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Abstract

We consider a matching market, in which the aim is to maintaina popular matching between a
set of applicants and a set of posts, where each applicant hasa preference list ranking a subset of
posts in some order of preference. A matchingM is popular if there is no other matchingM′ such
that the number of applicants who prefer their partners inM′ to M exceeds the number of applicants
who prefer their partners inM to M′. Popular matchingsM are stable in the sense that no coalition
of applicants can force a switch to another matchingM′ by requesting a pairwise election between
M andM′ with one vote per applicant (i.e. an up-or-down vote).

The setting here is dynamic: applicants and posts can enter and leave the market, and applicants
can also change their preferences arbitrarily. After any change, the matching we have in place may
no longer be popular, in which case we are required to update it.

However, we cannot simply recompute a popular matching fromscratch after every such change.
This is because there are instances in which no popular matching is directly more popular than the
existing non-popular matching, and hence there would be no consensus for the applicants to agree
to the switch. The aim then is to find avoting path, which is a sequence of matchings, each more
popular than its predecessor, that ends in a popular matching. In this paper, we show that, as long
as some popular matching exists, there exists a 2-step voting path from any given matching to some
popular matching. Furthermore, given any popular matching, we show how to find a shortest-length
such voting path in linear time.

1 Introduction

An instance of thepopular matching problemconsists of a bipartite graphG= (A ∪P ,E), together with
a partitionE1∪̇E2 . . . ∪̇Er of the edge setE. For exposition purposes, we callA the set ofapplicants, P

the set ofposts, andEi the set of edges with ranki. If (a, p) ∈ Ei and(a, p′) ∈ E j with i < j, we say that
a prefersp to p′. If i = j, thena is indifferent betweenp andp′. The ordering of posts adjacent toa is
calleda’s preference list. We say that preference lists are strictly ordered if noapplicant is indifferent
between any two posts in its preference list.

A matching Mof G is a subset ofE, such that no two edges ofM share a common endpoint. A node
u∈ A ∪P is either unmatched inM, or matched to some node denoted byM(u). We say an applicanta
prefersmatchingM′ to M if (i) a is matched inM′ and unmatched inM, or (ii) a is matched in bothM′

andM, anda prefersM′(a) to M(a).

Definition 1 M′ is more popular thanM, denoted by M′ ≻ M, if the number of applicants preferring M′

to M is greater than the number of applicants preferring M to M′. A matching M ispopularif there is
no matching M′ that is more popular than M.
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Figure 1 contains an example instance in whichA = {a1,a2,a3}, P = {p1, p2, p3}, and each appli-
cant prefersp1 to p2, andp2 to p3. Consider the three symmetrical matchingsM1 = {(a1, p1), (a2, p2),
(a3, p3)}, M2 = {(a1, p3), (a2, p1), (a3, p2)} and M3 = {(a1, p2), (a2, p3), (a3, p1)}. None of these
matchings is popular, sinceM1 ≺ M2, M2 ≺ M3, andM3 ≺ M1. In fact, it turns out that this instance
admits no popular matching, the problem being, of course, that themore popular thanrelation is not
acyclic.

a1 : p1 p2 p3

a2 : p1 p2 p3

a3 : p1 p2 p3

Figure 1: An instance for which there is no popular matching.

The popular matching problem is to determine if a given instance admits a popularmatching, and
to find such a matching, if one exists. The first polynomial-time algorithms for this problem were given
in [3]: when preference lists are strictly ordered, the problem can be solved in O(n+ m) time, where
n = |A ∪P | andm= |E|, and more generally, the problem can be solved inO(m

√
n) time. Note that

whenE = E1, a matching is popular if and only if it has maximum cardinality. Hence, the popular
matching problem is at least as hard as the problem of finding a maximum matchingin a bipartite graph.

1.1 Problem Definition

In this paper, we consider a matching market in which the aim is tomaintain a popular matching.
The setting is dynamic: applicants and posts can enter and leave the matching market, and applicants
can change their preferences arbitrarily. More precisely, an instanceof thedynamic popular matching
problemconsists of an instanceG of the popular matching problem, together with an existing (possibly
empty) matchingM0.

It turns out that we cannot simply solveG from scratch after each change, since anyparticular
popular matching we find may not be more popular thanM0, and furthermore, it is possible thatno
popular matching is more popular than the existing matchingM0. Hence, in general, there may be no
consensus amongst the applicants to move directly fromM0 to a popular matching. We show such an
example below.

Consider the instance in Figure 2 withM0 = {(a1, p5), (a2, p2), (a3, p3), (a4, p1)}. First note thatM0

is not popular, since it is less popular thanM = {(a1, p2), (a2, p3), (a4, p1)} (even witha3 unmatched).
We can show using Lemma 2 from Section 2 that the only popular matchings areM∗ = {(a1, p1),
(a2, p2), (a3, p3), (a4, p4)} andN∗ = {(a1, p1), (a2, p3), (a3, p2), (a4, p4)}. However, it is clear that
neitherM∗ norN∗ is more popular thanM0.

a1 : p1 p2 p5

a2 : p3 p2

a3 : p3 p2

a4 : p1 p4

Figure 2: Instance motivatingvoting-pathapproach.

In order to arrive at a popular matching by consensus, [3] introducedthe following generalization
of the more popular than relation:
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Definition 2 A matching Mk is reachablefrom M0 if there is a sequence of matchings〈M0,M1, . . . ,Mk〉,
such that each matching is more popular than its predecessor. Such a sequence is called a length-k
voting pathfrom M0 to Mk.

Note that the instance above has a length-2 voting path fromM0 to a popular matching, namely
〈M0,M,N∗〉.

There is no a priori reason to expect that such a voting path must exist: themore popular than
relation is not acyclic, and so perhaps there are some matchingsM0 from which we cannot avoid cycling.
Even if such a path does exist, it may have length exponential in the size ofG, since there can be an
exponential number of matchings. In this paper, we show the following surprising result.

Theorem 1 Let 〈G,M0〉 be an instance of the dynamic popular matching problem, where G admits a
popular matching. Then G admits a voting path of length at most2 from M0 to some popular matching.
Additionally, given any popular matching, we can find a shortest-length such voting path in only linear
time.

Hence, by using the popular matching algorithms in [3], we can solve the dynamic popular matching
problem inO(m+n) time when preference lists are strictly ordered, and more generally inO(m

√
n) time

1. This solves the problem of efficiently computing a shortest-length voting pathto a popular matching,
which was posed in [3]. We have also shown that such paths have length at most 2, which is better
than the bound of 3 previously claimed. The proof of the length-3 bound quoted in [3] is unpublished,
and only applies when preference lists are strictly ordered. This restriction greatly simplifies the more
general problem, which is discussed in this paper.

Interestingly, the improvement from 3 to 2 implies a connection to the famous result in graph the-
ory that every tournament has a king [14]. Themore popular thanrelation is a directed graph on an
exponential number of vertices. This graph is not a tournament though, since for any pair of matchings,
there is no guarantee that one is more popular than the other. However, even without these edges, the
set of popular matchings collectively act as a king, since every unpopular matching has a voting path of
length at most 2 into this set.

1.2 Related Previous Work

The bipartite matching problem with a graded edge set is well-studied in both economics and computer
science, see for example [1, 18, 22] and [6, 12, 2]. It models some important real-world problems,
including the allocation of graduates to training positions [10], families to government-owned housing
[21], and customers to rental DVDs [4, 17].

Gardenfors [8] first introduced the notion of a popular matching in the context of the stable marriage
problem2 [7, 9]. Of course, themore popular thanconcept can be traced back even further to the
Condorcet voting protocol.

One drawback of the popularity criterion is that a popular matching may not exist. However, in
recent work, Mahdian [15] showed that a popular matching exists with highprobability, when (i) pref-
erence lists are randomly constructed, and (ii) the number of posts is a small multiplicative factor larger
than of the number of applicants. Other recent work on popular matching includes Mestre’s [16] gener-
alization of the efficient popular matching characterization in [3] to the case where applicant votes carry
different weights.

1We make the standard assumption in dynamic programming settings that the instanceG does not change while we are
computing a voting path.

2A stable marriage instance is the same as a popular matching instance, except thatbothapplicants (i.e. men) and posts
(i.e. women) rank each other in order of preference.
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We remark that the result in our paper is analogous to a series of papers [13, 19, 20, 5] on decentral-
ized mechanisms in the stable matching literature. The well-known mechanisms for stable matching,
due to Gale/Shapley [7] and Irving [11], require a central body to collect preferences and dictate the
final matching. Alternatively, in a decentralized setting, a blocking pair (i.e. aman and woman who
prefer each other to their current partners) willact locally by divorcing their current partners and marry-
ing each other. Knuth [13] showed that if the divorced partners also marry each other, it is possible for
this process to cycle. However, when divorced partners are not required to marry each other, and every
blocking pair has some probability of acting next, Roth and Vande Vate [19] show by way of a potential
argument that there is always a path to a stable matching.

In our setting, the analogue of a blocking pair is a coalition of applicants who (i) prefer some
matchingM′ to the current matchingM, and (ii) have sufficient numbers to win a vote betweenM′ and
M. It is not too difficult to give a potential argument to prove the existence ofvoting paths (at least for the
restriction to strictly-ordered preference lists). However, in this paper,we use more powerful techniques
from matching theory, which in addition to proving existence, also give the surprising length-2 bound.
As with the result in [19], this means that as long as every matching more popular than the current one
has some probability of an up-or-down vote, then in the limit, a decentralized mechanism will lead to a
popular matching.

1.3 Organization of the Paper

In Section 2, we review the theory of popular matchings, and then use this to characterize the set of
matchings that admit length-0 voting paths. In Section 3 and 4, we derive the central lemmas of the
paper, using these to characterize the set of matchings that admit length-1 and length-2 voting paths
respectively. Finally, in Section 5, we conclude with an open problem.

2 Preliminaries: Length-0 Voting Paths

In this section, we review the algorithmic characterization of popular matchings given in [3]. We then
note that this characterization can be used to determine if an instance〈G,M0〉 of the dynamic popular
matching problem admits a length-0 voting path to a popular matching.

For exposition purposes, we create a unique strictly-least-preferred postl(a) for each applicanta. In
this way, we can assume that every applicant is matched, since any unmatched applicanta can be paired
with l(a). From now on then, matchings areA-perfect. Also, without loss of generality, we assume that
preference lists contain no gaps, i.e. ifa is incident to an edge of ranki, thena is incident to an edge of
rank i−1, for all i > 1.

Let G1 = (A ∪P ,E1) be the graph containing only rank-one edges. [3, Lemma 3.1] shows that a
matchingM is popular inG only if M∩E1 is a maximum matching ofG1. Maximum matchings have
the following important properties, which we use throughout the rest of thepaper.

M∩E1 defines a partition ofA ∪P into three disjoint sets: a nodeu∈ A ∪P is even(respectively
odd) if there is an even (respectively odd) length alternating path inG1 (with respect toM ∩E1) from
an unmatched node tou. Similarly, a nodeu is unreachableif there is no alternating path from an
unmatched node tou. Denote byE , O andU the sets of even, odd, and unreachable nodes, respectively.

Lemma 1 (Gallai-Edmonds Decomposition)Let E , O andU be the sets of nodes defined by G1 and
M∩E1 above. Then

(a) E , O andU are pairwise disjoint, and independent of the maximum matching M∩E1.
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(b) In any maximum matching of G1, every node inO is matched with a node inE , and every node in
U is matched with another node inU. The size of a maximum matching is|O|+ |U|/2.

(c) No maximum matching of G1 contains an edge between a node inO and a node inO ∪U. Also,
G1 contains no edge between a node inE and a node inE ∪U.

Using this node partition, we make the following definitions: for each applicanta, define f (a) to be
the set of most-preferred odd/unreachable posts ina’s preference list3. Also, defines(a) to be the set of
most-preferred even posts ina’s preference list.

We refer to posts in∪a∈A f (a) as f -postsand posts in∪a∈As(a) ass-posts. Note that f -posts and
s-posts are disjoint, and thats(a) 6= /0 for any a, sincel(a) is always even. Also note that there may
be posts inP that are neitherf -posts nors-posts. The next lemma characterizes the set of all popular
matchings.

Lemma 2 ([3]) A matching M is popular in G if and only if (i) M∩E1 is a maximum matching of
G1 = (A ∪P ,E1), and (ii) for each applicant a, M(a) ∈ f (a)∪s(a).

Using this lemma, we can check if〈G,M0〉 admits a length-0 voting path to a popular matching:
M0∩E1 is a maximum matching ofG1 if G1 admits no augmenting path. Also, given thatM0∩E1 is a
maximum matching ofG1, it is trivial to compute the Gallai-Edmonds decomposition and then to check
that each applicanta is matched toM(a) ∈ f (a)∪s(a). These checks can clearly be performed in linear
time. Henceforth, we assume then thatM0 is not popular, for otherwise〈G,M0〉 admits a length-0 voting
path, and we are done. We also assume that〈G,M0〉 admits a popular matching, for otherwise no voting
path can end in a popular matching.

We conclude this section by giving the algorithm based on Lemma 2 for solving the popular match-
ing problem.

Popular-Matching(G = (A ∪P ,E))

1. Construct the graphG′ = (A ∪P ,E′), whereE′ = {(a, p) : a∈ A andp∈ f (a)∪s(a)}.

2. Construct a maximum matchingM of G1 = (A ∪P ,E1).
(Note thatM is also a matching inG′).

3. Remove any edge inG′ between a node inO and a node inO ∪U.
(No maximum matching ofG1 contains such an edge).

4. AugmentM in G′ until it is a maximum matching ofG′.

5. ReturnM if it is A-perfect, otherwise return“no popular matching”.

3 Length-1 voting paths

In this section, we show that, given any popular matching ofG, the problem of finding a length-1 voting
path fromM0 to a popular matching, or proving that no such path exists, can be solved in linear time.
First though, we work towards characterizing the set of all popular matchings that are more popular than
M0.

3In [3], f (a) is defined as the set of rank-1 posts ina’s preference list. We find the definition above more suitable.
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Let ra(p) be the rank of edge(a, p) ∈ E. Also, let ra(s(a)) be the rank of any edge(a, p), where
p∈ s(a). We define thesignatureof a matchingM as the 4-tuple(|AM

f |, |AM
m|, |AM

s |, |AM
l |) 4, where:

(i) AM
f = {a∈ A |ra(M(a)) = 1, anda is even/unreachable, i.e.a∈ E ∪U}.

(ii) AM
m = {a∈ A |1 < ra(M(a)) < ra(s(a))}.

(iii) AM
s = {a∈ A |ra(M(a)) = ra(s(a))}.

(iv) AM
l = {a∈ A |ra(M(a)) > ra(s(a))}.

Note that an odd applicanta (i.e. one inO) can only belong toAM
s ∪AM

l , even ifra(M(a)) = 1, for
a /∈ AM

f by definition, anda /∈ AM
m, sincera(s(a)) = 1. Also note that for any even/unreachable applicant

a (i.e. one inA \O), ra(s(a)) 6= 1. HenceAM
f ,AM

m,AM
s , andAM

l are pairwise disjoint and partitionA .
This gives us|AM

f |+ |AM
m|+ |AM

s |+ |AM
l | = |A |. Finally, note thatAM

f = {a∈ A : M(a) ∈ f (a)}.
Now, letF be the set off -posts - i.e.F = ∪a∈A f (a). The following lemma characterizes the set of

all popular matchings in terms of their signatures.

Lemma 3 A matching M is popular if and only if its signature is(|F |,0, |A |− |F |,0).

Proof: SupposeM is popular. Then by Lemma 2,|AM
m| = |AM

l | = 0, and so|AM
f |+ |AM

s | = |A |. Now,
|AM

f | ≤ |F |, since every applicant inAM
f is matched with some post inF . But sinceM∩E1 is a maximum

matching ofG1, Lemma 1(b) requires that every post inF is matched with some applicant inAM
f . Hence,

|AM
f | = |F |, |AM

s | = |A |− |F |, andM has signature(|F |,0, |A |− |F |,0).
Conversely, supposeM is a matching with signature(|F |, 0, |A |− |F |, 0). Then|AM

m| = |AM
l | = 0,

and so for everya∈ A , M(a) ∈ f (a)∪s(a). It remains to show thatM∩E1 is a maximum matching of
G1. We have that|M∩E1|= |AM

f |+ |{a∈AM
s : a is odd}|. Since|AM

f |= |F |, |M∩E1|= |F |+ |{a∈A : a
is odd}|. So,|M∩E1| = |{v∈ A ∪P : v is odd}|+ |{p∈ P : p is unreachable}|, and the result follows
from Lemma 1(b).

Lemma 4 For any matching M,|AM
f |+ |AM

m| ≤ |F |.

Proof: For eacha∈ AM
f , M(a) is odd/unreachable (i.e. belongs toO ∪U), for otherwise,G1 contains

an edge contradicting Lemma 1(c). Also, for eacha∈ AM
m, M(a) is odd/unreachable, sinces(a) contains

a’s most preferredevenposts, and by definition ofAM
m, a prefersM(a) to posts ins(a) (i.e. ra(M(a)) >

ra(s(a))). Hence,|AM
f |+ |AM

m| ≤ |F |.

Finally, we come to the main technical lemma in this section, which characterizes the set of all
popular matchings that are more popular than a given matchingM.

Lemma 5 Let M∗ be a popular matching. Then M∗ is more popular than M if and only if (i)|AM
f |+

|AM
m| < |F |, or (ii) |AM

m ∩AM∗
f | > 0, or (iii) |AM

l ∩AM∗
s | > 0.

Proof: Let ∆(M∗,M) be the difference between the number of applicants who preferM∗ to M, and the
number of applicants who preferM to M∗. That is,

∆(M∗,M) =
∣

∣

∣
[AM

m ∪AM
s ∪AM

l ]∩AM∗
f

∣

∣

∣
+ |AM

l ∩AM∗
s |−

∣

∣

∣
[AM

f ∪AM
m]∩AM∗

s

∣

∣

∣
.

4The subscriptsf ,m,s, andl stand forfirst, middle, second, andlast respectively.
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Now, sinceM∗ is popular, by Lemma 3 we have:

|AM∗
f | =

∣

∣

∣
[AM

f ∪AM
m ∪AM

s ∪AM
l ]∩AM∗

f

∣

∣

∣
= |F |

=
[

|F |− |AM
f |− |AM

m|
]

+
∣

∣

∣
[AM

f ∪AM
m]∩ [AM∗

f ∪AM∗
s ]

∣

∣

∣
.

Rearranging, we get:
∣

∣

∣
[AM

f ∪AM
m]∩AM∗

s

∣

∣

∣
=

∣

∣

∣
[AM

s ∪AM
l ]∩AM∗

f

∣

∣

∣
−

[

|F |− |AM
f |− |AM

m|
]

.

Hence∆(M∗,M) =
[

|F |− |AM
f |− |AM

m|
]

+ |AM
m ∩AM∗

f |+ |AM
l ∩AM∗

s |. The theorem follows immediately,

since|AM
m ∩AM∗

f | and|AM
l ∩AM∗

s | are both non-negative, while|F |− |AM
f |− |AM

m| ≥ 0 by Lemma 4.

Given 〈G,M0〉 and some popular matchingM∗ of G, we do not need Lemma 5 to determine ifM∗

is more popular thanM0 - instead, we can just count the number of applicants that prefer one matching
to the other. Suppose, however, thatM∗ is not more popular thanM0 so that|AM0

f |+ |AM0
m | = |F |,

|AM0
l ∩AM∗

s | = 0, and|AM0
m ∩AM∗

f | = 0. Our aim is to use Lemma 5 as a guide in finding a popular
matching that is more popular thanM0, or proving that no such matching exists.

First we remark that|AM0
f |+ |AM0

m | = |F |, for otherwise,any popular matching, includingM∗, is

more popular thanM0 by Lemma 5. It follows thatAM0
m 6= /0 or AM0

l 6= /0, for otherwise,M0 has signature
(|F |,0, |A |− |F |,0), contradicting the assumption from the previous section thatM0 is not popular.

SupposeAM0
m 6= /0, so that there is an applicanta ∈ AM0

m ∩AM∗
s . By definition, such an applicant is

even/unreachable. If there is a popular matching that pairsa with a post in f (a), then it must be more
popular thanM0 by condition (ii) of Lemma 5. In order to test if there exists such a popular matching,
we proceed in the following way.

Let G′ be the subgraph ofG defined in Figure 2 after step 3. So,G′ contains all edges between
applicants and theirf -posts ands-posts, except those between nodes inO and nodes inO ∪U. Now,
modify G′ andM∗ by removing all edges between this particular applicanta and posts ins(a). Call the
resulting structuresG′

a andM∗
a respectively.

Lemma 6 There exists a popular matching which pairs a with some post in f(a) if and only if G′
a admits

an augmenting path with respect to M∗a.

Proof: SupposeG′
a admits an augmenting pathQa with respect toM∗

a. SinceM∗ is popular, the only
unmatched applicant inM∗

a is a, and soM∗
a ⊕Qa matchesa with some post inf (a). We want to claim

that M∗
a ⊕Qa is popular. First note that its signature is of the form(k,0, |A | − k,0) for somek ≥ 0,

since it is a matching in a subgraph ofG′, andG′ only contains edges between applicants and their
f -posts ands-posts. Now,M∗

a ⊕Qa matches all posts inF , since every post matched inM∗
a is also

matched inM∗
a ⊕Qa. Recall that posts inF are incident inG′ to rank-1 edges only, and furthermore,

odd posts inF are only adjacent to even applicants, while unreachable posts inF are only adjacent to
unreachable applicants. Hence,k = |F |, and so by Lemma 3,M∗

a ⊕Qa is popular, since its signature is
(|F |,0, |A |− |F |,0).

Conversely, suppose thatG′
a admits no augmenting path with respect toM∗

a. Then,M∗
a is a maximum

matching inG′
a, which, sincea is unmatched inM∗

a, means that there is noA-perfect matching inG′
a.

But by Lemma 2(b), every popular matching is anA-perfect matching inG′. Hence, every popular
matching must contain an edge inG′ \G′

a = {(a, p) : p∈ s(a)}.
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We now make use of the previous lemma. Begin by looking for an augmenting pathin G′
a with

respect toM∗
a by using depth-first search to construct the Hungarian treeTa rooted ata (see Figure

3). If we find such a pathQa, then by Lemma 5,〈M0,M∗
a ⊕Qa〉 is a length-1 voting path to a popular

matching. Otherwise, we repeat this process with some othera′ ∈ AM
m ∩AM∗

s , if any.
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posts in f(a)

their partners

neighbors not in f(a)

Figure 3: Example of a Hungarian treeTa rooted ata, with matched edges bold

Suppose we are successful in finding an augmenting pathQa′ such thatM∗
a′ ⊕Qa′ is popular. We

claim thatQa′ is edge disjoint from the set of edges inTa, wherea 6= a′.
For suppose otherwise. Then lete be thefirst edge inQa′ that is also inTa. Now, G′

a admits an
alternating path froma throughe. However, sinceQa does not exist, this path cannot be extended inG′

a
to end in some unmatched post. Hence,Qa′ must contain an alternating path frome through the edge
matchinga with M∗(a) (which is missing inG′

a). But M∗(a) is unmatched inG′
a, and hence if we join

the two alternating paths above, we get an augmenting pathQa (from a to M∗(a) through the edgee) in
G′

a. This gives the required contradiction.
Since we only need to examine each edge a constant number of times, it is clearthat we can deter-

mine in linear time if there is a popular matching that pairs some applicant inAM0
m ∩AM∗

s with one of its
f -posts.

If there is no such applicant, we repeat this procedure with applicantsa∈ AM0
l ∩AM∗

f , who must by
definition be even/unreachable. Here, though our aim is to find a popular matching that satisfies Lemma
5(iii) by pairing a with a post ins(a). It follows that for this to occur,a must be even, since by Lemma
1 and 2(i), every unreachable applicant is matched by any popular matching to a post inf (a).

Suppose we find such a matchingM∗
a⊕Qa. Sincea is even,M∗(a) is odd, and so any popular match-

ing must matchM∗(a) along a rank-1 edge to an even applicant. However,M∗(a) may be unmatched in
M∗

a ⊕Qa, as we removed all edges betweena and posts inf (a) from G′ (including(a,M∗(a))). Hence
we may need to augmentM∗

a ⊕Qa in G1. But every odd nodeM∗(a) is adjacent to at least one other
even applicant along a rank-1 edge, namely its predecessor in the odd length alternating path from a
vertex unmatched w.r.t.M∗∩E1 to M∗(a) in G1). Hence, such an augmentation always exists. And it is
easy to see that here too we only examine each edge a constant number of times.

By Lemmas 5 and 6, it is clear that the above algorithm correctly finds a length-1 voting path from
M0 to some popular matching, or proves that no such path exists. Additionally, given a popular matching
M∗, we have just shown that the algorithm runs in linear time.

4 Length-2 voting paths

In this section, we show that, given any popular matchingM∗ of G, the problem of finding a length-2
voting path fromM0 to some popular matching can be solved in linear time. We will assume thatM0

admits no shorter such voting path. In particular, this means thatM∗ is not more popular thanM0, so
thatAM0

m 6= /0, or AM0
l 6= /0.

Suppose thatAM0
m 6= /0. Let a∈ AM0

m and letTa be the Hungarian tree associated witha, as described
in Section 3. In the following lemma, we give a sufficient condition for the existence of a length-2
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voting path fromM0 to M∗.

Lemma 7 Suppose there exists an applicant a′ ∈ Ta such that M0(a′) /∈ s(a′) and M∗(a′) ∈ s(a′). Then
there exists a length-2 voting path from M0 to M∗.

Proof: Our goal is to find a matchingM1 such that (i)M1 is more popular thanM0, and (ii)a′ ∈ AM1
l .

This last condition guarantees thatM∗ is more popular thanM1 by Lemma 5(iii), and hence we get the
length-2 voting path〈M0,M1,M∗〉.

Before discussing how we constructM1, we first need to show thata′ ∈ AM0
f ∪AM0

m : It is clear

that a′ /∈ AM0
l , for otherwisea′ ∈ AM0

l ∩AM∗
s and M∗ is more popular thanM0 by Lemma 5(iii) - a

contradiction. Suppose then thata′ ∈ AM0
s . By definition we have thatM0(a′) /∈ s(a′), and so it must be

the case thatM0(a′) is odd/unreachable and belongs toF . But M0 matches all posts inF to applicants
in AM0

f ∪AM0
m , for otherwiseM∗ is more popular thanM0 by Lemma 5(i) - a contradiction. Hence,

a′ ∈ AM0
f ∪AM0

m .
Now we need to show thatG′

a contains no edge betweena′ and l(a′): For suppose this is not the
case. Then sincel(a′) is strictly the least preferred post ofa′, we have thats(a′) = {l(a′)}. By definition,
no other applicant is adjacent tol(a′), and sol(a′) is a leaf node inTa with parenta′. It follows from
the construction ofTa that l(a′) is unmatched inM∗

a, and henceM∗
a admits an augmenting path froma

througha′ to l(a′). This contradicts our assumption thatM0 admits no length-1 voting path to a popular
matching. Hence,G′

a contains no edge betweena′ andl(a′).
Finally, we describe how to constructM1. Add an edge betweena′ and l(a′) to G′

a. From the
argument above, we have thatG′

a admits an augmenting pathQa from a througha′ and ending inl(a′).
Let M1 = M∗

a ⊕Qa. The signature ofM1 is (|F |,0, |A |− |F |−1,1), by an argument similar to the one
used in the proof of Lemma 6, except that here we have one applicanta′ ∈ AM1

l . It remains to show that
M1 is more popular thanM0.

∆(M1,M0) =
∣

∣

∣
[AM0

m ∪AM0
s ∪AM0

l ]∩AM1
f

∣

∣

∣
+

∣

∣

∣
AM0

l ∩AM1
s

∣

∣

∣
−

∣

∣

∣
[AM0

f ∪AM0
m ]∩ [AM1

s ∪AM1
l ]

∣

∣

∣

{NB: |AM0
s ∩AM1

l | = 0, since a′ /∈ AM0
s }

≥
∣

∣

∣
[AM0

m ∪AM0
s ∪AM0

l ]∩AM1
f

∣

∣

∣
−

∣

∣

∣
[AM0

f ∪AM0
m ]∩ [AM1

s ∪AM1
l ]

∣

∣

∣

=
∣

∣

∣
[AM0

f ∪AM0
m ∪AM0

s ∪AM0
l ]∩AM1

f

∣

∣

∣
−

∣

∣

∣
AM0

f ∩ [AM1
f ∪AM1

s ∪AM1
l ]

∣

∣

∣
−

∣

∣

∣
AM0

m ∩ [AM1
s ∪AM1

l ]
∣

∣

∣

= |F |− |AM0
f |−

∣

∣

∣
AM0

m ∩ [AM1
s ∪AM1

l ]
∣

∣

∣
{since|AM1

f | = |F |}

= |AM0
m |−

∣

∣

∣
AM0

m ∩ [AM1
s ∪AM1

l ]
∣

∣

∣
{by Lemmas 4 and 5(i)}

=
∣

∣

∣
AM0

m ∩AM1
f

∣

∣

∣
> 0 {since a∈ AM0

m ∩AM1
f }

It is clear that in linear time, we can check if there exists an applicanta′ ∈ Ta such thatM0(a′) /∈ s(a′)
andM∗(a′) ∈ s(a′), and if so, we can construct the matchingM1.

Suppose there is no such applicant inTa. Our aim then is to find a different popular matching in
which such an applicant exists. We will find such a matching by searching for a particular type of
alternating cycleC in G′

a with respect toM∗. First though, we make some observations aboutTa and
G′

a.
By construction, posts inTa are discovered along unmatched edges. Also, no postp is a leaf node in

Ta, since thenp would be unmatched inM∗
a, andM∗

a would admit an augmenting path, which contradicts
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our assumption thatM0 admits no length-1 voting path to a popular matching. Therefore, posts inTa

have degree 2.
By construction, an applicanta′′ ∈ Ta \ {a} is discovered along a matched edge. Ifa′′ is even or

unreachable, thena′′ is incident to at least one unmatched child edge inG′
a, since f (a′′) ands(a′′) are

non-empty and disjoint. Ifa′′ is odd, thena′′ must also be incident to at least one unmatched child edge
in G′

a - sincea′′ is odd,G1 admits an odd-length augmenting path from an unmatched vertex toa′′, and
the last edgee(a′′) on this path is unmatched inM∗.

Since every node inTa \ {a} is incident to at least one matching edge and one non-matching edge
(w.r.t. the matchingM∗) in G′

a, we can build the following alternating pathQ. Begin with an edge(a, p)
wherep ∈ f (a). Let the successor of any postp in Q be its matched partnerM∗(p). The successor
of any even/unreachable applicanta′′ is any post inf (a′′) if M∗(a′′) ∈ s(a′′), or any post ins(a′′) if
M∗(a′′) ∈ f (a′′). Finally, the successor of any odd applicanta′′ is the post incident toe(a′′). Since|Ta|
is finite, at some point this alternating path must form a cycleC by adding a post that is already in the
path. This procedure clearly takes linear time.

It is clear that from Lemma 2 thatM∗⊕C is a popular matching. Now, if we can show thatM∗⊕C

has some applicanta′ ∈ Ta \ {a} such thatM0(a′) /∈ s(a′) and(M∗⊕C )(a′) ∈ s(a′), then we can use
M∗⊕C as the popular matching in Lemma 7.

First, we prove thatC contains at least one applicanta′ such thatM∗(a′) ∈ f (a′). SinceM∗⊕C

matchesa′ with s(a′) by construction, the final step will be to show thatM0(a′) /∈ s(a′).

Lemma 8 C contains at least one applicant a′ such that M∗(a′) ∈ f (a′).

Proof: Note that the length ofC is at least 4 since the predecessor and successor of each applicant
are always distinct. Also note that ifC contains an even/unreachable applicant, then its predeces-
sor/successor is anf -post, whose partner inM∗ is the required applicant. The only way that thatC

may not have contain anf -post is if all the applicants inC are odd. We show that this cannot happen.
Let a′′ be the first odd applicant inQ that is in C . Then by construction,C contains a subpath

from a′′ throughe(a′′) to some postp that is unmatched inM∗ ∩E1. It follows that p is even, since
odd/unreachable posts are matched inM∗∩E1 by Lemmas 1(b) and 2(i). Sincep is matched inM∗, its
partnerM∗(p) must be even (again by Lemmas 1(b) and 2(i)), and soC contains an even applicant.

Lemma 9 Suppose there exists no applicant a′ ∈ Ta such that M0(a′) /∈ s(a′) and M∗(a′) ∈ s(a′). Then
for each a′ ∈ Ta\{a}, M0(a′) /∈ s(a′) if and only if M∗(a′) ∈ f (a′).

Proof: Let a′ be any applicant inTa \ {a} such thatM0(a′) /∈ s(a′). Then by the assumption in the
statement of the lemma, we haveM∗(a′) /∈ s(a′), and soM∗(a′) ∈ f (a) ⊆ F , sinceM∗ is popular.
Hence,|Ta\{a}∩ [A −AM0

s ]| is at most the number off -posts inTa, i.e.,

|Ta\{a}∩ [A −AM0
s ]| ≤ |Ta∩F |. (1)

Now, since there is no augmenting path inTa, we have that|Ta \ {a}∩A | = |Ta∩P |. PartitioningA

into A \AM0
s andAM0

s and posts inTa into Ta∩F andTa∩S, whereS is the set of alls-posts, we get
|Ta\{a}∩ [(A \AM0

s )∪AM0
s ]|= |Ta∩F |+ |Ta∩S|. Note that no applicant inAM0

s can be matched byM0

to an odd/unreachable post, otherwise|AM0
f |+ |AM0

m | < |F | andM∗ would have been more popular than
M0 by Lemma 5(i). Hence each applicant inAM0

s has to be matched byM0 to one of its most preferred
even posts, that is one of itss-posts, so|Ta\{a}∩AM0

s | ≤ |Ta∩S|. We thus get,

|Ta\{a}∩ [A \AM0
s ]| ≥ |Ta∩F |. (2)
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Combining (1) and (2), we have|Ta \ {a}∩ [A −AM0
s ]| = |Ta∩F | = |Ta \ {a}∩AM∗

f |. That is, the
number of applicantsa′ in Ta \ {a} that satisfyM∗(a′) ∈ f (a′) is equal to the number of applicants in
Ta \ {a} that satisfyM0(a′) /∈ s(a′). But each applicant inTa \ {a} that satisfiesM0(a′) /∈ s(a′) has to
satisfyM∗(a′) ∈ f (a′) by the statement of the lemma. So the equivalence follows immediately.

By Lemma 8,C contains at least one applicanta′ such thatM∗(a′) ∈ f (a′). By Lemma 9, we have
that M0(a′) /∈ s(a′). SinceM∗⊕C matchesa′ with s(a′), M∗⊕C satisfies the sufficient condition in
Lemma 7. Hence there exists a length-2 voting path fromM0 to the popular matchingM∗⊕C .

As in Section 3, ifAM0
m = /0, thenAM0

l is non empty, and we perform an analogous procedure on the
Hungarian tree associated with somea∈AM0

l . This finishes the proof of Theorem 1 (stated in Section 1).
The overall algorithm is presented in Figure 4.

Voting-Path(G = (A ∪P ,E),M0)
if M0 has signature(|F |,0, |A |− |F |,0) then

return 〈M0〉
Let M∗ be any popular matching ofG
if M∗ is more popular thanM0 then

return 〈M0,M∗〉
for eachapplicanta∈ AM0

m ∩AM∗
s andeacheven applicanta∈ AM0

l ∩AM∗
f

Construct the Hungarian treeTa with respect toM∗
a, including only unmarked edges

Mark all edges inTa

if Ta contains an augmenting pathQa then
AugmentM∗

a ⊕Qa in G1 from M∗(a) // applies only when a∈ AM0
l ∩AM∗

f
return 〈M0,M∗

a ⊕Qa〉
Let Ta be the first Hungarian tree constructed for anya∈ AM0

m ∩AM∗
s or evena∈ AM0

l ∩AM∗
f

if there exists noa′ ∈ Ta\{a} such thatM0(a′) /∈ s(a′) andM∗(a′) ∈ s(a′) then
ConstructC in G′

a as described in Section 4
Let M∗ = M∗⊕C

Let Ta be the Hungarian tree associated witha and the newM∗

Add (a′, l(a′)) to Ta, and find the augmenting pathQa in Ta

Let M1 = M∗
a ⊕Qa

AugmentM1 in G1 from M∗(a) // applies only when a∈ AM0
l ∩AM∗

f
return 〈M0,M1,M∗〉

Figure 4: Linear-time algorithm for finding a shortest-length voting path

5 Conclusions and Open Problems

We considered the problem of computing a shortest-length voting path in a problem instance〈G,M0〉.
We showed that ifG admits a popular matching, then there is always a voting path of length at most
2 from M0 to some popular matching. Furthermore, we showed that the problem of finding a shortest-
length voting path fromM0 to some popular matching has the same complexity as the problem of
computing a popular matching inG. We conclude with an open problem.

Suppose we are given an instanceG of the popular matching problem that admits no popular match-
ing. Rather than return“no popular matching”, we want to return a matching that isas popular as
possible. Since the directed graphH of themore popular thanrelation has no sink, we might consider
matchings that, at the very least, are members of sink components in the strongly-connected component
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graph ofH. Subject to this, a most popular matching could be defined in various ways, for example one
that has the smallest out-degree inH. However,H has size exponential inG, and so we are interested in
the complexity of finding such matchings.
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