Umut Acar, Assistant Professor (CS)

umut@cs.cmu.edu
http://www.cs.cmu.edu/~umut
http://www.csd.cs.cmu.edu/people/faculty/umut-acar

Scalable Parallelism, Dynamic Parallelism, Self-adjusting Computation

Broadly construed, I research problems of scalability. Current foci include the design and development of abstractions, algorithms, languages, and systems for scalable parallel, dynamic, and interactive computation.

Jonathan Aldrich, Associate Professor (ISR)

Director, Software Engineering Ph.D. Program
aldrich@cs.cmu.edu
http://www.cs.cmu.edu/~aldrich/
http://www.csd.cs.cmu.edu/people/faculty/jonathan-aldrich

Programming Languages and Software Engineering

My research improves the quality of software and the productivity of engineers by expressing and enforcing structural and behavioral aspects of software design within source code, typically through language design and type systems. I have contributed to object-oriented typestate verification, techniques for modular reasoning about state, and new object-oriented language models.

Guy Blelloch, Professor (CS)

guyb@cs.cmu.edu
http://www.cs.cmu.edu/~guyb/
http://www.csd.cs.cmu.edu/people/faculty/guy-blelloch

Parallelism, Data Structures and Algorithms, Cache Efficient Parallel Algorithms

My research has largely been in the interaction of Algorithms and Programming Languages, much of it in the area of parallel computing.

Stephen Brookes, Professor (CS)

brookes@cs.cmu.edu
http://www.cs.cmu.edu/~brookes/
http://www.csd.cs.cmu.edu/people/faculty/stephen-brookes

Semantic models for programming languages and logics for reasoning about the behavior of concurrent programs

I have been involved in the development of Concurrent Separation Logic, in collaboration with John Reynolds and Peter O'Hearn. I am currently investigating further extensions to this logic, and working out the semantic underpinnings needed to validate logics that combine concurrency with procedures and communication.
Karl Crary, Associate Professor (CS)
crary@cs.cmu.edu
http://www.cs.cmu.edu/~crary/
http://www.csd.cs.cmu.edu/people/faculty/karl-crary

Programming languages

My research interests are in applying programming language technology to improve the development, maintenance, and performance of software systems. I am particularly interested in the application of type theory to systems programming, in mechanization of the metatheory of programming languages, in type-oriented compilation strategies, in type-based certification of machine code, and in the design of practical, high- or low-level programming languages.

Anupam Datta, Associate Professor (CS & ECE)
danupam@cmu.edu
http://www.andrew.cmu.edu/user/danupam/index.html
http://www.csd.cs.cmu.edu/people/faculty/anupam-datta

Next Generation Secure and Available Networks, Privacy Protection, Trustworthy Computing Platforms and Devices

My research focuses on the scientific foundations of security and privacy. Our work has helped develop the research areas of Privacy through Accountability and Compositional Security.

Matthew Fredrikson, Assistant Professor (CS)
mfredrik@cs.cmu.edu
http://www.cs.cmu.edu/~mfredrik/
http://www.csd.cs.cmu.edu/people/faculty/matthew-fredrikson

Security & Privacy

My research focuses on security and privacy issues that lead to failures in real systems. Some of the key outstanding challenges in this area lie in figuring out why promising theoretical approaches oftentimes do not translate into effective defenses. Much of my work is concerned with developing formal analysis techniques that provide insight into the problems that might exist in a system, building countermeasures that give provable guarantees, and measuring the effectiveness of these solutions in real settings.

Robert Harper, Professor (CS)
rwh@cs.cmu.edu
http://www.cs.cmu.edu/~rwh
http://www.csd.cs.cmu.edu/people/faculty/robert-harper

Mathematical principles of programming

My current research projects are in computational higher type theory, and in the development of cost semantics for higher-level programming languages. More generally I am interested in constructive mathematics, programming language semantics, program verification, and mechanized proof. All of these subjects are unified in the setting of computational type theory.
I am interested in developing modeling and verification methods for a wide range of distributed systems, including those that exhibit timing-dependent behavior and possibly interact with the physical world. My current topic of interest in this area is accountability.

Dilsun Kaynar, Assistant Teaching Professor (CS)
dilsun@cs.cmu.edu
http://www.cs.cmu.edu/~dilsun

Foundations of distributed computing, formal methods, security

I am interested in developing modeling and verification methods for a wide range of distributed systems, including those that exhibit timing-dependent behavior and possibly interact with the physical world. I have also had continued interest in security. My current topic of interest in this area is accountability.

Jan Hoffmann, Assistant Professor (CS)
janh@cs.cmu.edu
http://www.cs.cmu.edu/~janh
http://www.csd.cs.cmu.edu/people/faculty/jan-hoffmann

Programming languages and formal methods

My research areas are programming languages and formal methods. I am specifically interested in quantitative verification, type systems, static resource analysis of programs, proof assistants, algorithmic game theory, and SAT solving.

Dilsun Kaynar, Assistant Teaching Professor (CS)
dilsun@cs.cmu.edu
http://www.cs.cmu.edu/~dilsun

Foundations of distributed computing, formal methods, security

I am interested in developing modeling and verification methods for a wide range of distributed systems, including those that exhibit timing-dependent behavior and possibly interact with the physical world. I have also had continued interest in security. My current topic of interest in this area is accountability.

Ruben Martins, Assistant Professor (CS)
rubenm@cs.cmu.edu
http://www.cs.cmu.edu/~rubenm
http://www.csd.cs.cmu.edu/people/faculty/ruben-martins

Constraint Programming, Boolean Satisfiability and Optimization, Software Verification, Program Synthesis

The goal of my research is to improve constraint solvers and broaden their applicability in program analysis, synthesis, and security. I have developed several award winning MaxSAT solvers that are widely used in software package upgradeability, computational biology, and course timetabling. My most recent work focuses on program synthesis for data-science-related tasks. Specifically, I am interested in automating a variety of cumbersome data preparation tasks and making the life of data scientists simpler.

Frank Pfenning, Joseph F. Traub Professor of Computer Science (CS)
Department Head, Computer Science
fp@cs.cmu.edu
http://www.cs.cmu.edu/~fp
http://www.csd.cs.cmu.edu/people/faculty/frank-pfenning

Formal Reasoning about Languages for Distributed Computation

At the heart of my research lies the desire to understand the principles of programming languages. Programming languages are the key to the programming process and therefore of fundamental importance to computer science. Well-designed programming languages allow fast program development, ease software maintenance, and increase confidence in the correctness of implementations.
The goal of my research is to help programmers focus on the interesting functionality of programs. I am interested in designing programming constructs that provide provable guarantees while supporting efficient execution strategies. Application domains of interest include security, privacy, and biological modeling.

Public understanding and consumption determine the impact of research. Because of this, I am interested in improving science communication and facilitating commercialization of technical ideas. From 2013-2015 I co-directed NeuWrite Boston, a working group of scientists and science writers. To narrow the gap between academia and industry, I co-founded the Cybersecurity Factory, an accelerator for security startups.

André Platzer, Associate Professor (CS)
aplatzer@cs.cmu.edu
www.cs.cmu.edu/~aplatzer
http://www.csd.cs.cmu.edu/people/faculty/andre-platzer

Logic in Computer Science, Cyber-Physical Systems, Programming Languages, Formal Methods

My research develops the logical foundations of cyber-physical systems to characterize their fundamental principles and to show how we can design computers that are guaranteed to interact correctly with the physical world. The solution to this challenge is the key to enabling computer assistance that we can bet our lives on. I pursue this challenge with the principled design of programming languages with logics that can provide proofs as correctness guarantees.

Jean Yang, Assistant Professor (CS)
jyang2@cs.cmu.edu
http://www.cs.cmu.edu/~jyang2/
http://www.csd.cs.cmu.edu/people/faculty/jean-yang

Security, Privacy, and Biological Modeling

The goal of my research is to help programmers focus on the interesting functionality of programs. I am interested in designing programming constructs that provide provable guarantees while supporting efficient execution strategies. Application domains of interest include security, privacy, and biological modeling.

Jeremy Avigad, Professor (Philosophy)
avigad@andrew.cmu.edu
http://www.andrew.cmu.edu/user/avigad/

Steve Awodey, Professor (Philosophy)
awodey@andrew.cmu.edu
http://www.andrew.cmu.edu/user/awodey/

Claire Le Goues, Assistant Professor (ISR)
clegoues@cs.cmu.edu
http://www.cs.cmu.edu/~clegoues/

Wilfried Sieg, Patrick Suppes Professor (Philosophy)
sieg@cmu.edu
http://www.cmu.edu/dietrich/philosophy/people/faculty/core-faculty/sieg.html

Richard Statman, Professor (Mathematics)
statman@cs.cmu.edu
http://www.math.cmu.edu/math/faculty/Statman