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ABSTRACT
Chip multiprocessors (CMPs) present new opportunities for
improving database performance on large queries. Because
CMPs often share execution, cache, or bandwidth resources
among many hardware threads, implementing parallel data-
base operators that efficiently share these resources is key
to maximizing performance. A crucial aspect of this paral-
lelism is managing concurrent, shared input and output to
the parallel operators. In this paper we propose and evalu-
ate a parallel buffer that enables intra-operator parallelism
on CMPs by avoiding contention between hardware threads
that need to concurrently read or write to the same buffer.
The parallel buffer handles parallel input and output coor-
dination as well as load balancing so individual operators do
not need to reimplement that functionality.

1. INTRODUCTION
Modern database systems process queries by constructing

query plans. A plan consists of a collection of operators
connected to each other by data buffers. The output from
one operator is fed as input to another operator.

Recently, microprocessor designs have shifted from fast
uniprocessors that exploit instruction level parallelism to
chip multiprocessors that exploit thread level parallelism.
Because of power and design issues that reduce the perfor-
mance improvement obtainable from faster uniprocessors,
improved performance now depends on taking advantage of
on-chip parallelism by writing applications with a high de-
gree of thread level parallelism [11].

In this paper, we focus on query plans running on a chip
multiprocessor. On such a machine, many concurrent threads
may cooperate to collaboratively perform a single database
operation [20, 6]. The advantage of using the available par-
allelism in this way is improved locality. Instructions and
some data structures are shared, leading to good cache be-
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havior. In contrast, treating each thread as a parallel pro-
cessor that performs independent tasks can lead to cache
interference [20].

In a collaborative design, an operator would be executed
by all threads for a certain time-slice. The time-slice needs
to be long enough to amortize the initial compulsory misses
on the instruction and data caches, as well as the context-
switch costs. A time-slice might end when either (a) a time-
window expires, (b) the input is fully consumed, or (c) the
output buffer becomes full.

A critical question for a system employing parallel opera-
tors is the design of buffers for passing data between opera-
tors. A näıve choice can lead to hot-spot points of contention
that prevent the operator from working at its full capacity
[3]. For example, if all threads write output records to a
common output array, then there will be contention for the
mutex on the pointer to the current position within the ar-
ray.

One way to avoid output contention is to give each thread
its own output array [3, 20]. While this choice avoids con-
tention, it has other disadvantages. The next operator that
consumes the data has to be aware of the partitioned nature
of its input. This can lead to a relatively complex imple-
mentation for all operators, because they have to take into
account run-time information such as the number of avail-
able threads, which may vary during the course of query
execution. An output partition could, in the worst case,
grow much faster than the others. For instance, consider
a parallel range selection operator where each thread runs
on a portion of the data that has been partitioned by the
attribute being selected. As a result, each output thread
must be pessimistic in allocating output space consistent
with worst-case behavior. Such allocation can waste mem-
ory resources, particularly when there are many threads.

There is no guarantee that the separate output partitions
will be balanced. Therefore, the consuming operator also
becomes responsible for load balancing. If the operator does
not balance the load, then it is possible for a single slow
thread to cause all other threads to stall for long periods,
substantially reducing the effective data parallelism. We
take a closer look at load balancing in Section 5.4.

Simply put, a challenge for multithreaded database and
other similar data intensive workloads is that each thread
may consume different amounts of input, generate different
amounts of output, and take significantly different amounts
of time to run. In this paper, we propose a buffer structure
that avoids these pitfalls, while still minimizing contention
for a shared buffer. Our solution has the following desirable



properties:

• The output and input structures are the same, so that
arbitrary operators can be composed.

• The buffer is allocated from a single array, so that
memory can be allocated in proportion to the expected

output of all threads rather than the worst-case output.

• Data records are processed in chunks. Mutex or atomic
operations are required only for whole chunks. By
choosing sufficiently large chunks, contention can be
minimized.

• Parallel utilization is high. In particular, no thread is
stalled for longer than the smaller of the input-chunk
processing time and the time to generate one output-
chunk. Utilization is high even when there is an im-
balance in the rate of progress made by the various
threads.

• Operators use simple get_chunk and put_chunk ab-
stractions, and do not have to re-implement locking or
load-balancing functions.

We evaluate our parallel buffer data structure on real
hardware, the Sun Microsystems UltraSPARC T1. The T1
is a chip multiprocessor with eight cores and four hardware
threads per core for a total of 32 threads on one chip.

2. RELATED WORK
Parallelism in databases has been well studied, however

most research, and therefore the lessons learned, predate
chip multiprocessors. DeWitt and Gray [5] and DeWitt et
al. [4] advocate shared-nothing parallelism for database op-
erations. A key part of this argument is that interference
limits the performance of shared-memory systems. Mod-
ern commodity chip multiprocessors exhibit shared-memory
parallelism, sharing some levels of the memory hierarchy.
Therefore, managing interference between hardware threads
will be paramount to achieving good query performance.

Graefe [8, 7] advocates creating intra-operator parallel-
ism via partitioning. On a shared memory system, static
partitioning makes sense when the coordination overhead
between processors is high, but this coordination overhead,
such as cache coherency, is lower on chip multiprocessor be-
cause all communication is done on chip. A problem with
data partitioning is that it is static and can be sensitive
to skew in the data, resulting in sub-optimal load balanc-
ing. Whereas a conventional shared memory multiprocessor
system avoids close coordination between threads or pro-
cesses because of the high cost of coordination and data
sharing, chip multiprocessors benefit from it because coop-
erative threads can better share on-chip resources and any
coordination is done at on-chip speeds.

A recent study by Hardavellas et al. [10] explored data-
base systems on chip multiprocessors. This work found that
OLAP workloads on chips similar to the UltraSPARC T1
exhibit good throughput. In this study, parallelism in data-
base operations was achieved by increasing the number of
concurrent clients accessing the database (inter-query par-
allelism). The good throughput was found when the num-
ber of clients saturated the system. When few concurrent
clients were connected, throughput was poor because some
hardware threads were idled. This highlights a significant

performance pitfall of parallel architectures: not taking ad-
vantage of the parallelism [11].

Our proposal to exploit intra-operator parallelism for OLAP
aims to keep all hardware threads busy, regardless of the
number of concurrent clients, thus yielding high system uti-
lization and throughput. Additionally, by exploiting intra-
operator parallelism, it is easier to manage resource sharing
and thus improve performance because all hardware threads
are working on the same task. In contrast, in an inter-query
parallelism model, threads sharing memory, cache, and ex-
ecution resources may conflict. Understanding and manag-
ing inter-operator or inter-query interference is fraught with
complications.

Parallel queue data structures on shared memory systems
have been studied in the past [16, 15, 14, 18]. These investi-
gations focus on creating general purpose queue structures
that allow concurrent enqueue and dequeue operations. This
is most useful in situations with multiple concurrent produc-
ers and consumers. In our parallel buffer structure described
in Section 3, we leverage the semantics of database process-
ing to guarantee that only concurrent enqueue or dequeue
operations to a buffer occur during a time slice, but not
both.

Other work has suggested inserting buffers between oper-
ators [21] and processing blocks of input at a time and ma-
terializing the intermediate results instead of pipelining [12,
17]. Advantages of this block processing approach include
the efficient reuse of instructions and data structures, such
as an index. With block processing, fewer instruction and
data cache misses occur because the operator’s instructions
and data structures remain cache resident. Work by Boncz
et al. [2] shows that processing a vector of tuples can lead
to more than an order of magnitude performance improve-
ment compared to previous Volcano-style query execution.
In pipelined query execution, an operator may process only
one tuple, yet must pay the cost of many cache misses for
both its data structures and instructions. On a chip multi-
processor with shared cache and execution resources, block
processing is even more important because it allows for eas-
ier concurrent management of these shared resources. The
parallel buffer proposed in this paper will help enable multi-
threaded block processing on chip multiprocessors.

3. PARALLEL BUFFER
We assume records have fixed length, and allocate an ar-

ray that is capable of holding a large number M of records.
We divide the array into chunks of size c, and assume M is
a multiple of c. The buffer structure maintains a count h
of the number of chunks in the array that are in use. Addi-
tionally, the structure contains p additional count variables
d1, . . . , dp where p is the maximum number of thread con-
texts available on the system. The use of these counters will
be described below.

The buffer is in a stable state when every chunk from
p + 1 to h is fully occupied. In a stable state, the variable
di denotes the number of records present in chunk i; chunks
1 through p may be partially occupied.

To write data to a buffer, a thread atomically increments
the chunk counter h, and uses chunk number h as the des-
tination for output records. Each thread will be accessing
a different chunk, and so actual data output does not need
to be regulated by locks or mutexes. Only accesses to h are
controlled, using the atomic increment instruction. Once an



(a) Each thread starts (b) Chunk counter (c) Threads exhaust output (d) Threads top-up and
writing to its first chunk. incremented as threads buffer space. update counters to reflect

write to new chunks. first chunks’ actual counts.

Figure 1: Parallel buffer example with three threads where threads terminate because the output buffer
capacity is reached. Each chunk can hold two tuples.

output chunk is full, the thread tries to obtain a new chunk
in the same fashion. When no more chunks are available,
i.e., h = M/c, a flag is returned to the operator to signal
this fact. A thread in this state is said to be finalized, and
will stall until all other threads are also finalized.

Reading data from a buffer proceeds in a similar fashion
to writing. When reading a stable buffer, a thread will be
told how full its chunk is based on the di values. A thread
that requests a new input chunk and finds none available
also enters a finalized state. Such a thread (say it is thread
number j) performs a top-up operation, in which its current
output chunk is topped up using data from chunk j. The
count dj in the output buffer is set according to how many
records remain in chunk j. The top-up operations restore
the buffer to a stable state.

Figure 1 demonstrates the filling of an output buffer when
threads terminate because the capacity of the output buffer
is reached. Note that finalization begins when one thread
fails to obtain a new output chunk. Finalization prevents
threads from obtaining new input chunks, thereby guaran-
teeing termination of all threads quickly. This can leave
holes in the buffer, as shown in Figure 1, requiring a top-up

operation to return the buffer to a stable state. Figure 2
demonstrates the filling of an output buffer when threads
terminate because the input is exhausted.

Finalization can happen due to a full output buffer or an
empty input buffer. Once one thread becomes finalized, we
induce finalization in all other threads by preventing them
from obtaining new input or output chunks. For example,
if one thread has found the output buffer full, then no other
threads can get new input chunks. When another thread
tries to get a new input chunk, it sees that the finalization
flag has been set, and instead enters the top-up phase and
finalizes itself.

The advantage of coordinating finalization between input
and output is that we can bound the idle time of all threads
to the smaller of the time taken to process one input chunk,
and the time taken to generate one output chunk. Without
coordination, it might be possible for one thread to continue
operating on the input for a very long time, even after all
other threads have finalized due to running out of output

chunks. If the thread’s operator is very selective, for ex-
ample, many input records would need to be consumed to
generate an output record. While this remaining thread is
making progress, it harms overall utilization because p − 1
threads remain idle.

A dual problem can occur in the absence of input/output
coordination. Suppose p − 1 threads have finalized due to
running out of input, but one remaining thread is generating
a lot of output for each record in its chunk. This one thread
would keep working, even though it is forcing p − 1 threads
to remain idle.

Finalization can also be externally induced, for example
by an interrupt at the end of an operator’s time-slice. Since
we schedule operators one at a time, a buffer is used either
for input or for output, but not both at the same time. Once
a buffer has begun to be used as input, it cannot be used
for output (by an upstream operator) until it has been fully
emptied. Double-buffering can be used if upstream oper-
ators need to be rescheduled before downstream operators
have consumed all of the previous records. Double-buffering
is actually desirable, because our coordination mechanism
can leave a buffer in a state with just a few remaining
records.

The contiguous nature of the parallel buffer data structure
is a natural fit for the output of table scan operations often
found at the leaves of a query plan, with the exception that
the final chunks may need an inexpensive top-up operation.

4. MODELING BUFFER CONTENTION
The appropriate chunk size can be determined theoreti-

cally. We will first present a simple model that provides in-
sight into issues related to contention and chunk size. Then
we present a probabilistic model that provides a better esti-
mation of the necessary chunk size to eliminate contention.

The total time to process a chunk is T = cr where c is the
size of a chunk in tuples, and r is the time to process a tu-
ple. If the time to perform the necessary mutually exclusive
operations for each chunk processed is L, then

(p − 1)L ≤ T − L (1)



(a) Each thread starts (b) Chunk counter (c) Threads exhaust input (d) Threads top-up and
writing to its first chunk. incremented as threads and must terminate update counters to reflect

write to new chunks. in current state. first chunks’ actual counts.

Figure 2: Parallel buffer example with three threads where threads terminate because the input is exhausted.
The output is left unfilled, but in a stable state. Each chunk can hold two tuples.

where p is the number of hardware threads. As more hard-
ware threads are added, the potential contention for locking
or atomic operations increases. We find the size of a chunk
that avoids contention is

c =
T

r
≥ pL

r
(2)

Equation 2 shows that the chunk size must increase as more
hardware threads are used or the time per tuple processed
decreased. Simply stated, both more threads or shorter tu-
ple processing time results in a shorter amount of time until
some hardware thread must execute the critical section of
the parallel buffer code. Therefore more tuples must be pro-
cessed by each thread between subsequent executions of the
critical section, hence the larger chunk size.

This simple model could underestimate the necessary chunk
size. The solution to Equation 2 assumes the best case that
the concurrent accesses to the critical section are spread out
evenly in time. The problem is that even uniformly dis-
tributed accesses might not be equally spread out. When
some accesses cluster, all of the participating threads slow
down significantly. The period during which more accesses
cause contention also extends. We need to model the prob-
ability that two accesses to the critical section will conflict.
We model this as a statistical process.

Consider the locked resource to be a line extending to in-
finity, indexed by time. When a thread needs to execute the
critical section, it reserves a line segment of size L starting
at the current point in time. If a thread finds the lock al-
ready taken, it must reserve a line segment of size L starting
at the end of the last reservation on the line. The cost of
contention is the overlap of requests on this line. We can
approximate this effect discretely by dividing the line into N
buckets, where N = t/L. That is, we discretize the number
of locking slots available over the duration of our experiment
(time slice), t. If one thread acquires the lock f times per
second and p threads are used, a total of pft locks will be
acquired during the experiment. The discrete probabilistic
model, therefore, is to place balls in a uniformly random
manner into the N buckets and count how many have two
or more balls (contention).

E[0 Ball buckets] = N

„

1 −
1

N

«pft

(3)

E[1 Ball buckets] = pft

„

1 − 1

N

«pft−1

(4)

We can use Equations 3 and 4 to estimate the number of
buckets with two or more balls and therefore the amount of
contention. If we want to limit the amount of contention to
a fraction b of the buckets, we need to solve:

N − N

„

1 −
1

N

«pft

− pft

„

1 −
1

N

«pft−1

= bN (5)

We can simplify by introducing a variable X:

X =

„

1 − 1

N

«pft−1

=

„

1 − L

t

«pft−1

(6)

Thus, Equation 5 becomes:

(1 − b) = X

„

1 − L

t
− pfL

«

(7)

We will assume that N ≫ pft, which means that there are
many more locking slots available than lock requests. This
is reasonable since we are trying to configure the system
to have few slots with more than one request. With this
assumption we can approximate X as

1 − (pft − 1)
L

t
(8)

As t goes to infinity, Equation 7 can be rewritten as:

(1 − b) = (1 − pfL)2 (9)

f =
1 −

√
1 − b

pL
(10)

Based on our earlier terminology, f = 1

cr
, so

c =
pL

r(1 −
√

1 − b)
(11)



When b = 0.1, (1 −
√

1 − b) ≈ 0.05. In this case, the chunk
size estimate, c, is about 20 times greater than the esti-
mate with the simpler model. The appropriate chunk size
for a buffer is a chunk size that eliminates contention in the
buffer’s upstream and downstream operator. This is sim-
ply the maximum chunk size found by performing the above
analysis on the operators that share a buffer. We will ex-
amine the two chunk size models empirically in Section 5.

5. EXPERIMENTS
To validate our chunk size model, we performed experi-

ments on real hardware using a machine with a Sun Ultra-
SPARC T1 processor. The specifications of our test platform
can be found in Table 1. The T1 has some unique character-
istics. For one, the cores are much simpler than those found
on other commodity processors: the pipeline is a shallow
six stages, instructions are issued in order, and no hard-
ware prefetching occurs. This simpler core does, however,
support four hardware threads that share the core in a fair
manner. A context switch occurs on each clock cycle and an
instruction is then issued from the least recently used, ready
thread. This sharing has important implications for perfor-
mance on the T1. When all threads are ready, each issues an
instruction every fourth cycle, which means that the effec-
tive clockrate seen by each thread is one quarter that of the
core’s clockrate. In the event of longer latency instructions
or events (e.g., a cache miss) having other threads ready to
run keeps the core from becoming idle. The T1 also fore-
goes branch prediction, instead relying on the other threads
to issue instructions to fill the pipeline until a branch is
resolved. These characteristics suggest the importance of
keeping all threads on all cores busy to achieve optimum
performance, particularly for data dependent applications,
such as databases, that often cause many long latency cache
misses.

5.1 Setup
The parallel buffer data structure was implemented in C

and is very lightweight, requiring less than 200 lines of code.
To test the parallel performance of the buffer, an operator
was created that reads from an input buffer and writes to
an output buffer. This operator allowed many performance
parameters to be specified, including the amount of work per
tuple, size of the input and output tuples, chunk size in the
input and output buffer, and the selectivity. The selectivity
is the number of output tuples produced for each input tuple
read. In our test operator, selectivity was simulated using
a random number test, but in practice it would be data
dependent.

For all experiments, the results are averages of four runs
using the same parameters. We also implemented a version
of the parallel buffer that did not use the top-up procedure,
but instead kept a counter for each chunk in the buffer to
keep track of the occupancy of each chunk. This design
allows partially filled chunks anywhere in the array, but at
the expense of additional storage for the counters. This data
structure performed nearly identically to the data structure
described in Section 3. Therefore we provide results us-
ing only the parallel buffer defined in Section 3 because it
is more space efficient. Additionally, because all but the
first chunk processed by each thread are a fixed size, com-
pile time optimizations such as loop unrolling and instruc-
tion reordering can improve performance. Although we did

Operating System Solaris 10 11/06
Cores (Threads/core) 8 (4)
RAM 8GB
Shared L2 Cache 3MB, 12-way associative

Hit latency: 21 cycles
Miss latency: 90–155 cycles1

L1 Data Cache 8KB per core
Shared by 4 threads

L1 Instruction Cache 16KB per core
Shared by 4 threads

On-chip bandwidth 132GB/s
Off-chip bandwidth 25GB/s over 4 DDR2
Compiler Sun C 5.8

Table 1: Specifications of the Sun UltraSPARC T1.

not find a significant performance difference on the Sun T1,
other architectures with deeper pipelines, branch mispredic-
tion penalties, and out of order execution may benefit more
from these optimizations.

To minimize the amount of time spent starting and stop-
ping threads, the threads were created and joined recur-
sively. For example, the initial thread would create two
child threads, begin processing, and then join its two chil-
dren when processing completes. Those children would also
create additional threads, and so on in a recursive manner
until the target number of threads have been created. When
one thread created all of the threads in a linear fashion, the
time until all threads were working was longer, which re-
sulted in an uneven amount of processing by each thread.
Getting all threads to work as quickly as possible is impor-
tant to achieving good processor utilization and thus maxi-
mizing the parallelism available on the processor.

5.2 Buffer Performance
We performed a number of experiments, varying the pa-

rameters of our test operator described above. Figure 3
shows the throughput of the test configuration when all 32
hardware threads were used to copy every input tuple from
the input buffer to the output buffer (selectivity of 1.0) us-
ing different chunk sizes. The tuple size was 16 bytes. This
graph clearly shows that the cost of contention is over an or-
der of magnitude in lost throughput. This graph also shows
the estimates provided by the simple and probabilistic chunk
size models. The simple model provides an estimate that is
very close to a chunk size that provides the best possible per-
formance. The probabilistic model with b = 0.1 estimates a
chunk size that is well into the performance plateau of chunk
sizes that provide the same operator throughput. The two
models provide a range of good chunk sizes for parallelism
without significant contention. In practice, one can expect
to have low contention if a chunk size somewhat greater than
the simple model estimate is chosen.

A closer analysis of the two models in the context of the
experiments sheds some light on their accuracy. In the prob-
abalistic model, our discretization of the experiment’s run-
ning time into buckets means that we consider any two re-
quests to the same bucket to be contentious. In reality,
unless the requests arrive at the exact same time, the over-
lap is not total. On average, one might expect a contentious

1The miss latency varies with the workload and with the
load on the memory controllers [11].



operation to overlap with half of another operation. This
is one reason why the probabalistic model may produce an
overestimate. The probabalistic model was also proposed
because uniformly distributed accesses might not be evenly
spread out. But in practice if the tuple processing times are
uniformly distributed, one can expect the chunk processing
finishing times to be evenly spread out. If each chunk takes
roughly the same amount of time to finish, then the sim-
ple model does provide the chunk size necessary to avoid
contention.

Figure 3: The dashed line is the simple estimate
and the solid line is the probabilistic estimate with
b = 0.1.

Figure 4: Scaling Performance.

The effects of contention are clearly demonstrated by Fig-
ure 4. As the number of threads concurrently accessing
the parallel buffer increases, the performance penalty due to
contention increases. This confirms predictions made by the
chunk size model that the chunk size necessary to avoid con-
tention increases as the amount of thread level parallelism
increases. The penalty due to contention is so severe that
fewer threads without contention outperform more threads
that do have contention. This graph also shows that choos-
ing a larger chunk size also helps amortize the cost of a
more expensive atomic or locking operation over more tu-
ples. In the case of one thread, there is no contention, but
the throughput improves for larger chunk sizes because of
this amortization.

Figure 5: Performance based on tuple size. Larger
tuples yield more cache misses and slower process-
ing, but less contention.

As the size of the tuples stored in the parallel buffer in-
creases, the number of cache misses incurred during process-
ing each tuple increases. Figure 5 shows the results. Because
the time to process each chunk increases, contention is re-
duced. For example, contention appears to be absent for
64-byte records at a chunk size of 16, while contention re-
mains an issue for 16-byte records for chunks containing 100
records. The UltraSPARC T1 has 64 byte L2 cache lines, so
16, 32, and 64 byte tuples represent 1/4, 1/2, and 1 cache
misses per tuple read or written, respectively.

Figure 6: Throughput as work per tuple increases.

As the amount of work performed per tuple is increased,
throughput naturally decreases as shown in Figure 6. The
“baseline” in this experiment is 32 threads processing 16
byte tuples with a selectivity of 1.0. Extra work was then
added to the processing of each tuple. The increased time
per tuple and, therefore, increased time per chunk also re-
sults in less contention. Figure 6 shows that as the work per
tuple increases, a smaller chunk size is necessary to eliminate
contention.

5.3 Mutexes vs. Atomic Operations
Incrementing the chunk counter must be done atomically

to ensure that each thread obtains a unique chunk to read
from or write to. Two techniques may be used to achieve



Figure 7: Incrementing the chunk counter atomi-
cally using a mutex vs. atomic operations.

this atomicity. First, threading libraries provide mutexes
that can be used to provide exclusive access to particular
variables and critical sections of code. When one thread has
locked a mutex, all other threads that request that lock must
wait for the first thread to release the mutex. In the case of
incrementing the chunk counter, we acquire the mutex (it
is shared among all of the threads), increment the counter
remembering the new value, and then release the mutex.

Another way of atomically incrementing the chunk counter
is to use atomic operations provided by the architecture’s in-
struction set. Most microarchitectures provide some type of
atomic operations on which synchronization objects, such as
the mutexes described above, can be built. Some microar-
chitectures, including the Sun T1, provide more advanced
atomic operations that can be used to perform atomic arith-
metic and logical operations.2 Using an atomic operation, if
available, to increment the chunk counter has a number of
advantages. First, acquiring and releasing a mutex requires
using atomic operations anyway, so the atomic increment
operation is unlikely to be slower. Second, using a mutex re-
quires invoking the threading library, which at the very least
means that more instructions will be executed, lowering per-
formance. A third issue is that when a thread attempts to
acquire a mutex, but fails, it may be put to sleep until the
mutex becomes available. This means that the mutex im-
plementation interacts with the system scheduler, incurring
an even higher overhead. For a very lightweight operation
such as incrementing the chunk counter, the overhead of ac-
quiring a mutex can be significant, especially when there is
contention between threads acquiring the mutex.

In all of our experiments we have used a lighter-weight
atomic increment operation instead of mutexes. Figure 7
shows a performance comparison of buffer performance us-
ing the atomic increment and a mutex. The experimental
parameters are the same as those in the experiment from
Figure 3. In a simple experiment, we measure the single
threaded latency incurred while performing the atomic in-
crement using a mutex to be about 128 cycles compared to
88 cycles when using the atomic increment operation. Fig-
ure 7 demonstrates that a larger chunk size is required for

2Though the T1 ISA does not have, for example, an atomic
add instruction, such an operation can be built using pro-
vided atomic primitives.

the mutex approach to achieve a performance comparable
to the implementation using atomic operations. This re-
sult follows from the mutex’s higher latency, which increases
the chance of contention at lower chunk sizes. For suffi-
ciently large chunk sizes, the throughput obtained by both
approaches is nearly identical. This is because the time to
process a chunk dominates the time required to atomically
increment the chunk counter.

5.4 Load Balancing
Achieving high performance on a chip multiprocessor re-

quires keeping all of the hardware thread contexts busy so
that the processor is fully utilized. In the context of data-
base operations that exploit intra-operator parallelism, the
key to keeping the processor fully utilized is load balancing.
Threads that complete their work and then wait for other
threads to also finish lower overall performance, whereas
threads that complete their work and then find other work
to complete help maximize overall performance. In this sec-
tion we examine some examples of skew that can occur with
other approaches to parallelism and demonstrate how the
proposed parallel buffer structure achieves good load bal-
ancing even in the presence of significant skew.

A common method of partitioning data for parallel pro-
cessing is to partition the tuples based on a hash of some
combination of attribute values [4]. In the case of the Sun
T1, we might want 32 partitions – one for each hardware
thread. Partitioning, however, is sensitive to skew in the
data that can cause some partitions to be much larger than
others. In a simple experiment we used multiplicative hash-
ing [13] to partition input into 32 partitions. The input dis-
tributions consisted of 224 tuples and were generated using
techniques similar to those found in Gray et al [9].

When the input values were distinct, the sizes of the parti-
tions were very similar with a standard deviation of just 1.8
tuples. For distributions such as Zipf and self-similar, the
amount of skew was higher. For Zipf, the measured stan-
dard deviation was about 1000 tuples when the values were
chosen from a range as large as the size of the input, but
increased significantly as the range was decreased causing
values to repeat more frequently. For the self-similar dis-
tribution, the standard deviation was almost 300000 tuples
and the largest partition was about five times greater than
the smallest partition. Even in the presence of moderate
amounts of skew, threads assigned to smaller partitions will
finish early and wait for other threads to complete, under-
utilizing the processor. Using the proposed parallel buffer,
threads continue to work on new chunks until a the buffer is
exhausted, thus keeping all threads busy performing useful
work.

Another significant problem with the partitioned approach
is skew introduced during query processing. Even if an in-
itial partitioning of the input is well balanced, some parti-
tions may contain tuples that fail to pass a selection con-
dition, while other partitions contain tuples that have large
join products, bloating their join output relative to other
partitions. Solutions to this problem include repartitioning
and variable sized buffers for the partitions between oper-
ators, which we argue is much more complicated than the
single, unified parallel buffer proposed in this paper.

A different form of skew involves the amount of time re-
quired to process a tuple. Some tuples take longer to process
than others. Consider the example of a hash join. If a tu-



(a) Constant amount of work per tuple. (b) Skewed amount of work per tuple.

Figure 8: Performance using parallel buffers vs. static partitioning.

ple hashes to an empty bucket, processing stops because the
tuple does not participate in the join. In contrast, if a tuple
hashes to an occupied bucket, then the values in that bucket
must be interrogated along with any potential overflow buck-
ets. In the partitioned approach, even if the partitions are
of equal size the amount of processing time may be skewed.
To compare partitioned processing with using the parallel
buffer, we create a skewed scenario. Each tuple in the first
1/32 of the input requires twice as long to process as the rest
of the input. In the partitioned approach, this first 1/32 of
the input corresponds with the partition processed by the
first thread. Using a parallel buffer, all of the threads share
in processing this more expensive input.

Figure 8 shows the effects of processing time skew on
performance of both the partitioned and parallel buffer ap-
proaches. The work is introduced in the same manner as
in the experiment associated with Figure 6. When work
per tuple is constant, as in Figure 8a, the partitioned and
parallel buffer approaches perform similarly when the buffer
chunk size is sufficiently large. This is good because it means
that the buffer infrastructure has negligible overhead com-
pared to course grained partitioning. The benefit of using
a parallel buffer is considerable when significant skew is in-
troduced in the manner described above. The difference in
performance between the baseline buffer performance (Fig-
ure 8a) and the buffer performance with skew (Figure 8b)
is less than 1/32, which is what we would expect since 1/32
of the work is twice as expensive. In contrast, Figure 8b
shows that the difference between the parallel buffer and
partitioned processing for the skewed workload or the par-
titioned approach is almost 30%, which means that many
threads are idle, resulting in lower processor utilization.

The skewed performance might be expected to equal that
of the partitioned approach with twice the work for each tu-
ple. However, this does not happen because of the way that
four threads share one core on the Sun T1. In the skewed
case, one thread is doing more work and issuing more in-
structions, which may fill holes where the other threads can-
not issue instructions because of delays. In the case where
all threads have equal work, they compete evenly for execu-
tion resources. Also, once other threads terminate early, the
slower thread that is processing the more expensive partition
never conflicts with other threads and can always issue in-

structions when ready. Therefore the partitioned approach’s
skewed performance is somewhat better than might be ex-
pected, but still significantly worse than the parallel buffer.

The advantage of the parallel buffer is that each thread
will process as many input chunks as it is able and write to as
many output chunks as needed. No adjustment is needed if
one thread produces more output than other threads. Sim-
ilarly, no load balancing steps are required within the plan.
Keeping threads busy with work is obviously important, but
there are situations, such as the exhaustion of input tuples
or space to write output that will require that a thread ter-
minates. Ensuring that all threads terminate quickly when
one thread is forced to finish is also important to maintain-
ing high processor utilization and is the focus of the next
section.

5.5 Thread Finalization
Efficiency during the finalization of threads using the par-

allel buffer data structure is also important to performance.
If some threads take a much longer time to stop work, the
processor could be underutilized while a majority of threads
wait for all of the threads to terminate. Section 3 describes
this condition and how our parallel buffer avoids this prob-
lem. Figure 9 shows the finishing times of all 32 hardware
threads during an experiment adjusted to the time that the
first thread finishes. The amount of time between the first
and last thread termination is much less than 1% of the total
execution time and represents the time to process about 30
chunks. Though this overhead is not as low as suggested in
Section 3, it still ensures that the processor is fully utilized
during almost all processing.

We suspect that the reason we observe a 30-chunk window
rather than a smaller one is that there is contention on the
timing counter used to perform the measurement for this
experiment, forcing the threads to serialize their access to
the counter. The true finishing times (in the absence of a
measurement or other serialization point) would show an
approximately cumulative normal distribution, something
not apparent in Figure 9.

6. CONCLUSION AND FUTURE WORK
Achieving good performance on chip multiprocessors re-

quires applications to exhibit sufficient thread level parallel-
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Figure 9: Difference in thread finishing times from
first thread to finish.

ism to saturate the available hardware threads, while also
managing shared resources efficiently. Database operations
exhibit a high degree of parallelism, but a challenge is in
coordinating the input and output to a parallel operator in
a manner that avoids contention between threads. In this
paper we present a new parallel buffer data structure that
helps to enable intra-operator parallelism. This buffer pro-
vides unified input or output to a parallel data structure.
Based on a theoretical analysis and experimental validation,
processing portions of the input and generating the output
in sufficiently large chunks can eliminate contention between
threads. The appropriate chunk size can be determined via
a theoretical model, which we have verified experimentally.

Another advantage of our data structure is that it also
provides load balancing between threads running a paral-
lel operator. Because every thread consumes and produces
chunks of tuples, the amount of input processed or output
generated by any one thread can adapt to the speed of that
thread. This is in contrast to a per-thread buffer or static
partitioning. Those techniques are sensitive to skew and
may result in under utilization. An example of this un-
der utilization occurs when some threads drain their input
buffers quickly and others process input more slowly. With
a unified parallel buffer, individual operators do not need to
address this load balancing problem.

The parallel buffer is also compatible with row-wise or
column-wise storage. Column-wise storage has been shown
to be particularly beneficial for OLAP workloads [1, 19].
The parallel buffer only requires fixed size elements. Whether
this is a full record or only a single attribute does not af-
fect the load balancing and contention avoidance properties
of the data structure. If multiple columns are required as
input or output, multiple buffers may be used or a single
buffer with multiple arrays could be used. In the later case,
the columns in each chunk would represent values from the
same records. We have not implemented the buffer data
structure for a particular data layout, but as future work
we will investigate the best way to use parallel buffers for
column- and row-based data.

In future work, we plan to implement real database oper-
ators and validate complete system performance. The par-
allel buffers presented here form the core of the necessary
infrastructure for managing load balancing and parallelism.

Operator implementation can thus focus on achieving good
threaded performance, by choosing efficient algorithms that
share cache-resident data structures and avoid inter-thread
interference.
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