Symmetric and Asymmetric k-center Clustering Under Stability

Colin White
Carnegie Mellon University

Joint work with Nina Balcan and Nika Haghtalab.
(metric) k-center Clustering

Choose fire stations, to minimize the maximum travel time to any site.
(metric) k-center Clustering

Choose fire stations, to minimize the maximum travel time to any site.

For a set of $|S|=n$ points and distance metric d:
Choose fire stations, to minimize the maximum travel time to any site.

For a set of $|S| = n$ points and distance metric d:

• Choose k centers from S, assign each point to closest center.
(metric) k-center Clustering

Choose fire stations, to minimize the maximum travel time to any site.

For a set of $|S|=n$ points and distance metric d:

- Choose k centers from S, assign each point to closest center.
- Goal: minimize the maximum radius.
(metric) k-center Clustering

Choose fire stations, to minimize the maximum travel time to any site.

For a set of $|S| = n$ points and distance metric d:

• Choose k centers from S, assign each point to closest center.
• Goal: minimize the maximum radius.

$$ r^* = \min_{c_1, \ldots, c_k} \max_{p \in S} \min_{c_i} d(c_i, p) $$
(metric) k-center Clustering

Choose fire stations, to minimize the maximum travel time to any site.

For a set of $|S|=n$ points and distance metric d:

- Choose k centers from S, assign each point to closest center.
- Goal: minimize the maximum radius.

$$r^* = \min_{c_1, \ldots, c_k} \max_{p \in S} \min_{c_i} d(c_i, p)$$
(metric) \(k \)-center Clustering

Choose fire stations, to minimize the maximum travel time to any site.

For a set of \(|S|=n\) points and distance metric \(d\):

- Choose \(k\) centers from \(S\), assign each point to closest center.
- Goal: minimize the maximum radius.

\[
r^* = \min_{c_1, \ldots, c_k} \max_{p \in S} \min_{c_i} d(c_i, p)
\]
Asymmetric k-center Clustering

Relax the condition that d is symmetric
Asymmetric k-center Clustering

Relax the condition that d is symmetric

Symmetric: $d(p, q) = d(q, p)$
Asymmetric k-center Clustering

Relax the condition that d is symmetric

Symmetric: $d(p, q) = d(q, p)$

Asymmetric: not necessarily true

$$d(p, q) \leq d(p, r) + d(r, q)$$
(still directed Δ-ineq)
Asymmetric k-center Clustering

Relax the condition that d is symmetric

Symmetric: $d(p, q) = d(q, p)$

Asymmetric: not necessarily true

$$d(p, q) \leq d(p, r) + d(r, q)$$
(still directed Δ-ineq)

Minimize distance from **Centers** to **points** (order matters now)
Known approximation results
Known approximation results

Most clustering objectives are NP-hard
Known approximation results

Most clustering objectives are NP-hard

[G 1985] Tight 2-approximation for symmetric k-center
Farthest first traversal
Known approximation results

Most clustering objectives are NP-hard

[G 1985] Tight 2-approximation for symmetric k-center
Farthest first traversal

[V 1996] $O(\log^* n)$-approximation for asymmetric k-center

\[
n = 2^{2^{2^{\ldots}}} \implies \log^* (n)
\]
Known approximation results

Most clustering objectives are NP-hard

[G 1985] Tight 2-approximation for symmetric k-center
 Farthest first traversal

[V 1996] \(O(\log^* n) \) -approximation for asymmetric k-center

\[
\begin{align*}
n &= 2^{2^{2\cdots}} \\
&= \log^*(n)
\end{align*}
\]

[C et al. 2005] matching lower bound

- First natural problem to have a tight approximation factor not in
 \(O(1) \) or \(\text{polylog}(n) \)
Beyond the worst-case
Beyond the worst-case

- \(\log^* n \) is not desirable in practice
- The NP-hard instances are often contrived and particular
- Theory does not always match up with practice
- E.g. Simplex algorithm and smoothed analysis
Beyond the worst-case

- \log^*n is not desirable in practice
- The NP-hard instances are often contrived and particular
- Theory does not always match up with practice
- E.g. Simplex algorithm and smoothed analysis

Perturbation Resilience

- Small fluctuations don’t change the optimal clustering drastically.
- Captures the uncertainty in data
Beyond the worst-case

- $\log^* n$ is not desirable in practice
- The NP-hard instances are often contrived and particular
- Theory does not always match up with practice
- E.g. Simplex algorithm and smoothed analysis

Perturbation Resilience

- Small fluctuations don’t change the optimal clustering drastically.
- Captures the uncertainty in data
Beyond the worst-case

- $\log^* n$ is not desirable in practice
- The NP-hard instances are often contrived and particular
- Theory does not always match up with practice
- E.g. Simplex algorithm and smoothed analysis

Perturbation Resilience

- Small fluctuations don’t change the optimal clustering drastically.
- Captures the uncertainty in data
Perturbation Resilience

Clustering instance \((S, d)\) is \(\alpha\)-perturbation resilient, if for any function \(d'\) such that

\[\forall p, q \in S, d(p, q) \leq d'(p, q) \leq \alpha d(p, q),\]

the optimal clustering stays the same.

Bilu & Linial ’09:
Perturbation Resilience

Bilu & Linial ’09:

Clustering instance \((S, d)\) is \(\alpha\)-perturbation resilient, if for any function \(d'\) such that

\[\forall p, q \in S, d(p, q) \leq d'(p, q) \leq \alpha d(p, q), \]

the optimal clustering stays the same.

- Optimal clustering is unique
- It’s ok for centers to change, but not the partition.
- \(d'\) need not satisfy the \(\Delta\)-ineq
Prior Work
Prior Work

- [B L 2009] Exact alg for max cut under $\Omega(\sqrt{n})$-PR
Prior Work

- [B L 2009] Exact alg for max cut under $\Omega(\sqrt{n})$-PR
- [A B S 2010] Exact alg for center-based clustering under 3-PR
Prior Work

- [B L 2009] Exact alg for max cut under $\Omega(\sqrt{n})$-PR
- [A B S 2010] Exact alg for center-based clustering under 3-PR
- [B L 2011] Exact alg for center-based clustering under $1 + \sqrt{2}$-PR
Prior Work

- [B L 2009] Exact alg for max cut under $\Omega(\sqrt{n})$-PR
- [A B S 2010] Exact alg for center-based clustering under 3-PR
- [B L 2011] Exact alg for center-based clustering under $1 + \sqrt{2}$-PR
- [M M V 2014] Exact alg for min multiway cut under 4-PR and max cut clustering under $\Omega(\sqrt{\log n \log \log n})$-PR.
Prior Work

- [B L 2009] Exact alg for max cut under $\Omega(\sqrt{n})$-PR
- [A B S 2010] Exact alg for center-based clustering under 3-PR
- [B L 2011] Exact alg for center-based clustering under $1 + \sqrt{2}$-PR
- [M M V 2014] Exact alg for min multiway cut under 4-PR and max cut clustering under $\Omega(\sqrt{\log n \log \log n})$-PR.
- More results: TSP, Nash Equilibria...
Prior Work

- [B L 2009] Exact alg for max cut under $\Omega(\sqrt{n})$-PR
- [A B S 2010] Exact alg for center-based clustering under 3-PR
- [B L 2011] Exact alg for center-based clustering under $1 + \sqrt{2}$-PR
- [M M V 2014] Exact alg for min multiway cut under 4-PR and max cut clustering under $\Omega(\sqrt{\log n \log \log n})$-PR.
- More results: TSP, Nash Equilibria...

Our results:
- Exact alg for asymmetric k-center under 3-PR
- Exact alg for k-center under 2-PR, tight lower bound
- Robust results
Asymmetric k-center under 3-PR

Theorem: Polynomial algorithm for AKC under 3-PR.
Asymmetric k-center under 3-PR

Theorem: Polynomial algorithm for AKC under 3-PR.

- Idea: “bad” points for which $d(p, c_i) \gg d(c_i, p)$ are hard to deal with
Asymmetric k-center under 3-PR

Theorem: Polynomial algorithm for AKC under 3-PR.

- Idea: “bad” points for which $d(p, c_i) >> d(c_i, p)$ are hard to deal with
Asymmetric k-center under 3-PR

Theorem: Polynomial algorithm for AKC under 3-PR.

- Idea: “bad” points for which $d(p, c_i) >> d(c_i, p)$ are hard to deal with
Asymmetric k-center under 3-PR

Theorem: Polynomial algorithm for AKC under 3-PR.

- Idea: “bad” points for which $d(p, c_i) \gg d(c_i, p)$ are hard to deal with.
Asymmetric k-center under 3-PR

Theorem: Polynomial algorithm for AKC under 3-PR.

- Idea: “bad” points for which $d(p, c_i) >> d(c_i, p)$ are hard to deal with.
Asymmetric k-center under 3-PR

Theorem: Polynomial algorithm for AKC under 3-PR.

- Idea: “bad” points for which $d(p, c_i) >> d(c_i, p)$
- are hard to deal with
- Can we find a subset of points that behave “symmetrically”?

[Diagram of point distribution with red and black points]
Asymmetric \(k \)-center under 3-PR

Theorem: Polynomial algorithm for AKC under 3-PR.

- Idea: “bad” points for which \(d(p, c_i) >> d(c_i, p) \) are hard to deal with
- Can we find a subset of points that behave “symmetrically”?

Set of all points \(p \) that the following holds:

For all points \(q \), if \(d(q, p) \leq r^* \) then \(d(p, q) \leq r^* \) as well.

\[
A = \{ p \mid \forall q, \ d(q, p) \leq r^* \implies d(p, q) \leq r^* \}
\]
Properties of Set A
Properties of Set A

$$A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}$$
Properties of Set \(A \)

\[
A = \{p \mid \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}
\]
Properties of Set A

$$A = \{ p \mid \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}$$
Properties of Set A

$A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}$
Properties of Set A

$$A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}$$

We would like to show that A is representative of the clustering instance
We would like to show that A is representative of the clustering instance.

Fact 1: All centers are in A.

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]
Properties of Set A

$$A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}$$

We would like to show that A is representative of the clustering instance

Fact 1: All centers are in A.

Fact 2: In A: Two points within distance r^* are from the same cluster.
Properties of Set A

$$A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}$$

We would like to show that A is representative of the clustering instance

Fact 1: All centers are in A.

Fact 2: In A: Two points within distance r^* are from the same cluster.

Fact 3: Outside A: For $p \not\in A$ and $q \in A$ that has the smallest $d(q, p)$ and q belong to the same cluster.
Algorithm

1. Create the set \(A \).
2. Threshold \(A \) based on \(r^* \).
3. Add edge from \(p \not\in A \) to \(q \in A \) with smallest \(d(q,p) \).
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q, p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

Diagram: A collection of points with some edges connecting them, illustrating the algorithm's steps.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

![Diagram showing a set of points with some points marked as belonging to the set A and others not.]
1. Create the set A.

2. Threshold A based on r^*.

3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

✓ Has the centers.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.

✓ Has the centers.

Fact 1
All centers are in A.

Has the centers.
1. Create the set \(A \).
2. Threshold \(A \) based on \(r^* \).
3. Add edge from \(p \not\in A \) to \(q \in A \) with smallest \(d(q,p) \).

✓ Has the centers.
1. Create the set A.

2. Threshold A based on r^*.

3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

✓ Has the centers.
Algorithm

1. Create the set A.
2. Threshold A based on r^\ast.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.

✓ Has the centers.
Algorithm:

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

✓ Has the centers.
✓ A center and its points in A have edges.
1. Create the set A.

2. Threshold A based on r^*.

3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.

Definition of radius

Points are at distance $\leq r^*$ from their center.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.
- No edge between points from two different optimal clusters.
Algorithm

1. Create the set A.

2. Threshold A based on r^*.

3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.
- No edge between points from two different optimal clusters.

Fact 2

In A: Two points $\leq r^*$ are from the same cluster.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.
- No edge between points from two different optimal clusters.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

✓ Has the centers.
✓ A center and its points in A have edges.
✓ No edge between points from two different optimal clusters.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.
- No edge between points from two different optimal clusters.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.
- No edge between points from two different optimal clusters.
- Each set corresponds to one cluster.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.
- No edge between points from two different optimal clusters.
- Each set corresponds to one cluster.

Fact 3

p is in the same optimal cluster as the point in A closest to it.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \notin A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.
- No edge between points from two different optimal clusters.
- Each set corresponds to one cluster.
Algorithm

1. Create the set A.
2. Threshold A based on r^*.
3. Add edge from $p \not\in A$ to $q \in A$ with smallest $d(q,p)$.

- Has the centers.
- A center and its points in A have edges.
- No edge between points from two different optimal clusters.
- Each set corresponds to one cluster.
A Useful Lemma
A Useful Lemma

Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.

82
A Useful Lemma

Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.
A Useful Lemma

Lemma
For all \(p \in C_i \) and \(i \neq j \), \(d(p, c_j) > 2r^* \).

Proof: If not, For all \(q \in C_j \), we have \(d(p, q) \leq 3r^* \).
A Useful Lemma

Lemma
For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*.$

Proof: If not, For all $q \in C_j$, we have $d(p, q) \leq 3r^*.$
A Useful Lemma

Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.

Proof: If not, For all $q \in C_j$, we have $d(p, q) \leq 3r^*$.

[Diagram showing points p and q with distances marked]
A Useful Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.

Proof: If not, for all $q \in C_j$, we have $d(p, q) \leq 3r^*$.

![Diagram showing points and distances]
A Useful Lemma

Proof: If not, For all \(q \in C_j \), we have \(d(p, q) \leq 3r^* \).
A Useful Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.

Proof: If not, For all $q \in C_j$, we have $d(p, q) \leq 3r^*$.

3-perturbation:
Increase all distances by a factor 3, except $d(p, C_j)$, increase by a factor 3 up to $3r^*$.

A Useful Lemma

Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.

Proof: If not, For all $q \in C_j$, we have $d(p, q) \leq 3r^*$.

3-perturbation:

Increase all distances by a factor 3, except $d(p, C_j)$, increase by a factor 3 up to $3r^*$.

q p
A Useful Lemma

Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.

Proof: If not, For all $q \in C_j$, we have $d(p, q) \leq 3r^*$.

3-perturbation:

Increase all distances by a factor 3, except $d(p, C_j)$, increase by a factor 3 up to $3r^*$.

For all $q \in C_j$, $d'(p, q) \leq 3r^*$.

91
A Useful Lemma

Lemma

For all \(p \in C_i \) and \(i \neq j \), \(d(p, c_j) > 2r^* \).

Proof: If not, For all \(q \in C_j \), we have \(d(p, q) \leq 3r^* \).

3-perturbation:

Increase all distances by a factor 3, except \(d(p, C_j) \), increase by a factor 3 up to \(3r^* \).

For all \(q \in C_j \), \(d'(p, q) \leq 3r^* \).

\(p \) is a center of \(C_j \) with cost \(\leq 3r^* \).
A Useful Lemma

Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.

Proof: If not, For all $q \in C_j$, we have $d(p, q) \leq 3r^*$.

3-perturbation:

Increase all distances by a factor 3, except $d(p, C_j)$, increase by a factor 3 up to $3r^*$.

For all $q \in C_j$, $d'(p, q) \leq 3r^*$.

\rightarrow p is a center of C_j with cost $\leq 3r^*$.

\rightarrow The original clustering has cost $\geq 3r^*$.

A Useful Lemma

For all $p \in C_i$ and $i \neq j$, $d(p, c_j) > 2r^*$.

Proof: If not, For all $q \in C_j$, we have $d(p, q) \leq 3r^*$.

3-perturbation:

Increase all distances by a factor 3, except $d(p, C_j)$, increase by a factor 3 up to $3r^*$.

For all $q \in C_j$, $d'(p, q) \leq 3r^*$.

$\rightarrow p$ is a center of C_j with cost $\leq 3r^*$.

\rightarrow The original clustering has cost $\geq 3r^*$.

Contradicts perturbation resilience.
Proof of Fact 1 & 2
Proof of Fact 1 & 2

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]
Proof of Fact 1 & 2

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in \(A \).
Proof of Fact 1 & 2

\[
A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}
\]

Fact 1: All centers are in \(A \).
Proof of Fact 1 & 2

\[A = \{p \mid \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^*\} \]

Fact 1: All centers are in \(A \).

All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.
Proof of Fact 1 & 2

$$A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \}$$

Fact 1: All centers are in A.

All $q \in C_i$ have $d(c_i, q) \leq r^*$ already.
Proof of Fact 1 & 2

\[A = \{p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in \(A \).

All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.

All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).
Proof of Fact 1 & 2

\[A = \{ p \mid \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in A.

All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.

All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In A: Two points \(\leq r^* \) are from the same cluster.
Proof of Fact 1 & 2

\[A = \{ p \mid \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in \(A \).

- All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.
- All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In \(A \): Two points \(\leq r^* \) are from the same cluster.

If not, there exists \(p, q \) from different clusters in \(A \) such that \(d(p, q) \leq r^* \).
Proof of Fact 1 & 2

\[A = \{p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in A.

All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.

All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In A: Two points \(\leq r^* \) are from the same cluster.

If not, there exists \(p, q \) from different clusters in A such that \(d(p, q) \leq r^* \).
Proof of Fact 1 & 2

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in A.

All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.

All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In A: Two points \(\leq r^* \) are from the same cluster.

If not, there exists \(p, q \) from different clusters in A such that \(d(p, q) \leq r^* \).
Proof of Fact 1 & 2

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in \(A \).

All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.

All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In \(A \): Two points \(\leq r^* \) are from the same cluster.

If not, there exists \(p, q \) from different clusters in \(A \) such that \(d(p, q) \leq r^* \).

All \(q \in A \cap C_j, d(q, c_j) \leq r^* \).
Proof of Fact 1 & 2

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in \(A \).

- All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.
- All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In \(A \): Two points \(\leq r^* \) are from the same cluster.

If not, there exists \(p, q \) from different clusters in \(A \) such that \(d(p, q) \leq r^* \).

- All \(q \in A \cap C_j \), \(d(q, c_j) \leq r^* \).
Proof of Fact 1 & 2

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in \(A \).

All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.

All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In \(A \): Two points \(\leq r^* \) are from the same cluster.

If not, there exists \(p, q \) from different clusters in \(A \) such that \(d(p, q) \leq r^* \).

All \(q \in A \cap C_j \), \(d(q, c_j) \leq r^* \).

So,
Proof of Fact 1 & 2

\[A = \{p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in \(A \).

All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.

All \(q \notin C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In \(A \): Two points \(\leq r^* \) are from the same cluster.

If not, there exists \(p, q \) from different clusters in \(A \) such that \(d(p, q) \leq r^* \).

All \(q \in A \cap C_j \), \(d(q, c_j) \leq r^* \).

So, \(d(p, c_j) \leq d(p, q) + d(q, c_j) \leq 2r^* \)
Proof of Fact 1 & 2

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: All centers are in \(A \).

- All \(q \in C_i \) have \(d(c_i, q) \leq r^* \) already.
- All \(q \not\in C_i \) are \(d(q, c_i) \geq 2r^* \) away (by the lemma).

Fact 2: In \(A \): Two points \(\leq r^* \) are from the same cluster.

If not, there exists \(p, q \) from different clusters in \(A \) such that \(d(p, q) \leq r^* \).

- All \(q \in A \cap C_j \), \(d(q, c_j) \leq r^* \).
- So, \(d(p, c_j) \leq d(p, q) + d(q, c_j) \leq 2r^* \)

Contradicts the lemma.
Proof of Fact 3

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: If \(p \in C_i \), then \(\arg\min_{q' \in A} d(q', p) \in C_i \)
Proof of Fact 3

\[A = \{ p | \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: If \(p \in C_i \), then \(\arg\min_{q' \in A} d(q', p) \in C_i \)

Assume \(\exists p \in C_i \) such that \(\arg\min_{q' \in A} d(q', p) = q \notin C_i \)
Proof of Fact 3

\[A = \{ p \mid \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: If \(p \in C_i \), then \(\arg\min_{q' \in A} d(q', p) \in C_i \)

Assume \(\exists p \in C_i \) such that

\(\arg\min_{q' \in A} d(q', p) = q \notin C_i \)
Proof of Fact 3

\[A = \{ p \mid \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: If \(p \in C_i \), then \(\text{argmin}_{q' \in A} d(q', p) \in C_i \)

Assume \(\exists p \in C_i \) such that

\(\text{argmin}_{q' \in A} d(q', p) = q \notin C_i \)

Construct an \(\alpha \)-perturbation in which

\(q \) becomes the center of \(C_j \)

\(q \) must capture \(p \)
Proof of Fact 3

\[A = \{ p \mid \forall q, d(q, p) \leq r^* \implies d(p, q) \leq r^* \} \]

Fact 1: If \(p \in C_i \), then \(\arg\min_{q' \in A} d(q', p) \in C_i \)

Assume \(\exists p \in C_i \) such that \(\arg\min_{q' \in A} d(q', p) = q \notin C_i \)

Construct an \(\alpha \)-perturbation in which \(q \) becomes the center of \(C_j \)

\(q \) must capture \(p \)

Contradiction
AKC vs k-center
AKC vs k-center

✓ Polytime algorithm for AKC under 3-PR.
AKC vs k-center

✓ Polytime algorithm for AKC under 3-PR.
 Also: Polytime algorithm for k-center under 2-PR
AKC vs k-center

✓ Polytime algorithm for AKC under 3-PR.
 Also: Polytime algorithm for k-center under 2-PR

• Both have a (2-\(\varepsilon\))-PR lower bound
AKC vs k-center

- Polytime algorithm for AKC under 3-PR.
 Also: Polytime algorithm for k-center under 2-PR
- Both have a $(2-\varepsilon)$-PR lower bound

In fact, AKC and k-center are equivalent in difficulty under 2-approximation stability
Lower Bounds

Hardness:

No polynomial time algorithm for symmetric k-center under $(2-\varepsilon)$-perturbation resilience, unless NP=RP.
Lower Bounds

Hardness:

No polynomial time algorithm for symmetric k-center under $(2-\varepsilon)$-perturbation resilience, unless NP=RP.

Reduction by unambiguous-perfect dominating set, used to show $(2-\varepsilon)$-center proximity is NP-hard.
No polynomial time algorithm for symmetric k-center under $(2-\varepsilon)$-perturbation resilience, unless NP=RP.

Reduction by unambiguous-perfect dominating set, used to show $(2-\varepsilon)$-center proximity is NP-hard

Perfect: each vertex hit by exactly one dominator
- NP-Hard [BR’14]
Lower Bounds

Hardness:

No polynomial time algorithm for \textit{symmetric} \(k\)-center under \((2-\varepsilon)\)-perturbation resilience, unless \(\text{NP}=\text{RP}\).

Reduction by unambiguous-perfect dominating set, used to show \((2-\varepsilon)\)-center proximity is \(\text{NP}\)-hard

Perfect: each vertex hit by exactly one dominator
• \(\text{NP-Hard} \ [\text{BR’14}]\)

Unambiguous: at most one solution
• \(\text{U3SAT} \text{ is hard unless } \text{NP}=\text{RP} \ [\text{VV’86}]\)
Robust Stability Conditions
Robust Stability Conditions

α-perturbation resilience:
Optimal clustering does not change under α-perturbations.
Robust Stability Conditions

α-perturbation resilience:
Optimal clustering does not change under α-perturbations.

Robust: (α, ε)-perturbation resilience
Optimal clustering changes by $\leq \varepsilon$ under α-perturbations.
Robust Stability Conditions

\(\alpha \)-perturbation resilience:
Optimal clustering does not change under \(\alpha \)-perturbations.

Robust: \((\alpha, \varepsilon)\)-perturbation resilience
Optimal clustering changes by \(\leq \varepsilon \) under \(\alpha \)-perturbations.

Results:
• Single linkage finds exact k-center under \((4, \varepsilon)\)- PR.
• More results for robust approximation stability.
Conclusion

• Polytime alg for AKC under 3-PR
• Polytime alg for k-center under 2-PR, tight

Theoretical Significance
• First time a problem with no constant factor approximation has an exact algorithm, when assuming just constant stability
• First tight results in this area
• Symmetric and asymmetric become nearly same difficulty

Practical Significance
• Only a small window of values for which perturbation resilience is interesting
Open Questions

• α, ε-PR for asymmetric k-center
• Gap between $(2-\varepsilon)$-PR hardness and 3-PR for asymmetric k-center
• Can we also get 2-PR for k-median and k-means??

Questions?