous multithreaded (UHM) processors, an architectural
model that we describe in Section 2.1. The techniques we de-
velop and evaluate are applicable beyond join, and relate to
other data-intensive operations. By accounting for the het-
erogeneous threading model of modern processors and the
efficient sharing of data offered by them, we develop query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Third International Workshop on Data Management on
New Hardware (DaMoN 2007), June 15, 2007,Beijing, China
Copyright 2007 ACM 978-1-59593-772-8 ...$5.00.

processing algorithms that are more efficient and allow for
more accurate runtime estimates, which then can be used
by query optimizers.

In this paper, we make the following observations:

• Assigning threads to specific “processor thread slots”
allows for high performance and throughput.

• Single-die UHM architectures can share data among
threads more efficiently than SMP architectures.

• Writing pointers to a buffer instead of writing the
full tuple does not save as much work as previously
thought.

• Hardware and software prefetching can result in large
performance gains within query pipelines.

• Properly scheduling threads on an SMT processor can
significantly improve query pipeline runtimes.

• To exploit a multithreaded processor fully, a query
pipeline should generate more threads than the archi-
tecture can execute concurrently.

• A large memory bandwidth is required to keep all of
the processing units busy in multi-core systems.

In Section 2, we describe the changes in computer ar-
chitectures that motivate this work. Then, we discuss the
implications of these new architectures on database systems
and describe the specific database query-processing issues on
which we focus. In Section 4, we propose a threading model
to help take advantage of these processors, and finally in
Section 5, we discuss the results of our study, and speculate
how this model will perform on future UHM processors.

2. PROCESSOR ARCHITECTURE
Computer architectures are continuously evolving to take

advantage of the rapidly increasing number of transistors
that can fit on a single processor die. These new archi-
tectures include larger caches, increased memory and cache
latencies (in terms of CPU cycles), the ability to execute
multiple threads on the same core simultaneously, and the
packaging of multiple cores (processors) on the same die.
These new features interact in complex ways that make tra-
ditional simulations difficult. We have therefore chosen to
run our tests on real hardware. This provides a more realis-
tic view of both the processor and main-memory subystem.

We ran our tests on both a dual 3.0 GHz Xeon Northwood
processor, a 2.0 GHz Core Duo (Yonah) processor, as well

P4 Xeon Core Duo
Prescott Northwood

Number of cores 1 2 2
Clock Speed 2.8GHz 3GHz 2GHz
FSB speed 800MHz 533MHZ 667MHz

L1 Size 16KB 8KB 32KB
L2 Size 1MB 512KB 2MB (shared)
L3 Size - 1MB -

Table 1: Details of the processors used

as a 2.8 GHz Pentium 4 Prescott as shown in Table 1. All
of the machines ran Debian GNU/Linux with kernel version
2.6. We focused on the results obtained on the Pentium 4
processor, and unless otherwise noted, all results given are
for it.

In this section, we discuss some of the details of multi-
threaded architectures and their impact on database query
processing.

2.1 Multithreaded Architectures
Multithreaded processor architectures are being designed

not only to enable the highest performance per unit die area,
but also to obtain the highest performance per watt of power
consumed[6, 5, 19, 3]. To achieve these goals, computer ar-
chitects are no longer focusing on increasing instruction-level
parallelism and clock frequencies, and instead are designing
new architectures that can exploit thread-level parallelism
(TLP). These architectures manifest themselves in two ways:
chip multiprocessors (CMP) and multithreaded processors.
CMP systems are a logical extension of SMP systems, but
with the multiple cores integrated on a single processor die.
However, many of the CMP systems differ from traditional
SMP systems in that the cores share one or more levels of
cache. Multithreaded processors, on the other hand, allow
the system to execute multiple threads simultaneously on
the same processor core. One of the more popular forms of
multithreading is simultaneous multithreading (SMT), how-
ever other methods are possible[8, 23, 16, 22].

Many of these new multithreaded and CMP processors
belong to a class of processors called uniform heterogeneous
multithreaded (UHM) processors[21]. This class of architec-
tures allows multiple threads (of the same instruction set)
to share limited resources in order to maximize utilization.
In this model, not all hardware-thread contexts are equiv-
alent, and the behavior of one thread can adversely effect
the behavior of another. This effect is generally due to
shared caches, but it could also be caused by poor instruc-
tion mixes. UHM architectures should not be confused with
heterogeneous multiprocessors in which the processor units
themselves vary significantly or have differing instruction
sets, such as a graphics coprocessor.1

Multithreaded processors have become the standard for
high-performance microcomputing. The major vendors of
high-performance processors are currently focusing on dual
and multi-core designs[2, 1, 14, 3], and many are either ship-
ping processors using multithreaded and/or SMT technol-
ogy [16, 14, 3] to accelerate their processors.

Today’s high-end database servers often contain 2-16 pro-
cessors that are each capable of executing two threads. With-
in the next few years it is likely that a single microprocessor

1See [11] for an example of database processing on a graphics
co-processor.

will contain many more cores that are each capable of ex-
ecuting multiple threads (using fine-grained multithreading
or SMT)[6]. Many of these architectures (such as the Sun
Niagara processor[3]) will implement multiple simple cores
that sacrifice single-thread performance but yield substan-
tially more throughput per watt and/or die area[6, 5, 3].

2.2 Impact on Database System Design
The architectural changes that we have discussed force

a re-examination of database system design. Concurrent
database transactions generate inter-query parallelism but
that increased parallelism can result in cache contention
when threads or cores share one or more levels of the pro-
cessor’s cache. This puts a higher premium in intra-query
parallelism (see, e.g., [12]), which current database systems
do not exploit to the same degree as inter-query parallelism.

The rapidly expanding number of concurrently executing
threads in a UHM architecture[21] combined with increas-
ing memory latency (in terms of cycles) means database
systems must be capable of executing an increasing number
of threads at once to keep up with the growing thread-level
parallelism offered by modern computer architectures.

We propose a threading model that breaks down a query
into not just a series of pipeline operations (where each stage
executes a thread), but into a series of operations that them-
selves can be broken down and executed by multiple threads.
This allows the system to choose a level of threading that is
appropriate for both the workload presented to it and the
architectural features of the machine on which it is running.
Additionally, on UHM systems, the system can choose the
thread context on which to schedule a thread, in order to
make the greatest use of the resources available at the time.

While much work has been done on optimizing query
pipelines, much of this work has focused on either uniproces-
sor or SMP systems that assume a homogeneous threading
model. New designs with UHM processors must first de-
cide on which physical processor to execute the thread, and
separately decide both on which core within the processor,
and on which thread within the core to run. New schedulers
must take into account how many threads are currently ex-
ecuting on the core, as well as what each thread on the core
is doing. Much of the work on query pipeline optimization
has also not taken into account the effects of using software
prefetch instructions within the pipeline to improve perfor-
mance further, with exceptions being [7, 9].

In this study, we examine intra-query parallelism within
multiple hash-join operations. By breaking down each join
into parallelizable threads, we have shown that both re-
sponse time and throughput can be improved.

2.3 Prior Work
The work we describe here differs from earlier work [9,

7, 24] in several significant ways. In earlier work, software
prefetching was examined in a single-threaded simulation[7],
and was later extended to run on real machines[24, 9]. The
prior work of Zhou, et al. [24], examined a single hash-join
operation on an SMT processor, however this work was done
on the Northwood variant of the Pentium 4, which doesn’t
fully support software prefetching, so a form of preloading
data was used instead of prefetching. [9] further built upon
the model in [7, 24] and was designed such that multiple
threads could perform a single hash join. That work, how-
ever, did not consider a pipeline of operations, and addi-

tionally required an initial partitioning that can result in
suboptimal performance.

In this paper, we consider a larger problem domain (pipe-
lines) and a richer processing model aimed at UHM pro-
cessors. This work differentiates itself by studying not the
algorithms involved, but rather the impact of architecture
on the end result. Through executing an example database
pipeline, we can observe the interaction of program struc-
tures with the system architecture. By doing this we gain
valuable insight into how to best design query pipeline ex-
ecution strategies, and how to best choose an appropriate
platform for query processing systems.

3. PROBLEM DESCRIPTION
We chose to examine a pipeline of two joins; however our

algorithm can easily be extended to support more general
n-way joins. For this study, we examine the performance of
the query pipeline when running on various computer archi-
tectures. We also examine the performance of our threading
model as a function of the number, size, and type of data
stored in the buffers used to share data among the threads.

An important consideration in query-pipeline processing
is the buffer size used and the number of buffers that are al-
located to facilitate inter-process communication. We show
that the buffer size has a major affect on overall algorithm
performance as do prefetching attempts (done by both hard-
ware and software).

Another important consideration is the issue of whether or
not to materialize pointers. This becomes doubly important
in a query pipeline consisting of operations O1, O2, . . . , Om

because the data must be brought into cache for the first
join (operation Oi) and are possibly reused in the next join
(operation Oi+j).

2 Because of this, materializing the out-
put requires memory to store both the input relation and
the output relation. This results in a larger overall cache
footprint3, although there is no deterministic way to tell
how much larger this is on current computer architectures
(due to streaming prefetch-buffers, memory access patterns,
prefetch instructions etc). Recent research [9] has also shown
that the time required to copy small amounts of data (<100
bytes) that is already loaded in cache can be prohibitively
costly, and should therefore be avoided when possible. We
examine the cost of materializing the relation fully at every
stage of the pipeline in the Appendix.

Our hash-join algorithm is modified from the Grace algo-
rithm[15]. Our algorithm was designed under the assump-
tion that the system performing the join has sufficient free
main memory to hold the entire set of input relations, tem-
porary structures (such as hash tables), as well as output
relations. This execution model has been shown to be valid
for systems with sufficient main-memory and sufficient disk
I/O performance[4, 7]. By doing an in-memory join, we
are able to focus our analysis on the effects that both the
main-memory/cache hierarchy and UHM processors have on
query-pipeline performance. Disk accesses would not only
distort those results, but make those results less applicable
to modern systems with large-main-memories.

Our system implements the form of software pipelining de-
scribed in [7]. We chose to focus on software pipelining, as it

2For our tests i=1 and j=1.
3This is assuming, of course, that the size of each tuple in
the output relation is greater than the size of a pointer.

O3:
Q

A.a, B.b, C.c

O2: 1B.bkey=C.bkey

PPPPP
�����

O1: 1A.name=B.name

HHH
���

Rel: A Rel: B

Rel: C

Figure 1: Example pipeline where O1 is an index
join, O2 is a hash join, and O3 is a projection.

was shown to outperform both group prefetching and cache-
sized partitioning[9, 7, 20]. Using the software-prefetch op-
timized code results in faster runtimes; however on multi-
threaded processors (running multithreaded algorithms), it
has been shown that the speedup from multithreading is less
when using the prefetch-optimized code due to there being
fewer stall cycles to overlap execution[9]. Software prefetch-
ing still results in the best overall performance (even on mul-
tithreaded architectures), and it is therefore important that
our measurements run with this algorithm rather than the
standard hash-join algorithm, as that would overestimate
the performance benefits of multithreading.

Our algorithm differs from prior work[7, 9, 24] in that
we do not first partition the relations. Our previous results
have shown that the size of the partition does not effect
the throughput of the probe phase of the algorithm when
prefetching is used[9]. Because the data are no longer par-
titioned, we must use a different method of breaking up the
workload among multiple threads than that in [9]. We mod-
ified the system to use a series of buffers for both input and
output so that multiple threads can cooperate to execute a
single join concurrently.

4. THREADS AND BUFFERS
Our threading model is based on using both control par-

allelization (through the pipelining of the query operation)
and single-program multiple data parallelism (SPMD)[13].
This allows our model to allocate multiple threads for each
operation in the query pipeline.

4.1 Threading Considerations
We use a buffer-management scheme to allocate data from

the input relations to the various threads and also allow for
forwarding output data to operations further in the pipeline.
We found that the number of buffers used and their size
can affect system performance. Using buffers with fewer en-
tries allows the working set to be smaller and better able to
fit within the processor’s data cache, however this requires
each thread to acquire more buffers, potentially resulting in
slower performance. Conversely using buffers with more en-
tries means the system spends a smaller percentage of its
time obtaining buffers, but the memory footprint of each
buffer is larger, and could result in poor sharing of the pro-
cessor’s cache among the threads.

Thread 1 Buffer 1

Buffer 2

Buffer 3

. . .

Buffer N
Thread 2

Thread 1

Thread 2

Thread 3Output

Output

Input

Input

Input

Operator Oi-1 Operator O i

Figure 2: Example of two pipeline operations, Oi−1 and Oi, sharing a set of buffers.

Another important issue to consider is the number of
threads that are allocated for each operation in the pipeline.
Even when we just concern ourselves with join operations,
earlier joins can often take significantly longer than later
ones depending on the selectivity of the earlier joins. This
effect is coupled with the fact that pipelined workloads are
not always evenly distributed.

Figure 1 shows an example pipeline in which pipeline op-
eration O1 may generate output tuples at a varying rate
because there may be many tuples generated for common
names, but far fewer for the less common names4. This
would cause operation O2 to have a varying workload and
to alternate between periods of idling (due to lack of input
data) and busy periods where it has sufficient work to allow
it to take advantage of multiple threads or processors.

Additionally, it is important that databases running on
UHM processors schedule multiple threads carefully to avoid
one thread adversely effecting the performance of another.
In [18], it was noted that enabling SMT on Intel’s Netburst
processor can be detrimental to database performance. This
is often caused by “cache thrashing” behavior of a single
thread. For example, when one thread is running a large
scan, it could cause a concurrent thread to experience more
cache misses than if the two operations were serialized.

4.2 The Buffer-Management System
Our threading model helps to solve these issues by letting

each join operation in the pipeline be handled by multiple
threads, while allowing many of threads to sleep when they
are not needed. This allows the operations that need the
processing resources the most to utilize them, while other
operations wait until the input is ready.

We implemented a buffer system designed for unbalanced
workloads. This was accomplished by waking threads up
upon availability of work, and putting them to sleep when no
new work is available. The buffer manager uses a producer-
consumer queue that shares buffers in common. We used
the pthreads library[17] for the purposes of threading and
inter-process communication.

The buffer manager (Figure 2), contains a finite number
of buffers that it allocates to the producer and consumer
threads. A buffer consists of a collection of tuples or point-
ers, and we choose both the number of buffers to allocate and
the number of tuples or pointers that each buffer contains.
Each buffer can be used by one thread at a time regardless of

4While our system does not currently support index join or
projection operations used in Figure 1, our threading model
could easily apply there as well.

O4: 1B.ckey=C.ckey

aaaaa
!!!!!

O2: 1A.bkey=B.bkey

b
bb

"
""

O1:
Build
Table

Rel:A
50MB

Rel:B
100MB

O3:
Build
Table

Rel:C
200MB

Figure 3: Pipeline used for our tests, where each
entry in A matched exactly two entries in B, each
entry in B matched exactly two entries in C and
tuple sizes were the same for all three relations.

whether the thread is writing to or reading from the buffer.
The assignment of a buffer to a thread is made by the buffer
system. This avoids any need for concurrency control (e.g.,
locking) while a thread is executing.

This buffer management system allows the system to allo-
cate multiple threads for each operation in the pipeline (Oi

and Oi−1, shown in the figure). Because each thread is con-
strained to execute on a single thread-context, the system
accounts for imbalances in workloads among operations as
well as variances in the workload, allowing the processor’s
resources to be utilized more effectively. The system accom-
plishes this by creating more threads for each operation than
there are execution slots available on the processor. The sys-
tem executes only those threads that currently have a buffer
allocated to them. Limiting the size and number of buffers
prevents any particular operation Oi−1 from getting too far
ahead of dependent operation: Oi. By limiting the number
of buffers and their size, we can ensure that the output data
produced by operation Oi−1 is still in the processor’s cache
when it is consumed by operation Oi. Additionally, limit-
ing the number and size of buffers can be used to prevent
pipeline threads from running alongside concurrent threads
in the system that could cause the cache to thrash.

5. EXPERIMENTAL RESULTS
Figure 3 shows the example query pipeline that we used

for all of our tests. We used this pipeline because it is simple

0

1

2

3

4

5

6

7

8

20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0

B
il

li
o

n
s

Entries Per Buffer

T
o

ta
l

C
y
cl

e
s

2
3
5
7

Figure 4: Pentium 4 results. The numbers on the
right represent how many buffers were in use.

and has an imbalance in the workload between operations
O2 and O4. This allows us to examine the effectiveness of
the buffer-management system.

5.1 Number and Size of Buffers
To determine the ideal number of buffers to use, we ran a

series of tests using multiple buffers of varying sizes. Run-
ning a single thread for each operation in the pipeline did
not fully utilize processor resources. This is because opera-
tion O2 processes approximately half as many tuples as O4.
To help alleviate this problem, we allocated two threads to
O4 and only a single thread to O2. By doing this, we allowed
the more expensive operation to utilize the majority of the
processor’s resources.

Parallelizing a hash-join operation (O2 and O4 in Figure 3)
is fairly straightforward because multiple threads can share
the hash table (as it is read-only). The input/output buffer
system described in Section 4 protects the input and output
data so that only one thread can write to a buffer at a time,
ensuring correctness.5 However, not all stages of the pipeline
can be parallelized easily(for example the build operations
O1 and O3). The general problem of parallelizing highly
dependent database operations is left for future work.

Our tests were run for both the cases where the interme-
diate buffers contain the full output tuple, and when they
contain only pointers to the tuple. We found that passing
pointers was marginally faster (but, except for very large
tuples, only marginally faster) than passing the full resul-
tant tuples. Therefore, in this section we focus on the case
of passing pointers between the pipeline stages. For a more
detailed comparison of the performance when using pointers
versus full materialization see the Appendix.

We found that the we needed at least one more buffer than
the number of readers and writers concurrently executing.
Figure 4 shows that at least three buffers are needed to uti-
lize the processor effectively. This is logical as we executed

5While this ensures correctness, it is important to note that
when multiple threads execute a hash-join operation, the
order of the input tuples is not preserved in the output,
however this is rarely a problem, and an additional thread
could be used to piece the buffers back together in order if
necessary.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

30 60 100

Tuple Size

S
p
ee

d
u
p
 F

ac
to

r

Pointers
Full

Figure 5: Multithreaded speedup factors for tuple-
pointers and full materialization.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

30 60 100

Tuple Size

S
p
ee

d
u
p
 F

ac
to

r

1p2t
2p2t

Figure 6: Xeon results: 1p2t means two threads on
one processor, and 2p2t two threads, each on its own
processor

three threads (of which only two executed simultaneously)
so only having two buffers causes extra contention for shared
objects between threads. Extrapolating these results to fu-
ture architectures, we should have at least one more buffer
than we have threads concurrently executing. These figures
also show that enabling further additional buffers seems to
do little to help or hinder performance.

5.2 Multithreaded Speedup
To quantify SMT’s speedup on data-intensive algorithms,

we ran our tests with and without SMT support. Figure 5
shows the speedup when we ran the query pipeline with both
threads enabled versus when the case of only one thread
enabled. This graph also illustrates SMT’s greater benefit
when copying the larger amount of data needed when fully
materializing the output, rather than passing only pointers.

These numbers are similar to the speedups seen in [9]
during the probe phase of the software-pipelining optimized
hash join. However our results managed this speedup across
the entire hash-join operation (including the build phase),
and additionally accounts for a much finer-grain level of par-
allelism than that used in [9].

Performance was poor on the SMP/SMT Xeon. This is
due partially to the Xeon’s slower memory subsystem, but
more importantly it is due to the Xeon’s inability to properly

1

1.1

1.2

1.3

1.4

1.5

1.6

30 60 100

Tuple Size

S
p
ee

d
u
p
 F

ac
to

r

2p2t

Figure 7: Multithreaded speedup factors obtained
on the Core Duo processor (two processors, one
thread per processor).

Architecture 30 60 100
Pentium 4 1p1t 6.32 3.17 2.12
Pentium 4 1p2t 4.98 2.56 1.73

Xeon 1p1t 11.95 6.13 4.17
Xeon 1p2t 9.71 5.06 3.38
Xeon 2p2t 8.98 4.75 3.22

Core Duo 1p1t 4.98 2.57 1.68
Core Duo 2p2t 3.33 1.75 1.22

Table 2: Wall-clock runtimes (in seconds) for tu-
ple sizes of 30, 60, and 100 bytes. 1p2t means two
threads on one processor, and 2p2t two threads,
each on its own processor

handle prefetch instruction as explained in [9]. The compari-
son between these two architectures illustrates how much of
an effect minor architectural changes can have on overall
system performance. Figure 6 shows the speedups obtained
when splitting the threads up among the different contexts
available on this system. It is important to note when com-
paring these results to the other architectures, that the lack
of software prefetching causes excessive data-cache misses,
which SMT processors can effectively overlap with process-
ing from the additional thread[22, 8, 23, 16, 9].

A rather surprising result of these experiments was that
the dual-processor algorithm was only marginally faster than
the SMT algorithm, running about 10% faster when using
30-byte tuples, and only 6% faster when using 100-byte tu-
ples. One of the reasons for the Xeon’s poor multiproces-
sor performance is due to its bus-based architecture, which
quickly became overloaded as buffers were moved between
the two procesors. Performance could be improved some-
what if two separate queues were used, with each processor
producing distinct output. For example, if processor P1 ob-
tained data D1, it would perform both operation O1 and
O2 on it while P2 would obtain D2 and likewise perform
the necessary operations upon it. This would prevent Di

from having to be sent across the bus for further processing
on a different processing node. Such considerations are not
necessary when executing upon many SMT or CMP pro-
cessors, and aren’t as important on processors that utilize
point-to-point interconnects.

Figure 7 shows the speedups obtained on the Core Duo
processor when executing the example query pipeline. Ta-
ble 2 reveals that this platform outperformed the others, de-
spite the fact that this platform had the slowest clock speed.
The performance on this machine is due to the Core Duo’s
more efficient microarchitecture combined with its larger
and faster cache. The multi-core speedup on the Core Duo
was between 1.35 and 1.5. This is likely due to the limited
memory bandwidth available on this mobile platform. This
poor speedup also suggests that query optimizers should bal-
ance the workload among multiple physical processors to
prevent any single core from being memory-bound.

6. CONCLUSION
In this paper, we have examined the impact of UHM pro-

cessors on pipeline operations. Specifically, we studied the
running of the hash-join algorithm in a pipelined fashion on
a UHM processor. This overview of the effects of pipeline
operations shows that a simple näıve approach to thread-
ing will not yield optimal performance on new processors.
The need for highly parallel code to run on multithreaded
processors[3, 14, 1, 2], combined with the increasing pro-
cessor/memory gap and heterogeneous threading abilities of
modern and future processors, have fueled the need for fur-
ther research into query pipelines.

By examining the effect of multithreading, we have seen
impressive gains in the performance of hash-join operations
within queries and have shown the importance of combining
SPMD techniques with traditional “unstructured” threading
techniques (such as running a separate thread for each op-
eration) when executing query pipelines. These techniques
allow the system better control of the execution of algo-
rithms and are necessary to achieve the greatest throughput
on processors.

The issues of thread allocation and buffer management
are of reduced complexity in our work due to the relative
simplicity of the multicore and multithread architectures we
tested and our focus on a relatively short pipeline of two
joins. A higher number of cores with a higher number of
concurrent threads per core opens the possibility of

1. Devoting more threads (and buffers) to each operation
(greater horizontal parallelism).

2. Deepening the pipeline to include more joins as well
as other operations (greater vertical parallelism).

These considerations add to the complexity of the buffer
system.

Future work is still needed in expanding our threading
model to support other operations (such as merge join, sort,
selection, etc), and to examine performance on other mul-
tithreaded processors[3, 14, 1, 2]. This work should also
focus on more parallel architectures than the two-threaded
Pentium 4, taking into account the fast inter-core communi-
cation presented by these new UHM processors. By examin-
ing the performance of such operations, we can both stress
the ability of our threading model to distribute evenly the
workloads of multiple pipeline operations as well as deter-
mine more accurate estimates for ideal buffer sizes based
upon processor cache size, and the number of threads that
can run on a given processor.

Future work is needed to parallelize traditionally serial
algorithms, including techniques to allow multiple threads

to write to linked data structures simultaneously and effi-
ciently. As the number of threads executing the probe phase
increases, the percentage of time spent waiting in these se-
rial algorithms will become excessively large. These stalls
in the pipelines will become increasingly important as cur-
rent techniques don’t allow multiple threads to execute si-
multaneously. Finally, it will be necessary to develop good
cost predictors for these parallel algorithms so that future
database query optimizers have appropriate cost estimates
on which to base their choice of overall execution strategy
for the entire query.

7. REFERENCES
[1] Intel multi-core processor architecture development

backgrounder. Intel White Paper, 2005.

[2] Multi-core processors– the next evolution in
computing. AMD White Paper, 2005.

[3] Throughput computing: Changing the economics and
ecology of the data center with innovative SPARC r©
technology. Sun Microsystems White Paper, November
2005.

[4] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. DBMSs on a modern processor: Where does
time go? In Proc. 25th Int’l Conf. on Very Large Data
Bases, pages 266–277, 1999.

[5] D. Burger and J. R. Goodman. Billion-transistor
architectures: There and back again. IEEE Computer,
37:22–28, Mar. 2004.

[6] D. Carmean. Data management challenges on new
computer architectures. In First Int’l Workshop on
Data Management on New Hardware (DaMoN), June
2005. Oral Presentation.

[7] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving hash join performance through
prefetching. In Proc. Int’l Conf. on Data Engineering,
2004.

[8] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L.
Stamm, and D. M. Tullsen. Simultaneous
multithreading: A platform for next-generation
processors. IEEE Micro, 17(5):12–18, September 1997.

[9] P. Garcia and H. F. Korth. Hash-join algorithms on
modern multithreaded computer architectures. In
ACM Int’l Conf. on Computing Frontiers, May 2006.

[10] P. C. Garcia. Optimizing database algorithms for
modern computer architectures. Master’s thesis,
August 2005.
http://www.cse.lehigh.edu/∼pcg2/thesis.pdf.

[11] N. K. Govindaraju, J. Gray, R. Kumar, and
D. Manocha. GPUTeraSort: High performance
graphics co-processor sorting for large database
management. In Proc. ACM SIGMOD Int’l Conf. on
the Management of Data, June 2006.

[12] G. Graefe. Encapsulation of parallelism in the volcano
query processing system. In Proceedings of the 1990
ACM SIGMOD International Conference on
Management of Data, pages 102–111, 1990.

[13] W. D. Hillis and J. Guy L. Steele. Data parallel
algorithms. Commun. ACM, 29(12):1170–1183, 1986.

[14] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5
chip: A dual-core multithreaded processor. 2004.

[15] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka.
Application of hash to data base machine and its

architecture. In New Generation Computing,
volume 1, pages 63–74, 1983.

[16] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A.
Koufaty, J. A. Miller, and M. Upton. Hyper-threading
technology architecture and microarchitecture. Intel
Technology Journal, (Q1):4–15, 2002.

[17] F. Mueller. Pthreads library interface, 1993.

[18] S. Oks. Be aware: To hyper or not to hyper. Slava Oks
Weblog http://blogs.msdn.com/slavao/archive/-

2005/11/12/492119.aspx,Nov2005.

[19] P. S. Otellini. Multi-core enables performance without
power penalties. In Intel Developer Forum Keynote,
http://www.embedded-controleurope.com/pdf/-

ecedec05p26.pdf,2005.

[20] A. Shatdal, C. Kant, and J. Naughton. Cache
conscious algorithms for relational query processing.
In Proceedings of 20th Int’l Conf. on Very Lage Data
Bases, pages 510–524, 1994.

[21] D. Towner and D. May. The ‘uniform heterogeneous
multi-threaded’ processor architecture. In
A. Chalmers, M. Mirmehdi, and H. Muller, editors,
Communicating Process Architectures – 2001, pages
103–116. IOS Press, September 2001.

[22] D. M. Tullsen, S. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting choice:
Instruction fetch and issue on an implementable
simultaneous multithreading processor. In Proc. ACM
IEEE Int’l Symposium on Computer Architecture,
pages 191–202, 1996.

[23] D. M. Tullsen, S. Eggers, and H. M. Levy.
Simultaneous multithreading: Maximizing on-chip
parallelism. In Proceedings of the 22nd Annual Int’l
Symposium on Computer Architecture, June 1995.

[24] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah.
Improving database performance on simultaneous
multithreading processors. In VLDB ’05: Proceedings
of the 31st Int’l Conf. on Very Large Data Bases,
pages 49–60, 2005.

APPENDIX

Pointers Versus Tuple Materialization
We discuss here in more detail our comparison between pass-
ing full output tuples between pipeline stages versus passing
only pointers to those tuples.

Our results showed that the performance of the system
was similar for the case when we passed pointers in the
pipeline versus using full materialization[10]. This counters
the previous belief that using pointers rather than copying
the full tuples to a new buffer saves a significant amount of
time that would otherwise be spent doing useful work. There
are several reasons for this somewhat surprising result:

• Operation O2 in Figure 3 (the only one copying data
to the buffers) operates on half as many tuples as O4,
therefore the maximum possible speedup (where the
time to run O2 is zero) is 33%. When more operations
utilize the buffers, the speedup may be greater.

• The time spent processing a single tuple in O2 (dis-
counting main-memory latency, which is hidden by the
software prefetching and split evenly across the two
processors) is less than the time it takes to process a tu-

0

1

2

3

4

5

6

7

8

9

20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0

B
il

li
o

n
s

Entries Per Buffer

T
o

ta
l

C
y
cl

e
s

2
3
5
7

Figure 8: Cycles to run the multithreaded join
pipeline on the Pentium 4 when fully materializing
the intermediate relation. The numbers on the right
represent how many buffers were in use by the sys-
tem.

ple in O4 because O4 must copy data from three input
relations.

• When the buffers fully materialize the data, the data
are read back “in-order” during operation O4, resulting
in superior cache performance and eliminating exces-
sive pointer chasing.

• Due to the latency-hiding nature of software-prefetch
instructions, when pointers are used to pass values,
data stalls are likely to occur as there is less useful
work available in the rest of the hash-join algorithm to
hide all of the cache-miss latency with prefetching.

• Hyperthreading allows multiple in-cache memory copy
operations to occur simultaneously, hiding some of the
extra time required to materialize the full tuple. There-
fore the speedup of using pointers would be greater for
the single-threaded algorithm.

These reasons help explain why using pointers to pass data
between the operations does not result in as significant a
speedup as initially expected. We also compared our re-
sults when using larger tuples. In Figure 9, we see that the
speedups obtained due to using pointers are much greater,
approaching the theoretical maximum of 33%. Thus, for
large tuple sizes using pointers is a much more effective way
to handle inter-process communication.

As UHM processors become more common, it will become
even more important to use pointers to pass data between
pipeline stages. On future architectures, it is likely that we
will have more threads running on each processor core simul-
taneously. Under this model, context switches will occur on
data cache misses. Because of this, memory latency can
be hidden better than on current systems. This will enable
non-latent threads to run while another thread is stalled6.

6While this is also true on the Pentium 4 as two threads

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

100 200 300 500 700 1000 1500

Tuple Size

S
p
ee

d
u
p
 F

ac
to

r

Speedup

Figure 9: Speedups obtained by using pointers.

Thus, while our intuition about the merits of pointer pass-
ing do not hold true for our experiments, our data indicate
a need to re-examine this issue in the context of future ar-
chitectures.

share the CPU, as the number of simultaneous threads that
a processor can execute increases the overall system through-
put will increase.

