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ABSTRACT

Secure coprocessors have traditionally been usadkagstone of
a security subsystem, eliminating the need to ptatee rest of
the subsystem with physical security measures.
technological advances and hardware miniaturizatimy have
become increasingly powerful. This opens up thesibdiy of
using them for non traditional use. This paper dbes a solution
for privacy preserving data sharing and mining g@sin
cryptographically secure but resource limited copesors. It uses
memory light data mining methodologies along withlight
weight database engine with federation capabitityyning on a
coprocessor. The data to be shared resides witteriterprises
that want to collaborate. This system will allow Itiple
enterprises, which are generally not allowed toesldata, to do so
solely for the purpose of detecting particular tymé anomalies
and for generating alerts. We also present restritsn
experiments which demonstrate the value of sudalotations.

Categories and Subject Descriptors
H.2.8 [Database Application$: Data mining

General Terms
Algorithms, Design, Security, Legal Aspects

Keywords

Privacy, Data Mining, Federation, Collaboration.

1. INTRODUCTION

An issue that has gained importance recently isabiéy to cope
with the contradictions between security and pyva one hand
and the requirement to share data across multiglergrises on
the other. This kind of collaboration helps in thetection of
relevant trends and anomalies in the data. Theinmgant to
collaborate is often mandated by legislations. &ample in the
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USA, the Patriot Act [1] requires banks to analyaestomer
transaction data for anti-money laundering andrgplueposes. On
the other hand, the Graham-Leach-Bailey Act [2]hibis, in

many cases, the sharing of data for any other p@goThis
requirement could even extend to interactions betwigvo lines
of business (LOBs) in a company in some cases.|&lgin the

field of health care, doctors and insurance congsamieed to
protect the privacy of patient data, while the tieatare
community as a whole can gain if that data can delqn and
analyzed for common good.

In this paper, we present a solution for privacgsprving data
sharing and mining for such application areas. T$wvfution
allows the data to reside with the enterprises tiedves and be
processed in a federated setup in secure but @sgonstrained
coprocessors like the IBM PCIXCC[3]. The transnossof data
to the coprocessors is encrypted and is thus pestefrom
eavesdroppers. Also, since the coprocessor is esethe data
which is decrypted and processed inside is pradefrttan those
sharing the data and any third party administethr solution.
Further the data can also be joined, mined andyzedlin its
original plain text. To facilitate mining in resamar constrained
coprocessors, we have developed and embedded médigiotry
data mining methodologies. These provide the neeadbdity to
detect trends and anomalies in shared data sety. afle run on
data managed by a light weight database engine (IBM
Cloudscape[4]) with secure federation extensions.

A possible application area is Anti Money Laundgr{ML) in
an inter bank service center for due diligence. 8obaundering
generally involves money transfer from one accaonanother,
often spanning financial establishments. For thibe detected,
these financial establishments would have to coliate and try to
determine suspicious patterns in the transactibiosvever, they
are also concerned about the privacy of their dataolution for
sharing and mining of data while maintaining privacould help
in these cases.

Another application area is credit rating in arranibank service
center with multiple LOBs. Here we have two conirtdg

imperatives, namely, analyzing the data from mldtipOBs to
know customers better and to keep in mind thatethare
legislations which limit LOBs from sharing data eéeging on the
line of business.



The current state of the art in this field involvigéning and

mining over encrypted data on conventional machiggamples
include [5],[6],[7]- Queries over encrypted datasédimitations

for inequality joins, range queries and other opi@na. Methods
to overcome them (like order preserving encryptidoh't give

the level of protection needed [8]. Encryption alsauses
problems for subsequent mining, since it generalbes not
preserve classes of distributions over numericgddi. Further
there is no clear mechanism for fine grained accestol of data
thus generated, although some like [5], have ralset access
control for whole data sets.

In contrast, in this solution, the data is procdsseplain text in

the secure coprocessors as well as in the datzesguand thus
does not have the limitations of the above schdrogther, an
enterprise is given access to the results relewaitt For example
in the case of banks sharing data for AML, a bailk a@me to

know of only those transactions deemed suspiciowshtich that
bank was a party and not all transactions in tatggory.

It should be noted that there is a crucial diffeestetween our
approach and processing over plain text in a cdioes
machine in a secure facility. The latter is usefBin This scheme
is feasible only when one entity is making its datailable for
analysis. Here the entity modifies the results wéries to protect
privacy. However when two or more independent parghare
data, one has to trust the party administeringsiblation. This
trust often does not go well with the privacy aedrscy rules that
govern how sensitive information needs to be hahdled thus
this scheme would not work in that scenario. Golution does
not need the party administering the solution totrosted and
would work in a hostile environment.

Another approach to be contrasted with ours isapgroach to
privacy protection based on data perturbation. ®/Hiilis is an
intriguing idea that introduced the topic of priyan data mining,
this approach comes with an intrinsic trade-offAmetn predictive
accuracy and privacy protection [10]. Also if thésea need to
join data from multiple sources, data perturbatam the join
columns would make it very problematic.

Another relevant work is [11], which dealt with see sharing of
data from multiple sources with access control lee IBM 4758
secure coprocessor. However in this case the dagdmthe form
of flat files and all application logic was handdeal including any
joins that needed to be done.

The rest of the paper is organized into the follaysections. In
section 2 we describe the IBM PCIXCC processoritmdurrent
and possible future usage. In section 3 we descthe
architecture of the proposed solution. In sectiomeddescribe the
light weight data mining methodologies which weexeloped. In
section 5 we describe the database issues that anolsneeded to
be addressed. In section 6 we present experimesgalts which
demonstrate the value of the work and finally ictise 7 we
provide concluding remarks and discuss future tioes.

2. THE IBM PCIXCC PROCESSOR

The PCIXCC hardware is implemented in the form d?@l-X
adaptor card, with a secure module containingeadusty-related
components. Figure 1 shows a photograph of the EClXnd
Figure 2 depicts a block diagram of the card timatudes the
components in the secure module and those attatinetthe

motherboard. The module is designed to meet thiegstmt

security requirements of the FIPS 140-2 standarits attrongest
level - level 4[12]. The internal components in&ua processor
subsystem consisting of an IBM PowerPC 405GPr [zsmre
operating at 266 MHz, with 64 MB of dynamic randactess
memory (DRAM) and 16 MB of flash-erasable prograrbtea
read-only memory (flash EPROM) for persistent dstarage.

Integrated peripheral devices on the processor icluijpde both

Ethernet and serial port interfaces. There is ashbigh speed
hardware cryptographic accelerator. Multiple PCIX€&ds can
be used in a parallel system to tackle a givenlproliogether.

Figure 1: The PCIXCC
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Figure 2: PCIXCC block diagram

The hardware cryptographic accelerator chip in B@IXCC
provides fast hardware implementation of the esalent
cryptographic algorithms used by the card. It sufgpthe DES,
and TDES symmetric encryption algorithms and theASHand
MD5 secure hashing algorithms. In addition, the DES
implementation includes both single-DES and TDES QA
support, conforming to ANSI X9.9 and ANSI X9.19t dlso
incorporates a public-key unit with modular matmdtions that
are used to provide algorithms such as RSA.

The PowerPC 405GPr [25] used in the PCIXCC, isvapower
consuming, 32-bit RISC processor targeted at aiitd qopular in
embedded applications. Figure 3 shows a block dimagof the



processor. It incorporates a PowerPC 405 processer 16KB

of separate Instruction and Data caches, 4KB op-ofémory, a
PCI interface, an SDRAM controller, a 64-bit onghi
CoreConnect bus, a Fast Ethernet controller aneérath-chip

peripheral support. The 405 CPU operates on icomns in a

five stage pipeline consisting of a fetch, deco@secute,

writeback and load write-back stage. Its low poa@nsumption

of 0.72 W at 266 MHz translates to low heat producehis is an

important design consideration since the PCIXCCasmpletely

encapsulated in a temper responding cover as caseée in

Figure 1. And so heat dissipation is an issue.

Figure 3: PowerPC 405GPr functional block diagram

The software stack on the PCIXCC is implementea #esyered
design with a bootstrap loader at the lowest leard an
application program at the highest level in therdmehy. The
application program is loaded into the flash EPRQfer a
security audit. The card uses an embedded Linuratipg system
that provides a subset of the features normallpdon desktop or
server Linux systems including shared library supg® and C++
run-time support, thread support and software ifigapoint
support. More details about the PCIXCC can be faaria].

Traditionally these types of secure coprocessore baen used as
the keystone of a security sub-system, eliminatimg need to
protect the rest of the sub-system with physicalisty measures.
For example, the PCIXCC is used in the IBM z990nfiame for
secure key cryptography. However these types ofursec
processors are becoming more and more powerfullré&igj shows
the hardware trends for IBM secure processors tweryears.
Compared to its predecessor, the 4758 [13], theXBClhas 10
times more main memory, 2.5 times the processarkcépeed,
approx 9 times the Dhrystone 2.1 MIPS rating artebexternal
connectivity via Ethernet. Further it runs a staddaperating
system like Linux in contrast to the CP/Q that4f&8 runs.

It is to be noted that the PCIXCC is still undergoad compared
to current database servers. Floating point sugpart software
emulation only. Despite these, the PCIXCC certaitigs
characteristics which compare with a server nodgesteryears
like the thin2 node in an IBM SP2 [14]. The thin@de in a SP2,
has been used in the past for TPCH benchmarks @nchercial
database workloads in conjunction with DB2 Parallition
[15]. It ran a 66 MHz POWER2 with an approximateritone
2.1 MIPS of 124, supported the AIX OS, anythingrir64MB to
512MB of main memory and connection using Etheaneiptical

switch. In comparison, the PCIXCC runs on 266 MHthvan
approximate Dhrystone 2.1 MIPS of 404, supports BGImain
memory, Ethernet connections and a Linux OS.
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Figure 4: IBM Secure Processor hardware trends
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These factors open up the possibility of using mtiesv secure
processors as semi independent processors for appéications.
Such applications would require the security thisrdivare
provides, would generate insights not availableentiise and
could live with query performance power which migbt be state
of the art but is within the operating range foeating useful
applications. This is the area of exploration df throject and
solution.

3. ARCHITECTURE OF THE SOLUTION
Figure 5 and 6 give an outline of the solution.oum solution, the
secure coprocessors are the main processing atherrthan
being slaved to a big server. They use the seovehich they are
connected as a file server. One could have meltgdcure
processors working in parallel to solve a givenbpem with one
or more of them acting as coordinators. The en@prsharing
data would retain the data with them in relatiotadles, but are
expected to allow their transmission to the datatsesver in the
secure processors in encrypted form. This is dosiaguthe
industry standard Secure Socket Layer (SSL) pro{@&). At the
secure processor, this data will be decryptedepbiznd processed
with data from other enterprises. The overall asthire is
basically a federated architecture with the sequogessor being
the federator and the enterprises acting as treestatrces. In our
current prototype we use one coprocessor but wieveethat in
principle the architecture can be extended to mleltisecure
processors working in parallel.
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Figure 5: Proposed Solution Architecture



The SSL protocol provides security with a privatel aeliable
connection. Symmetric cryptographic algorithms (eQES [27])
are used for data encryption. The exact algoritsmdécided
during the process of an initial handshake. Messagesport
includes a message identity check using a keyed MAGis is
computed using secure hash functions (e.g., SHA M@B5 [29]

etc). Most of the algorithms mentioned are supgubrin the
special cryptography accelerator in the securegzsmr. This will
help to significantly speed up the execution of #&t protocol.

In our prototype, each table that is being shasethbe enterprises
is represented by a Virtual Table Interface (VTi)tlae secure
processor. Queries on the secure processor am@nrtimese VTIs.
The VTIs in turn make Secure JDBC calls to conrtecthe

enterprises, get the data in encrypted form, dédtygnd pass it
on to the query processing functionality of the wWlscape
database server. More details can be found inogebti

Once the data is available, it has to be mined dterchine
patterns. Generic data mining algorithms tend to niemory
intensive and using them would be difficult on thesource
constrained processor. A key challenge we haveertizkken in
this project is the development of light weight alanining
algorithms. They take much less memory to run ared \&ry
easily parallelizable. More details can be founddntion 4.

For access control of the mined data and its rgswit plan to use
a version of the Matchbox access control mechadssaribed in
[11]. Here, information providers, users and thparties use
digitally co-signed contracts that enforce the sitarestrictions.
These access control mechanisms would be over lamgk avhat
is available at a database level.

Also the database engine as well as the miningicgijmn might

generate temporary data which will have to be stdoeally on

the file system. This data needs to be secured.thiBoend we
propose to enhance the file system to an encryfppgesiystem. To
speed up encryption/decryption of contents, it veipp the special
cryptographic chip in the secure processor. Thisaystems can
be NFS mounted into the secure processor fromeasirver
connected via the PCI bus. Note that any indeateteon local
tables on this file system would be created onnpdat and its
pages encrypted before storing. It would not beiratex on

encrypted data.

IBM PCIXCC Secure Processor
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Figure 6: Solution Architecture for Current Prototy pe

4. MEMORY LIGHT DATA MINING

The memory light data mining [16] we embedded im secure
federated mining system consist of two functiomedit cost-
sensitive classification and outlier detection. ¢Jewe describe
the cost-sensitive classification algorithm we evgpH, as well as
empirical evaluation of the method’s performanceadrenchmark
data set.

4.1 Cost-sensitive classification

Cost-sensitive learningefers to the problem of learning
classifiers in which non-uniform costs are assedatith
different types of misclassifications. For manyadaining
problems of practical importance, it is essentabke this aspect
into account. Examples of such applications inelackdit rating,
fraud detection, churn analysis, and targeted ntiake For
example, frauds are so rare that straightforwapdieation of
classification for fraud detection can result idassifier that
always predicts the most common class (non-fraua)when
they occur, frauds are a magnitude more costlytlansl it is
important to classify them correctly.

A formulation of the cost sensitive learning prables by the use
of a cost matrix C(i,j,x). This specifies how muwbst is incurred
when misclassifying a label j as i depending oinatance (or
example) x [17]. The goal of a cost-sensitive leagmmethod is to
minimize the expected cost. For binary labels,j&])j can be
reduced to a simpler formulation in terms of anantgnce
number per example [18]. This is possible by asdimgj a single
number indicating the importance of an examplé,(giyen by
C(1,j,x) - C(0,j,x). This conversion allows us torhulate the
problem, in which we assume that examples are drawn
independently from a distribution D with doma¥x Y x C
where X is the input space to a classifier, is¥a (binary) output
space and C is the set of possible importancehig{gxtra cost)
associated with mislabeling that example. The got learn a
classifier h: X Y which minimizes the expected cos},E p[c
I(h(x) )] given training data of the form: (x,y,c) here I() is
the indicator function that has value 1 in casaitgment is true
and 0 otherwise.

A basic folk theorem, which was proven in [17] stathat if we
have examples drawn from the distribution modifieth
multiplicative factors proportional to cost: D'(x¢y ¢ D(x,y,c)
then optimal error rate classifiers for D’ are ol cost
minimizers for data drawn from D .

Proposition

For all distributions, D, there exists a consfd = By . - dC]
such that for all classifiers, h:, & - [I(h(X)  y)] = (1/N) Eyc -
o[c I(h(X) V)], where we used D’ to denote D'(x,y,c)
(c/(Exy.c - dc])) D(xy.c).

4.2 A Memory-Light Method of Cost-sensitive
Learning

The “folk" theorem mentioned above suggests &oab method
of converting from one distribution of examplesatwther to
obtain a cost-sensitive learner by re-weightingetka@mple
distribution. Since straightforward sampling methasdch as
resampling with replacement do not work well irstbase, we



make use of a sampling scheme called rejection lgagri9].

This allows us to draw samples independently froen t
distribution D’, given samples drawn independefriiyn D. In
rejection sampling, samples from D’ are drawitst drawing
samples from D, and then keeping the sample witbability
proportional to D'/D . Here, we have D’/Dc, so we accept an
example with probability c¢/Z , where Z is sonomstant chosen
so that max, insC Z . Note that rejection sampling results in
aset S' which is generally smaller than S .

Usingcost-proportionate rejection samplingyst introduced, to
create a set S' and then using a learning algodt8t) is
guaranteed to produce an approximately cost-maiigi
classifier, as long as the learning algorithm ¢hiaves
approximate minimization of classification error.

From the same original training sample, differemts of cost-
proportionate rejection sampling will produce diéfet training
samples. Furthermore, the fact that rejection sexgproduces
very small samples means that the computationa teéquired for
learning a classifier is generally much smaller.

We take advantage of these properties to devismsemble
learning algorithm called “costing” based on reapdby
performing rejection sampling from S to produce tiplé sample
sets $,...,Sy, and then learning a classifier for each set. The
output classifier is the average over all learnedsifiers.

Costing(Learner A, Sample Set S, count t, normdbzrat
constant Z)

1.For i=1 to t do

1.1. S'= rejection sample from S with proligbc/Z.
1.2.Let h A(S)

2. Output h(x)= sign( " h; (X))

Figure 7: The “"Costing" algorithm.

Note that despite the extra computational cosvefaging, the
overall computational time of costing is generatiych smaller
than for a learning algorithm using sample set Eh(ar without
weights). In particular, this is the case if thenpmnent learning
algorithm being employed has a running time thatiserlinear in
the number of examples, which is generally the.case

Also a major advantage with this scheme is thattérations
could run in parallel on a set of processing uriech unit could
independently learn a subset of classifiers frand then these
classifiers could be averaged at one processirtg uni

4.3 Empirical evaluation using a benchmark

We show empirical results using a real-world ddtfsen the
direct marketing domain used in the KDD-98 compmti{20]. It
contains data on people who have made donatiaihe ipast to a
particular charity, and the decision-making tastoishoose
which donors to mail solicitations for donationflwthe goal of
maximizing the total profit obtained in the mailingmpaign.
The dataset is divided in a fixed way into a tnagnset and a test
set, each of size approximately 96,000.

Figure 8 shows the results of applying costinglenKDD-98
dataset, using Quinlan’s C4.5 decision tree algorif21] as the
base learner. The graph plots the profits achidyettie obtained

mailing rules, as a function of the number of itiemas. In this
experiment, each resampled set has only aboutxé@Ees,
because the importance of the examples varies@t681to
199.32 and there are few ““important" examples$h\t#200, our
method yields profits around 15,000 dollars, whichxceptional
performance for this dataset. (For example, the KIDp 98
competition achieved 14,712 dollars [22].)

x10* Costing C45: KDD-98 Dataset
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Figure 8: Profits obtained by Costing applied on @.5, as a
function of the number of sampling iterations.

These results are particularly remarkable fronpibiat of view of
reduction in memory requirement: only hundredsxainaples
need to be processed in iteration, as compardtetortginal data
size of approximately 100 thousand. Even with thiastic
reduction in memory requirement, costing manageshieve
state-of-the-art predictive performance.

5. DATABASE CHALLENGES

The current prototype is centered on Cloudscaptheslatabase
engine [4] running in the secure processor. Cloagsds IBM’s
Java based small footprint database server andeid as a data
federator in this case. To get Cloudscape workamy the
PCIXCC, the software stack was first enhanced fipstt a Java
Virtual Machine called J9 on which Cloudscape caulal

Cloudscape provides a construct for federationedaVirtual

Table Interface (VTI). These are used to accesermxit data
sources. Internally the VTIs make Java Data Basen€divity

(JDBC) calls to connect and get data from thesa satirces. For
secure federation, additional functionality hacdb®built into the
VTIs to handle SSL connections with the data saurcdhis

functionality is known as Secure JDBC. It was depel as part
of the project on the Java Common Client (JCC) atriof the

DB2 family. This was done using the IBM Java SecBoeket

Extension (JSSE) library on top of the Java Runtingironment
(JRE).

Some of the database server engines which mighised at the
data stores do not support secure JDBC or secueat™&erver
communications. An example is DB2 LUW V8. To tactiés, we

developed a proxy server which could be used betee secure
processor and the actual data server. This prouidcsit on the
firewall of the enterprise and would be able to sgm
communication between the secure processor andatiaeserver.
Figure 6 shows a possible configuration with thesey servers.

Once these infrastructure issues were taken carehef key
challenge from the database point of view is hoeffizgiently run



the database operations while maintaining secuarty privacy.
This is an instance of data federation where thia daurces
cannot talk to each other directly and the feder&toresource
constrained. Since the data sources controllecheyenhterprises
would be in plaintext, all conventional databasdirmization

techniques would be applicable there including xede
materialized views etc.

From the federator, as much of the computationmedicates as
possible should be pushed down to the data souEmpsality
joins could be best handled by a variation of 3#erge join. In
Sort Merge join the data would come in sorted oa jbin
columns to the federator from the data sourcese Thesource
constrained federator would just need to join theesl streams.
Inequality joins can be handled by a Nested Loap jariation
where one extracts tuples from the outer and useftin column
values to generate queries for the inner data so&i@r both join
types one needs to keep privacy and security iSauaind while
implementing the join algorithms.

For the memory light data mining application, twatabase issues
are important. The first is sampling. This couldheshed down
to the data sources. The most relevant samploimnique is Key
Value Sampling. This is not supported on some coriale
database engines. In place of that one could rafirerithe join
columns in the coprocessor and generate queriegerdrby
samples from it.

Another issue is exploiting multiple secure prooessOne could
divide the data mining iterations among the prooessfor

parallelism as explained in Sec. 5. But in genexajuery could
be processed by multiple processors by assumimgiaal hash
partition of a table residing on the data sourcegding to be
processed by a processor. For example, with n sgmocessors,
one could assume records with join column jn, Wl processed
at node k if k = (jn%n). This could be implemeahtey additional
predicates on the VTls. The resulting mini joomild then be
fused and processed at a coordinator secure cs@ce

6. EXPERIMENTAL EVALUATION:
CREDIT RATING IN A FEDERATED
SETUP

To demonstrate the effectiveness of our solutianran an
experiment on our prototype using the credit ratiaga set from
the PKDD-99 Discovery Challenge [23]. It has rielaal tables
that contain customer data on banking transactodscredit card
transactions, as well as loan default informatidve set up our
experiments so that the loan data is stored irtabdae on one
machine, whereas the banking and credit card datdas on
another machine connected through a network asrsiroigure
9. This setup corresponds to the real world scenara company
with two lines of businesses, namely banking amah o
departments, own their respective customer dasaparate
computing environments. Regulations may restrietrttirom
freely sharing their data, except for the purpdsgue diligence,
namely in making sure that the banks know the coeste well
enough to avoid awarding loans to high risk custsme

To this end, using secure federation, we first phaita from
multiple databases for various accounts of an iddal. Then we
convert the information to a feature vector. Anragée feature
vector would be sum of loans outstanding, sum of current

account balances, current incomeOn this, we apply memory
light data mining to generate the credit risk rgtinles.

Database 1 : LOB1
Database 2 : LOB 2

Figure 9: The PKDD-99 Discover Challenge data setia
federated set up.

The data mining code issued 8 different types efigs on the
VTls. Seven of the query types had two or multywguality
joins on data owned separately by the departmértis. breakup
of time spent in the queries is shown in Figure EOr the large,
multi table join queries (Q1, Q2, Q3), the overhe&d
encryption/decryption during SSL was ~ 21% andtffiersingle
table query (Q8) it was about ~70%. This is micmmpared to
the overheads of the scheme using commutative gtiany
mentioned in [7]. Using the hardware cryptogragitcelerator in
the PCIXCC would bring down this overhead signifitg. Also,
all the queries could be very easily parallelizedun on multiple
secure coprocessors using the schemes descriledtian 6.
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Figure 10: Breakup of time in the various query sts

The results of the experiment as indicated in Fdur are quite
intriguing. As a baseline we note that awardirgam to every
customer results in loss of about CZK 2,000,00fdfuse a
state-of-the-art, cost-insensitive classificatiogtinod of applying
bagging over C4.5 [21, 24] to obtain rules for aditag loans, it
results in an improved loss of about CZK 500,000contrast
when we used our memory-light data mining methast{ng)
implemented in a secure federated environmentyliés achieved
a profit of CZK 600,000. This is remarkable, espisince the
comparison method, i.e. bagging over C4.5, is rernory-light,
requiring over a hundred times more sample sizmniiteration.

Decision Making Method Profit/Loss (In CZK)

Figure 11: Performance comparison for the experima




The predictive performance of our method is dueunability to [9] Privacy Preserving Analytics, CSIRO Annual Rep@®2-5
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