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Abstract

We consider a matching market, in which the aim is to mainggopular matching between a
set of applicants and a set of posts, where each applicarat peeference list ranking a subset of
posts in some order of preference. A matchivigs popular if there is no other matchimg/ such
that the number of applicants who prefer their partneid’ito M exceeds the number of applicants
who prefer their partners i to M’. Popular matching®l are stable in the sense that no coalition
of applicants can force a switch to another matchiicby requesting a pairwise election between
M andM’ with one vote per applicant (i.e. an up-or-down vote).

The setting here is dynamic: applicants and posts can emtideave the market, and applicants
can also change their preferences arbitrarily. After argnge, the matching we have in place may
no longer be popular, in which case we are required to uptate i

However, we cannot simply recompute a popular matching Boratch after every such change.
This is because there are instances in which no popular mgtehdirectly more popular than the
existing non-popular matching, and hence there would beonsensus for the applicants to agree
to the switch. The aim then is to findvating path which is a sequence of matchings, each more
popular than its predecessor, that ends in a popular matchirthis paper, we show that, as long
as some popular matching exists, there exists a 2-stepgvoedth from any given matching to some

popular matching. Furthermore, given any popular matghirggshow how to find a shortest-length
such voting path in linear time.

1 Introduction

An instance of th@opular matching probleroonsists of a bipartite gragh= (AU P, E), together with
a partitionE; UE, . . . UE; of the edge sefE. For exposition purposes, we callthe set ofapplicants P
the set ofposts andE; the set of edges with ranklf (a, p) € E and(a, p’) € Ej with i < j, we say that
apreferspto p'. If i = j, thenais indifferent betweem andp’. The ordering of posts adjacentdas
calleda’s preference list. We say that preference lists are strictly orderedappticant is indifferent
between any two posts in its preference list.

A matching Mof G is a subset o, such that no two edges bf share a common endpoint. A node
ue 4U P is either unmatched iM, or matched to some node denoted\bfu). We say an applicara
prefersmatchingM’ to M if (i) ais matched ifM’ and unmatched iM, or (ii) ais matched in bott’
andM, anda prefersM’(a) to M(a).

Definition 1 M’ is more popular thaM, denoted by M~ M, if the number of applicants preferring’™M
to M is greater than the number of applicants preferring M tad M matching M igpopularif there is
no matching Mthat is more popular than M.
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Figure 1 contains an example instance in whitk- {a;,az,a3}, P = {p1, P2, P3}, and each appli-
cant preferg; to po, andp; to ps. Consider the three symmetrical matchidgs= { (a1, p1), (az, p2),
(as,P3)}, M2 = {(a1, p3), (82, p1), (8s,P2)} andMs = {(as, p2), (a2, p3), (as, p1)}. None of these
matchings is popular, sindd; < M», M2 < M3, andMs < Ms. In fact, it turns out that this instance
admits no popular matching, the problem being, of course, thaintre popular tharrelation is not
acyclic.

a ! P1 P2 Ps
a P P2 Ps
ag ! P1 P2 Ps

Figure 1: An instance for which there is no popular matching.

The popular matching problem is to determine if a given instance admits a popatehing, and
to find such a matching, if one exists. The first polynomial-time algorithms for thisiem were given
in [3]: when preference lists are strictly ordered, the problem can ledd O(n+ m) time, where
n=|4U®P| andm= |E|, and more generally, the problem can be solve®{m,/n) time. Note that
whenE = E;, a matching is popular if and only if it has maximum cardinality. Hence, the popula
matching problem is at least as hard as the problem of finding a maximum maitchibgartite graph.

1.1 Problem Definition

In this paper, we consider a matching market in which the aim isi&mntaina popular matching.
The setting is dynamic: applicants and posts can enter and leave the matchirmg, madkapplicants
can change their preferences arbitrarily. More precisely, an instartbe dynamic popular matching
problemconsists of an instancd@ of the popular matching problem, together with an existing (possibly
empty) matchindV.

It turns out that we cannot simply solye from scratch after each change, since gayticular
popular matching we find may not be more popular thyy and furthermore, it is possible thao
popular matching is more popular than the existing matcMgg Hence, in general, there may be no
consensus amongst the applicants to move directly fvgnto a popular matching. We show such an
example below.

Consider the instance in Figure 2 withy = {(au, ps), (a2, p2), (as, P3), (&, p1) }. First note thaMg
is not popular, since it is less popular then= {(az, p2), (a2, ps), (a4, p1)} (even withag unmatched).
We can show using Lemma 2 from Section 2 that the only popular matchingdl'are {(as, p1),
(a2, p2), (a3, pP3), (&4, pa)} andN* = {(az, p1), (az, P3), (as, p2), (a4, ps)}. However, it is clear that
neitherM* nor N* is more popular thaMy.

a P P2 Ps

a Pz P2
ag ! pPs P2
2V P1 Pa

Figure 2: Instance motivatingpting-pathapproach.

In order to arrive at a popular matching by consensus, [3] introdtleedbllowing generalization
of the more popular than relation:



Definition 2 A matching M is reachablérom M, if there is a sequence of matchinddo, M1, ..., My),
such that each matching is more popular than its predecessor. Suofuarsee is called a length-k
voting pathfrom Mg to M.

Note that the instance above has a length-2 voting path fvignto a popular matching, namely
<M0a M> N*>

There is no a priori reason to expect that such a voting path must existdre popular than
relation is not acyclic, and so perhaps there are some matdigfyem which we cannot avoid cycling.
Even if such a path does exist, it may have length exponential in the size iice there can be an
exponential number of matchings. In this paper, we show the followingisurg result.

Theorem 1 Let (G, Mp) be an instance of the dynamic popular matching problem, where G admits a
popular matching. Then G admits a voting path of length at Adsim My to some popular matching.
Additionally, given any popular matching, we can find a shortest-length sottng path in only linear
time.

Hence, by using the popular matching algorithms in [3], we can solve thendgn@opular matching
problem inO(m+ n) time when preference lists are strictly ordered, and more generadignn/n) time
1. This solves the problem of efficiently computing a shortest-length votingtpatipopular matching,
which was posed in [3]. We have also shown that such paths have lengtbsa 2, which is better
than the bound of 3 previously claimed. The proof of the length-3 bountedun [3] is unpublished,
and only applies when preference lists are strictly ordered. This restrigteatly simplifies the more
general problem, which is discussed in this paper.

Interestingly, the improvement from 3 to 2 implies a connection to the famoul negwaph the-
ory that every tournament has a king [14]. Timere popular tharrelation is a directed graph on an
exponential number of vertices. This graph is not a tournament thoungle, for any pair of matchings,
there is no guarantee that one is more popular than the other. Howesenvéhout these edges, the
set of popular matchings collectively act as a king, since every unpomalzhing has a voting path of
length at most 2 into this set.

1.2 Related Previous Work

The bipartite matching problem with a graded edge set is well-studied in batledcs and computer
science, see for example [1, 18, 22] and [6, 12, 2]. It models some temaeal-world problems,
including the allocation of graduates to training positions [10], families to goment-owned housing
[21], and customers to rental DVDs [4, 17].

Gardenfors [8] first introduced the notion of a popular matching in théssbof the stable marriage
problent [7, 9]. Of course, thanore popular tharconcept can be traced back even further to the
Condorcet voting protocol.

One drawback of the popularity criterion is that a popular matching may nst. eildowever, in
recent work, Mahdian [15] showed that a popular matching exists withgigbability, when (i) pref-
erence lists are randomly constructed, and (ii) the number of posts is a snitidlicative factor larger
than of the number of applicants. Other recent work on popular matchihgleeMestre’s [16] gener-
alization of the efficient popular matching characterization in [3] to the casgenapplicant votes carry
different weights.

1We make the standard assumption in dynamic programming settings thastheceG does not change while we are
computing a voting path.

2A stable marriage instance is the same as a popular matching instanggt, teatboth applicants (i.e. men) and posts
(i.e. women) rank each other in order of preference.



We remark that the result in our paper is analogous to a series of pafef®] 20, 5] on decentral-
ized mechanisms in the stable matching literature. The well-known mechanismabite satching,
due to Gale/Shapley [7] and Irving [11], require a central body to copleeferences and dictate the
final matching. Alternatively, in a decentralized setting, a blocking pair (i.mnxaa and woman who
prefer each other to their current partners) w&dt locally by divorcing their current partners and marry-
ing each other. Knuth [13] showed that if the divorced partners alsoyreach other, it is possible for
this process to cycle. However, when divorced partners are noiregifo marry each other, and every
blocking pair has some probability of acting next, Roth and Vande Vate [®} &y way of a potential
argument that there is always a path to a stable matching.

In our setting, the analogue of a blocking pair is a coalition of applicants \Whoréfer some
matchingM’ to the current matchinlyl, and (ii) have sufficient numbers to win a vote betw&Erand
M. Itis not too difficult to give a potential argument to prove the existeneetnfig paths (at least for the
restriction to strictly-ordered preference lists). However, in this papeyse more powerful techniques
from matching theory, which in addition to proving existence, also give tharising length-2 bound.
As with the result in [19], this means that as long as every matching more papatathe current one
has some probability of an up-or-down vote, then in the limit, a decentralizedanesen will lead to a
popular matching.

1.3 Organization of the Paper

In Section 2, we review the theory of popular matchings, and then use thisataaterize the set of
matchings that admit length-0 voting paths. In Section 3 and 4, we deriveetiimatlemmas of the
paper, using these to characterize the set of matchings that admit lengthiénaith-2 voting paths
respectively. Finally, in Section 5, we conclude with an open problem.

2 Preliminaries: Length-0 Voting Paths

In this section, we review the algorithmic characterization of popular matchimga @ [3]. We then
note that this characterization can be used to determine if an inst@nb) of the dynamic popular
matching problem admits a length-0 voting path to a popular matching.

For exposition purposes, we create a unique strictly-least-prefeostt @) for each applicard. In
this way, we can assume that every applicant is matched, since any undnapgtieania can be paired
with I (a). From now on then, matchings afeperfect. Also, without loss of generality, we assume that
preference lists contain no gaps, i.eaif incident to an edge of rankthena is incident to an edge of
ranki — 1, for alli > 1.

Let G = (AU P,E;) be the graph containing only rank-one edges. [3, Lemma 3.1] shows that a
matchingM is popular inG only if M NE; is a maximum matching dB;. Maximum matchings have
the following important properties, which we use throughout the rest gidiper.

M N E; defines a partition of1 U P into three disjoint sets: a nodec 4 U P is even(respectively
odd) if there is an even (respectively odd) length alternating patBiifwith respect taM N E;) from
an unmatched node ta Similarly, a nodeu is unreachableif there is no alternating path from an
unmatched node to. Denote byE, O andU the sets of even, odd, and unreachable nodes, respectively.

Lemma 1 (Gallai-Edmonds Decomposition)Let £, O and U be the sets of nodes defined byahd
M NE; above. Then

(8) E, O and U are pairwise disjoint, and independent of the maximum matchingayl



(b) In any maximum matching ofi(Gevery node irO is matched with a node i, and every node in
U is matched with another node . The size of a maximum matchind @ + | U|/2.

(c) No maximum matching ofi&ontains an edge between a nodedrand a node inOU U. Also,
G contains no edge between a nodefrand a node inEU U.

Using this node partition, we make the following definitions: for each applizasefinef(a) to be
the set of most-preferred odd/unreachable postsipreference list Also, defines(a) to be the set of
most-preferred even postsas preference list.

We refer to posts iU 4 f(a) as f-postsand posts inUac 15(a) ass-posts Note thatf-posts and
s-posts are disjoint, and thata) # 0 for any a, sincel(a) is always even. Also note that there may
be posts inP that are neithef-posts nors-posts. The next lemma characterizes the set of all popular
matchings.

Lemma 2 ([3]) A matching M is popular in G if and only if (i) M E; is @ maximum matching of
G1 = (AUP,E;), and (ii) for each applicant a, ¥a) € f(a) Us(a).

Using this lemma, we can check (6, My) admits a length-0 voting path to a popular matching:
Mo N E; is a maximum matching dB; if G; admits no augmenting path. Also, given tgNE; is a
maximum matching o6, it is trivial to compute the Gallai-Edmonds decomposition and then to check
that each applicarstis matched toM(a) € f(a) Us(a). These checks can clearly be performed in linear
time. Henceforth, we assume then tN&tis not popular, for otherwisés, Mp) admits a length-0 voting
path, and we are done. We also assume(Batly) admits a popular matching, for otherwise no voting
path can end in a popular matching.

We conclude this section by giving the algorithm based on Lemma 2 for solvengagbular match-
ing problem.

Popular-Matching(G = (AU ?,E))
1. Construct the grap®’ = (42U P,E’), whereE’' = {(a,p) :ac 4 andpe f(a)Uus(a)}.

2. Construct a maximum matching of G; = (AU P,E,).
(Note thatM is also a matching i).

3. Remove any edge i@ between a node i® and a node irOU U.
(No maximum matching 06, contains such an edge).

4. AugmentM in G’ until it is a maximum matching o&'.

5. ReturnM if it is 4-perfect, otherwise returmo popular matching”

3 Length-1 voting paths

In this section, we show that, given any popular matching,ahe problem of finding a length-1 voting
path fromMg to a popular matching, or proving that no such path exists, can be solveean time.
First though, we work towards characterizing the set of all popular rnmagshhat are more popular than
Mo.

3In[3], f(a) is defined as the set of rank-1 postsais preference list. We find the definition above more suitable.



Let ra(p) be the rank of edgéa, p) € E. Also, letry(s(a)) be the rank of any edge, p), where
p € s(a). We define theignatureof a matchingV as the 4-tuple|A¥|, |AM|, |AM], |AM]) 4, where:

(i) AY = {ae 4|ra(M(a)) = 1, andais even/unreachable, i.e.€ £U U}.
(i) AM = {ac /1< ra(M(@) < ra(s(a))}.
(i) AY' ={ac Alra(M(a)) = ra(s())}.
(iv) A ={ae Alra(M(a)) > ra(s(a))}.

Note that an odd applicaat(i.e. one in0) can only belong t&AY UAM, even ifra(M(a)) = 1, for
a¢ AY by definition, anca ¢ AM, sincer,(s(a)) = 1. Also note that for any even/unreachable applicant
a(i.e. onein4\ 0), ra(s(a)) # 1. HenceAY, A, AY', andAM are pairwise disjoint and partitiod.
This gives ugA¥| + |AM| +|AM| +-|AM| = | 4]. Finally, note tha®\}! = {a€ 4 : M(a) € f(a)}.

Now, let F be the set off -posts - i.e.f = Uac4f(a). The following lemma characterizes the set of
all popular matchings in terms of their signatures.

Lemma 3 A matching M is popular if and only if its signature(ig7 |,0,|4| — | F|,0).

Proof: SupposeM is popular. Then by Lemma 2AM| = |AM| = 0, and sdAY'| + |A¥| = |4|. Now,

|AM| < | F |, since every applicant iA}! is matched with some post jfi. But sinceM NE; is a maximum
matching ofG1, Lemma 1(b) requires that every postfinis matched with some applicantA‘Y'. Hence,
AY =171, |A'| = | 4| - | #], andM has signaturé| 7,0, |4| — | F|,0).

Conversely, supposd is a matching with signaturé 7|, 0, |4| — | #|, 0). Then|AM| = |AM| =0,
and so for every € 4, M(a) € f(a) Us(a). It remains to show thal N E; is a maximum matching of
Gi1. We have thatM NE;| = |AY| + |{ac AV : ais odd}|. Since|AY| = |F|, IMNEy| = |F|+|{acA:a
is odd}|. So,|IMNE;| = |{ve AUP:visodd|+|{pc P : pisunreachablg, and the result follows
from Lemma 1(b). 1

Lemma 4 For any matching M|AY | + |AM| < | F|.

Proof: For eacha c AY, M(a) is odd/unreachable (i.e. belongs@a ), for otherwise G; contains

an edge contradicting Lemma 1(c). Also, for eachAM, M(a) is odd/unreachable, sinega) contains
a’'s most preferregvenposts, and by definition o0&, a prefersM(a) to posts ins(a) (i.e. ra(M(a)) >
ra(s(a))). Hence |AY| + AR < |F|. I

Finally, we come to the main technical lemma in this section, which characterizesttioé all
popular matchings that are more popular than a given matdfing

Lemma5 Let M* be a popular matching. Then*Ms more popular than M if and only if (i[)A'}"| +
|AM| < ||, or (ii) |AM AV > 0, or (ii) |AMNAM| > 0.

Proof: LetA(M*,M) be the difference between the number of applicants who pk&féo M, and the
number of applicants who prefét to M*. That is,

AM* M) = [[ARUAT UAM NAT A N AT — [[AF UART AT

4The subscriptd,m,s, andl stand forfirst, middle, secondandlast respectively.




Now, sinceM* is popular, by Lemma 3 we have:

A = A UAR LAY LAY NAY | = |7
= 1771 = A — JAN[] + IR U AR AV A
Rearranging, we get:

[IAY UAM A | = | A AR (1]~ A~ AR

HenceA(M", M) = ||| — [AY!] — |AWI| + Al NAY
since|AM N AY"

+ AN N AW, The theorem follows immediately,
and|AM N AW'| are both non-negative, whileF | — |A¥| — |AM| > 0 by Lemma 4. &

Given (G,Mp) and some popular matching* of G, we do not need Lemma 5 to determinévif
is more popular thaMg - instead, we can just count the number of applicants that prefer oneintatch
to the other. Suppose, however, th\at is not more popular thaMg so that|A¥| 4 |[AMo| = | 7],
AN AV = 0, and|AMe N AY'| = 0. Our aim is to use Lemma 5 as a guide in finding a popular
matching that is more popular thafy, or proving that no such matching exists.

First we remark thatA'}"°| + |AMo| = | |, for otherwise,any popular matching, including/l*, is

more popular thaivip by Lemma 5. It follows tha\Me £ @ orAi'\’IO = 0, for otherwiseMg has signature
(1F1,0,]4| — | F|,0), contradicting the assumption from the previous sectionNhgis not popular.

SupposeiMe £ @, so that there is an applicaatc A¥on AM". By definition, such an applicant is
even/unreachable. If there is a popular matching that pawvih a post inf(a), then it must be more
popular tharMg by condition (ii) of Lemma 5. In order to test if there exists such a popular riragch
we proceed in the following way.

Let G’ be the subgraph db defined in Figure 2 after step 3. S@, contains all edges between
applicants and theif -posts ands-posts, except those between node®iand nodes irOU U. Now,
modify G’ andM* by removing all edges between this particular applieaand posts irs(a). Call the
resulting structure&), andM} respectively.

Lemma 6 There exists a popular matching which pairs a with some postanif and only if G, admits
an augmenting path with respect tg;M

Proof: Supposes], admits an augmenting pa@y with respect tdVi;. SinceM* is popular, the only
unmatched applicant iN} is a, and soM; & Qa matchesa with some post inf (a). We want to claim
that M}, & Qa is popular. First note that its signature is of the fofkn0, |4| — k,0) for somek > 0,
since it is a matching in a subgraph @f, andG’ only contains edges between applicants and their
f-posts ands-posts. Now,M}; & Qa matches all posts irF, since every post matched M} is also
matched inV; & Q,. Recall that posts iF are incident inG’ to rank-1 edges only, and furthermore,
odd posts inf are only adjacent to even applicants, while unreachable pogtsare only adjacent to
unreachable applicants. Hen&ex | ¥ |, and so by Lemma 3} @ Q4 is popular, since its signature is
(IF1,0,|12] - | %1,0).

Conversely, suppose th@f admits no augmenting path with respecitd. Then,M} is a maximum
matching inG}, which, sincea is unmatched iM}, means that there is n@-perfect matching irGy,.
But by Lemma 2(b), every popular matching is drperfect matching irG’. Hence, every popular
matching must contain an edge@®\ G, = {(a,p) : p€ s(a)}. 1



We now make use of the previous lemma. Begin by looking for an augmentingrp&h with
respect toM} by using depth-first search to construct the Hungarian Tgeoted ata (see Figure
3). If we find such a patiQ,, then by Lemma 5(Mg, M} @ Qa) is a length-1 voting path to a popular
matching. Otherwise, we repeat this process with some atteA¥ N AN if any.

a
——= postsin f(a)

——= their partners

l A/ —= neighbors not in f(a)

Figure 3: Example of a Hungarian trégrooted ata, with matched edges bold

Suppose we are successful in finding an augmenting Qatsuch thatM}, © Qy is popular. We
claim thatQy is edge disjoint from the set of edgesTi wherea # &.

For suppose otherwise. Then kebe thefirst edge inQy that is also inT,. Now, G, admits an
alternating path frona throughe. However, sinc&, does not exist, this path cannot be extende@}jn
to end in some unmatched post. HenQg, must contain an alternating path fragrthrough the edge
matchinga with M*(a) (which is missing inG}). But M*(a) is unmatched irG}, and hence if we join
the two alternating paths above, we get an augmenting@afrom ato M*(a) through the edge) in
G}. This gives the required contradiction.

Since we only need to examine each edge a constant number of times, it ihakeae can deter-
mine in linear time if there is a popular matching that pairs some applicafam A¥" with one of its
f-posts.

If there is no such applicant, we repeat this procedure with applie&mtA,M" NAY" who must by
definition be even/unreachable. Here, though our aim is to find a poputahimg that satisfies Lemma
5(iii) by pairinga with a post ins(a). It follows that for this to occura must be even, since by Lemma
1 and 2(i), every unreachable applicant is matched by any popular mgtohénpost inf (a).

Suppose we find such a matchibig ® Q,. Sinceais evenM*(a) is odd, and so any popular match-
ing must matciM*(a) along a rank-1 edge to an even applicant. Howdwé(a) may be unmatched in
M; @ Qa, as we removed all edges betweeand posts inf (a) from G’ (including (a,M*(a))). Hence
we may need to augmeM; @ Q, in G;. But every odd nodd1*(a) is adjacent to at least one other
even applicant along a rank-1 edge, namely its predecessor in the add &ternating path from a
vertex unmatched w.r.M* NE; to M*(a) in G;). Hence, such an augmentation always exists. And it is
easy to see that here too we only examine each edge a constant numbesof time

By Lemmas 5 and 6, it is clear that the above algorithm correctly finds a ldngtiing path from
Mo to some popular matching, or proves that no such path exists. Additionaty gipopular matching
M*, we have just shown that the algorithm runs in linear time.

4 Length-2 voting paths

In this section, we show that, given any popular matchitigof G, the problem of finding a length-2
voting path fromMg to some popular matching can be solved in linear time. We will assuma/hat
admits no shorter such voting path. In particular, this meansMbias not more popular thaklg, so
thatAMo £ 0, or AY° £ 0.

Suppose thatMo =2 0. Leta ¢ AMo and letT, be the Hungarian tree associated véftas described
in Section 3. In the following lemma, we give a sufficient condition for the ertsteof a length-2



voting path fromMg to M*.

Lemma 7 Suppose there exists an applicahtar, such that M(a') ¢ s(a’) and M*(&') € s(&). Then
there exists a lengtB-voting path from M to M*.

Proof: Our goal is to find a matchinlyl; such that (i)M; is more popular thaivlp, and (ii)a’ € A,Ml.
This last condition guarantees thdt is more popular thaiM; by Lemma 5(iii), and hence we get the
length-2 voting patfMo, M1, M*).

Before discussing how we construdt;, we first need to show tha ¢ A'}"O UAMO: It is clear
thata ¢ A, for otherwisea’ € A" N A" and M* is more popular thaMo by Lemma 5(iii) - a
contradiction. Suppose then tratc AM. By definition we have thavlg(a') ¢ s(&), and so it must be
the case tha¥lp(a') is odd/unreachable and belongsfo But My matches all posts iff to applicants
in A'}"O UAMo - for otherwiseM* is more popular thatg by Lemma 5(i) - a contradiction. Hence,
a e Ao Ao,

Now we need to show tha&, contains no edge betweehandl(a'): For suppose this is not the
case. Then sindéa) is strictly the least preferred postaf we have thas(a') = {I(a') }. By definition,
no other applicant is adjacent t(a'), and sd (&) is a leaf node inT, with parenta’. It follows from
the construction of, thatl (&) is unmatched iM}, and hencél’ admits an augmenting path froa
througha' to | (&'). This contradicts our assumption thag admits no length-1 voting path to a popular
matching. HenceG), contains no edge betweahandl (&).

Finally, we describe how to construbt;. Add an edge betweeal andl (&) to G,. From the
argument above, we have tha} admits an augmenting pa@y from a througha' and ending i (&').
Let M1 = M} @ Qa. The signature oM is (| F1,0,|4| — | F| —1,1), by an argument similar to the one
used in the proof of Lemma 6, except that here we have one appdi’cami'\"l. It remains to show that
M1 is more popular thaiMy.

A(Ms1,Mo) = [[ANe LAY LA AT 4|40 N AL
{NB: |[A¥on AM1| = 0, since 4¢ AV}

> [ U A LAY NAT AU A N A LAY
= [IAte U A UAL LAY AT - A N A LAY UAY]
— | 7] |AYo] — [ Ao AN LAY
— Ao — | Ao [V A
:‘AMOQA'}’“

— [IATe uANe] A AN LAY

~ A 0 A U A

{since|A"| = | F|}

{by Lemmas 4 and 5(j)

>0  {since ac AMlonAY"}

Itis clear that in linear time, we can check if there exists an appl@ani, such thaMy(a') ¢ s(a')
andM*(a) € (@), and if so, we can construct the matchivg.

Suppose there is no such applicantlin Our aim then is to find a different popular matching in
which such an applicant exists. We will find such a matching by searching farticular type of
alternating cycleC in G with respect taM*. First though, we make some observations affguand
G,

By construction, posts i, are discovered along unmatched edges. Also, nopissa leaf node in
Ta, since therp would be unmatched ik, andM; would admit an augmenting path, which contradicts

9



our assumption tha¥y admits no length-1 voting path to a popular matching. Therefore, podts in
have degree 2.

By construction, an applica’ € T, \ {a} is discovered along a matched edge &'lfis even or
unreachable, thea’ is incident to at least one unmatched child edg&jnsincef(a’) ands(@”) are
non-empty and disjoint. l&” is odd, thera” must also be incident to at least one unmatched child edge
in G} - sincea” is odd,G; admits an odd-length augmenting path from an unmatched vertéx smd
the last edge(a”) on this path is unmatched M*.

Since every node iii; \ {a} is incident to at least one matching edge and one non-matching edge
(w.r.t. the matchingM*) in G}, we can build the following alternating pafh Begin with an edgé¢a, p)
wherep € f(a). Let the successor of any pagtin Q be its matched partnévl*(p). The successor
of any even/unreachable applicaftis any post inf(a”) if M*(a”) € s(@”), or any post ins(a”) if
M*(a") € f(a"). Finally, the successor of any odd applicafitis the post incident te(a”). Since|T,|
is finite, at some point this alternating path must form a cytley adding a post that is already in the
path. This procedure clearly takes linear time.

It is clear that from Lemma 2 that* & C is a popular matching. Now, if we can show tihat & C
has some applicar € T, \ {a} such thatMy(a') ¢ s(a') and(M* & C)(&) € s(&), then we can use
M* & C as the popular matching in Lemma 7.

First, we prove tha” contains at least one applicaaitsuch thatM*(a') € f(a). SinceM* & C
matches’ with s(&') by construction, the final step will be to show th&g(a') ¢ s(&).

Lemma 8 ( contains at least one applicant such that M(a) € f(&).

Proof: Note that the length of is at least 4 since the predecessor and successor of each applicant
are always distinct. Also note that f contains an even/unreachable applicant, then its predeces-
sor/successor is aftpost, whose partner iM* is the required applicant. The only way that tlgat
may not have contain afrpost is if all the applicants i@’ are odd. We show that this cannot happen.

Let & be the first odd applicant i@ that is in C. Then by constructionC contains a subpath
from &” throughe(a”) to some posp that is unmatched iM* N E;. It follows thatp is even, since
odd/unreachable posts are matchetMim E; by Lemmas 1(b) and 2(i). Singeis matched iV*, its
partnerM*(p) must be even (again by Lemmas 1(b) and 2(i)), and sontains an even applicant.

Lemma 9 Suppose there exists no applicahtar, such that M(&') ¢ s(a’) and M*(&') € s(&). Then
foreach dc T, \ {a}, Mp(d) ¢ s(&) if and only if M* (&) € f(&).

Proof: Leta be any applicant iffy \ {a} such thatMy(&') ¢ s(a’). Then by the assumption in the
statement of the lemma, we hai* () ¢ s(a'), and soM*(d) € f(a) C ¥, sinceM* is popular.
Hence,T,\ {a} N[44 — AY0]| is at most the number df-posts inT,, i.e.,

Ta\ {a} N [A—-A"]| < [Tan 7. (1)

Now, since there is no augmenting pathTy we have thatT, \ {a} N 4| = |[TaNP|. Partitioning.4
into 4\ AMe andAMe and posts il into TaN F andTaN'S, whereSiis the set of alls-posts, we get
ITa\ {a} N[\ AMo) U AMo]| = |T,N F|+|TaN . Note that no applicant iAMe can be matched byl

to an odd/unreachable post, otherv%iA@O\ + |AMo| < | 7| andM* would have been more popular than
Mo by Lemma 5(i). Hence each applicantAlfe has to be matched klg to one of its most preferred

even posts, that is one of #gposts, sdT, \ {a} NAVo| < |T,N'S. We thus get,
ITa\ {a} N [A\A]| > [Tan 7. @)
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Combining (1) and (2), we havd@, \ {a} N [4 — AY]| = |Tan F| = |Ta\ {2} nAY|. That is, the
number of applicantd’ in T, \ {a} that satisfyM*(a') € f(&') is equal to the number of applicants in
Ta\ {a} that satisfyMo(&') ¢ s(&@). But each applicant if, \ {a} that satisfied(&') ¢ s(&') has to
satisfyM* (&) € (&) by the statement of the lemma. So the equivalence follows immediately. §

By Lemma 8,C contains at least one applicaitsuch thaM*(&') € f(&'). By Lemma 9, we have
that Mo (&) ¢ s(@). SinceM* @ C matchesa’ with s(@'), M* @ C satisfies the sufficient condition in
Lemma 7. Hence there exists a length-2 voting path fikdgro the popular matchinlyl* & C.

As in Section 3, ifAMo = @, thenA,'VIo is non empty, and we perform an analogous procedure on the
Hungarian tree associated with soee A|M°. This finishes the proof of Theorem 1 (stated in Section 1).
The overall algorithm is presented in Figure 4.

Voting-Path(G = (AU P,E),Mo)
if Mg has signaturé| 71,0, |4| — | F|,0) then
return (Mo)
Let M* be any popular matching &
if M* is more popular thag then
return (Mg, M*)
for eachapplicanta € Ao A AM" andeacheven applicana A,'VIO N A’fv'*
Construct the Hungarian trdg with respect taM}, including only unmarked edges
Mark all edges irl,
if T, contains an augmenting pafh then
AugmentMj; ¢ Qa in G1 fromM*(a)  // applies only when & A,MO ﬂA“f"*
return (Mo, M ® Qa)
Let T, be the first Hungarian tree constructed for anyAM" NAY" or evena e Ai'vIO OA’}"*
if there exists na@’ € T, \ {a} such thaMo(a') ¢ s(a’) andM*(&') € s(a') then
ConstructC in G as described in Section 4
LetM*=M*@ C
Let T, be the Hungarian tree associated vétand the newM*
Add (&,1(a)) to T, and find the augmenting pa@y in T,
LetM; =M; @ Qa
AugmentM; in G; fromM*(a)  // applies only when & A1M° nAY
return (Mo,M1,M*)

Figure 4: Linear-time algorithm for finding a shortest-length voting path

5 Conclusions and Open Problems

We considered the problem of computing a shortest-length voting path irbepranstanceG, Mo).

We showed that ifs admits a popular matching, then there is always a voting path of length at most
2 from Mg to some popular matching. Furthermore, we showed that the problem ofgiadihortest-
length voting path fromMg to some popular matching has the same complexity as the problem of
computing a popular matching ®. We conclude with an open problem.

Suppose we are given an instaiigef the popular matching problem that admits no popular match-
ing. Rather than returfno popular matching”, we want to return a matching thatas popular as
possible Since the directed gragh of the more popular thamrelation has no sink, we might consider
matchings that, at the very least, are members of sink components in the sttonglcted component
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graph ofH. Subject to this, a most popular matching could be defined in various wayesxdmple one
that has the smallest out-degredHnHowever,H has size exponential i@, and so we are interested in
the complexity of finding such matchings.
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