Data Mining on Large Graphs

Christopher R. Palmer Phillip B. Gibbons
Computer Science Department Information Sciences Research Center
Carnegie Mellon University Bell Laboratories
Pittsburgh, PA Murray Hill, NJ
crpalmer@cs.cmu.edu gibbons@research.bell-labs.com

Christos Faloutsos*

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA
christos@cs.cmu.edu

Abstract

Graphs are an increasingly important data source, with such important graphs as the Internet
and the Web. Other familiar graphs include CAD circuits, phone records, gene sequences,
city streets, social networks and academic citations. Any kind of relationship, such as actors
appearing in movies, can be represented as a graph. This work presents a data mining tool, called
ANF, that can quickly answer a number of interesting questions on graph-represented data, such
as the following. How robust is the Internet to failures? What are the most influential database
papers? Are there gender differences in movie appearance patterns? At its core, ANF is based on
a fast and memory-efficient approach for approximating the complete “neighbourhood function”
for a graph. For the Internet graph (268K nodes), ANF’s highly-accurate approximation is more
than 700 times faster than the exact computation. This reduces the running time from nearly
a day to a matter of a minute or two, allowing users to perform ad hoc drill-down tasks
and to repeatedly answer questions about changing data sources. To enable this drill-down,
ANF employs new techniques for approximating neighbourhood-type functions for graphs with
distinguished nodes and/or edges. When compared to the best existing approximation, ANF’s
approach is both faster and more accurate, given the same resources. Additionally, unlike
previous approaches, ANF scales gracefully to handle disk resident graphs. Finally, we present
some of our results from mining large graphs using ANF.
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1 Introduction

Graph-based data is becoming more prevalent and interesting to the data mining community, for
example in understanding the Internet and the WWW. These entities are modeled as graphs where
each node is a computer, administrative domain of the Internet, or a web page, and each edge
is a connection (network or hyperlink) between the resources. Google is interested in finding the
most “important” nodes in such a graph [2]. Broder et al. studied the connectivity information
of nodes in the Internet [13, 3]. The networking community has used different measures of node
“importance” to build a hierarchy of the Internet [20]. Another source of graph data that has been
studied are citation graphs [18]. Here, each node is a publication and each edge is a citation from
one publication to another and we wish to know the most important papers. There are many more
examples of graphs which contain interesting information for data mining purposes. For example,
the telephone calling records from a long distance carrier can be viewed as a graph, and by mining
the graph we may help identify fraudulent behaviour or marketing opportunities. DNA sequencing
can also be viewed as a graph, and identifying common subsequences is a form of mining that could
help scientists. Circuit design, for example from a CAD system, forms a graph and data mining
could be used to find commonly used components, points of failure, etc.

In fact, any binary relational table is a graph. For example, in this paper we use a graph
derived from the Internet Movie Database [10] where we let each actor and each movie be a node
and add an undirected edges between and actor, a, and a movie, m, to indicate that a appeared in
m. It is also common to define graphs for board positions in a game. We will consider the simple
game of tic-tac-toe. From all of these data sources, we find some prototypical questions which have
motivated this work:

1. How robust is the Internet to failures?

2. Is the Canadian Internet similar to the French?

3. Does the Internet have a hierarchical structure?

4. Are phone call patterns (caller-callee) in Asia similar to those in the U.S.?
5. Does a new circuit design appear similar to a previously patented design?
6. What are the most influential database papers?

7. Which set of street closures would least affect traffic?

8. What is the best opening move in tic-tac-toe?

9. Are there gender differences in movie appearances?

10. Cluster movie genres.

It is possible to answer all of these questions by computing three graph properties pertaining
to the connectivity or neighbourhood structure of the graph:



Graph Similarity: Given two graphs, G; and G2, do the graphs have similar connectivity /
neighbourhood structure (independent of their sizes). Such a similarity measure is useful for an-
swering questions 1, 4, and 5.

Subgraph Similarity: Given two subsets of the vertices of the graph, V; and V5, compare how
these two induced subgraphs are connected within the graph. Such a similarity measure is useful
for answering questions 2, 4, 8, 9, and 10.

Vertex Importance: Assign an importance to each node in the graph based on the connectivity.
This importance measure is useful for answering questions 1, 3, 6, and 7.

We answer questions 1, 7 and 10 in this paper, one from each of the three types. The remaining
questions can be answered in a similar fashion, using various forms of the Neighbourhood Function.
The basic neighbourhood function N (h) for a graph, also called the hop plot [8], is the number of
pairs of nodes within a specified distance h, for all distances h. In section 2 we will define this
more formally and present a more general form of the neighbourhood function that can be used to
compute all three graph properties.

The main contribution of this paper is a tool that allows us to compute these three graph
properties, thereby enabling us to answer interesting questions like those we suggested. Beyond
simply answering the questions, we want our tool to be fast enough to allow drill-down tasks. That
is, we want it to be possible to interactively answer users requests. For example, to determine
the best roads to close for a parade, the city planner would want to interactively consider various
sets of street closures and compare the effect on traffic. Almost in contrast to the need to be able
to run interactively on graphs, we also want a tool that scales to very large graphs. In [3, 13],
measuring properties about the web required hardware resources that are beyond the means of
most researchers. Instead, we produce a data mining tool that is useful given any amount of RAM.
These two goals give rise to the following list of properties that our tool must satisfy when analyzing
a graph with n nodes and m edges:

Error guarantees: estimates must be accurate at all distances (not just in the limit).

Fast: scale linearly with # of nodes and # edges (n,m).

Low storage requirements: use only O(n) additional storage.

Adapts to the available memory: when the node set does not fit in memory, make effective
use of the available memory.

Parallelizable: for massive graphs, must be able to distribute the work over multiple processors
and/or multiple workstations, with low overheads.
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Figure 1: ANF algorithms scale but not the others

Sequential scans of the edge file: avoid random accesses to the graph. Random accesses
exhibit horrible paging performance for the common case that the graph is larger than the available
memory.

Estimates per node: must be able to estimate the neighbourhood function from each node, not
just for the graph as a whole.

This paper presents such a tool, which we call ANF for Approximate Neighbourhood Function.
In the literature, we have found two existing approaches that could prove useful for computing
the neighbourhood function. We show that neither meets our requirements, primarily because
neither scales well to very large graphs. This can be seen in Figure 1, which plots the running
time versus the graph size for some randomly-generated graphs. The two existing approaches (the
RI approximation scheme [4] and a random sampling approach) scale very poorly while our ANF
schemes scale much more gracefully and make it possible to investigate much larger graphs. In
section 2 we provide background material, definitions and a survey of the related work. In section 3
we describe our ANF algorithms. In section 4, we present experimental results demonstrating the
scalability of our approach. In addition, we show that, given the same resources, (1) ANF is much
more accurate and faster then the RI approximation scheme, and (2) ANF is more than 700 times
faster than the exact computation for a snapshot of the Internet graph (268K nodes). In section 5,
we use ANF to answer some of the prototypical questions posed in this introduction.

2 Background and Related Work

2.1 Definitions

Let G = (V, E) be a graph with n vertices, V, and m directed edges, E. (Table 1 summarizes
the symbols used in this paper.) Let dist(u,v) be the number of edges on the shortest path from
u to v. To answer our prototypical questions, we need a characterization of a node’s connectivity
and the connectivity within a graph, as a whole. Accordingly, we define the following forms of the



Table 1: Commonly used symbols

Name Description

Number of vertices
Number of edges
Vertex set {0,1,---,n —1}
Edge set {(u,v) : u,v € V}
Diameter of the graph
Starting set for the neighbourhood
Concluding set for the neighbourhood
Number of extra approximation bits
Number of parallel approximations

>sQunam<3 s

neighbourhood function:

Def. 1 The individual neighbourhood function for u at h is the number of nodes at distance h or
less from w.

IN(u,h) =| {v:v e V,dist(u,v) < h} |
Def. 2 The neighbourhood function at h is the number of pairs of nodes within distance h.

N(h) =] {(u,v) : u € V,v € V,dist(u,v) < h} |, or

N(h) = Syey IN(u, h).

To deal with subgraphs, we generalize these two definitions slightly. Let S be a set of starting
nodes and C be a set of concluding nodes. We are interested in the number of pairs starting from
a node in S to a node in C within distance h:

Def. 3 The generalized individual neighbourhood function for u at h given C is the number of
nodes in C within distance h.

IN*t(u,h,C) = | {v:v e C,dist(u,v) <h} |
Note that IN(u,h) = INT(u,h,V).
Def. 4 The generalized neighbourhood function at h is the number of pairs of a node from S and
a node from C that are within distance h or less.

N*t(h,S,C) = {(u,v) :u € S,v € C,dist(u,v) <h} |

Nt(h,S,C) =3 es INT(u, h,C).
Note that N(h) = N*(h,V,V).

In section 5 we will use the neighbourhood function to characterize graphs. We will compare
Ng, (h) to Ng,(h) to measure the similarity in connectivity/neighbourhood structure of graphs
G1 and G9. For example, if we want to know the structural similarly of the Web from 1999 to
today’s Web, we can compute their neighbourhood functions and compare them at all points.
Comparing subgraphs induced by vertex sets V; and V5 can be done by comparing Nt (h, Vi, V1) to
N(h,V5,V3). E.g., let V; be the routers in the Canadian domain and V5 be the routers in the French
domain. Finally, we will use the individual neighbourhood function for a node to characterize its
importance, with respect to the connectivity. E.g., the most important router is the one that in
some way reaches the most routers the fastest.

Thus, if we can compute all these variants of the neighbourhood function efficiently, then we
can answer the graph questions that we posed in the introduction.



2.2 Related Work

It is trivial to compute N (0) and N(1), which are |V| and |V|+|E| respectively. N(2) is reminiscent
of the size of the (self-)join of the edge relation: each edge is viewed as a tuple with attributes “first”
and “second” and N(2) — N(1) is the size of the result of the query

select distinct E1.first, E2.second
from edge-rel E1, edge-rel E2
where El.second = E2.first

Writing N(2) — N(1) in this way illustrates the difficulty in efficiently computing N (h) for any
h > 2. The distinct means that we must know which of the n? possible pairs of nodes have already
been counted and we must take care not to over count in the presence of multiple paths between
the same pair of nodes. One approach to computing N(h) is to repeatedly multiply the graph’s
adjacency matrix. Asymptotically, this could be done in O(n?-38) time. Unfortunately, we would
also require O(n?) memory, which is prohibitive. Instead, it is common to use breadth first searches
in the graph. A breadth-first search beginning from u can easily compute I N (u, h) for all h. We can
compute N(h) by running a breadth-first search from each node u and summing over all u. This
takes only O(n + m) storage but the worse case running time is O(nm). For large, disk resident
graphs, a breadth-first search results in an expensive random-like access to the disk blocks. This
appears to be the state of the art solution for exact computation of N(h).

The transitive closure is N(oo) or, equivalently, N(d), where d is the diameter of the graph.
Lipton and Naughton [14] presented an O(n/m) algorithm for estimating the transitive closure
that uses an adaptive sampling approach for selecting starting nodes of breadth-first traversals.
Motivated by this work, in section 4 we will experimentally evaluate a similar sampling strategy to
discover that it scales poorly to large graphs and, due to the random-like access to the edge file,
it does not scale to graphs larger than the RAM. Most importantly, however, we will find that the
quality of this approximation can be quite poor (we show an example where even a sample as large
as 15% does not provide a useful approximation!). Lipton and Naughton’s work was improved by
Cohen, who gave an O(m) time algorithm using only O(n+m) memory [4]. Cohen also presented an
O(mlogn) time algorithm for estimating the individual neighbourhood functions, IN(u, h). This
appears to be the only previous work which attempts to approximate the neighbourhood function.
More details of this algorithm, which we refer to as the RI approzimation, appear in section 4.1.1
when we experimentally compare it to our new approximation. Our experiments demonstrate that
the RI approximation is ill-suited for large graphs; this is due to its extensive use of random-like
access (for breadth first search, heap data structures, etc.).

The problems of random access to a disk resident edge file has been addressed in [15]. They
find that it is possible to define good storage layouts for undirected graphs but that the storage
blowup can be very large. Given that we are interested only in very large graphs and graphs with
directed edges, this does not solve the problems related to large edge files. Instead, we will need to
find a new computation strategy which avoids random access to disk.

State-of-the-art approaches to understanding/characterizing the Internet and the Web very
often make use of neighbourhood information [3, 13, 1, 20]. Other recent work in data mining for
graphs has focused on mining frequent substructures. Essentially, the problem of finding frequent



/] Set M(z,0) = {x}
FOR each node 2 DO
M(z,0) = concatenation of k bitmasks
each with 1 bit set (P(bit i) = .5¢+1)
FOR each distance h starting with 1 DO
FOR each node z DO M (z,h) = M(z,h —1)
// Update M (z, h) by adding one step
FOR each edge (z,y) DO
M (z,h) = (M(z, h) BITWISE-OR M (y, h — 1))
// Compute the estimates for this h
FOR each node z DO
Individual estimate IN (z, h) = (2°)/.77351
where b is the average position of the least zero bits
in the k bitmasks
The estimate is: N(h) = 2oall x IN(z, h)

Figure 2: Introduction to the basic ANF algorithm

itemsets is generalized to frequent subgraphs. Systems for this include SUBDUE [5] and AGM [11].
Graphs have been used to improve marketing strategies [7]. A survey of work on citation analysis
appears in [18].

3 Proposed Approximation to the Neighbourhood Function

We are given a graph G = (V, E). We assume that V = {0,1,---,n — 1} and that E contains m
directed edges. Undirected graphs can be represented using pairs of directed edges. We wish to
approximate the function N*(h,S,C) and IN*(z, h, C) for a node z, allowing us to compute N (h)
and IN(z,h). The approximation must be done accurately and in such a way that we will be able to
handle disk resident graphs. In this section, we construct such an approximation gradually. First,
we approximate N(h) and/or IN(z,h) assuming memory-resident data structures. We extend
this algorithm to approximate N (h,S,C) and INT(z, h,C) but still requiring sufficient RAM for
processing. Next, we move the data structure to disk and to create an algorithm that meets all of
our requirements. Finally, we will extend this algorithm with bit compression to further increase
its speed.

3.1 Basic ANF Algorithm (ANF-0)

A graph traversal effectively accesses the edge file in random order. Thus, if our algorithm is going
to be efficient on a graph that does not fit in memory, we cannot perform any graph traversals.
Instead, we are going to build up the nodes reachable from z within h steps by first finding out
which nodes its neighbours can reach in A — 1 steps. Slightly more formally, let M(x, k) be the set
of nodes within distance h of z. Clearly, M(z,0) = {z}, since the only node within distance 0 of
z is z itself. To compute M(z,h) we note that z can still reach in h or fewer steps the nodes it
could reach in h — 1 or fewer steps. But, z can also reach the nodes in M(y,h — 1) if there is an
edge from z to y. That is:



z| M(z,0) | M@l IN(1)| M2 IN(3)
0 | 100100001 | 110110101 4.1 110111101 5.2
1 | 010100100 | 110101101 3.25 110111101 5.2
2 1100001100 | 110101 100 3.25 110111101 5.2
3 | 100100100 | 100111 100 4.1 110111101 5.2
4 | 100010100 | 100110101 3.25 110111101 5.2

Figure 3: Simple example of basic ANF

M(z,0) = {z} forallz € V
FOR each distance h DO
M(z,h) = M(z,h—1) forallz € V
FOR each edge (z,y) DO
M(z,h) = M(z,h) UM(y,h —1)

This iterates over the edge set instead of performing a traversal. The trick will be to efficiently
compute the number of distinct elements in M(z,h). One possibility is to use a dictionary data
structure (e.g., a B-tree) to represent the sets M(z, h). However, this approach needs O(n?logn)
time and space, which is prohibitive. An approach that people, particularly C hackers, often employ
is to use bits to mark membership. That is, each node is given one of n bits and a set is a bit string
of length n. To add a node to the set, we mark its bit. The union of two sets is the bitwise-OR of
the bitmasks. Unfortunately, this approach still uses O(n?) memory, which will be prohibitive for
large graphs.

Instead, we're going to use a clever probabilistic counting algorithm [9] to approximate the sizes
of the sets using shorter bit strings (logn + r bits, for some small constant 7). We refer to the
bit string that approximates M(z,h) as M (z,h). Instead of giving each node its own bit, we are
going to give about half the nodes bit 0, a quarter of them bit 1, and so on (give a node bit 7 with
probability 1/2¢+1). We still mark a node by setting its bit and use bitwise-OR for the set-union.
Estimating the size of the set from the small bit string is done based on the following intuition.
If we expect 25% of the nodes to be assigned to bit 1 and we haven’t seen any of them (bit 1 is
not set), then we probably saw about 4 or less nodes. So, the approximation of the size of the set
M(z,h) is proportional to 2°, where b is the least bit number in M (z,h) that has not been set.
We refer the reader to [9] for a derivation of the constant of proportionality and a proof that this
estimate has good error bounds.

A single approximation is obviously not very robust. We do k parallel approximations by
treating M (z, h) as a bit-string of length k(logn + r) bits. Figure 2 shows the complete algorithm
implementing the edge-scan based ANF.

Example. Figure 3 shows the bitmasks and approximations for a simple example of our most
basic ANF algorithm. The purpose is to clarify the concatenation of the bitmasks and to illustrate
the computation. The input is a 5 node undirected cycle and we used parameters £ = 3 and r = (.
The first FOR loop of the algorithms generates the table of random bitmasks M (z,0). That is, using
an exponential distribution, we randomly set one bit in each of the three concatenated bitmasks.
(In the figure, bit 0 is the leftmost bit in each 3-bit mask.) Then, each iteration uses the OR



FOR each node z DO
IF z € C THEN
Mecur(z) = concatenation of k bitmasks each
with 1 bit set (P(bit i) = .5¢+1)
FOR each distance h starting with 1 DO
FOR each node z DO Mlast(z) = Mcur(z)
FOR each edge (z,y) DO
Mecur(z) = (Mcur(z) BITWISE-OR Mlast(y))
FOR each node z DO
IN+(x, h,C) = (2)/.77351, where b is the average
position of the least zero bit in the k& bitmasks
N+(h,S,C) = ¥, cs IN(z,h,C)

Figure 4: ANF-0: In-core ANF

operation to combine the nodes that it could reach in h — 1 steps plus the ones that its neighbours
could reach in h — 1 steps. For example, M(2,1) is just M(1,1) OR M(2,1) OR M(3,1), because
nodes 1 and 3 are the neighbors of node 2. The estimates, for example 1 N (2,1), are computed
from the average of the least zero bit positions (2,1,1 = %, and 2%/3/.77359 = 3.25).

The algorithm in Figure 2 uses an excessive amount of memory and does not estimate the
more general forms of the neighbourhood function. Figure 4 depicts the same algorithm, with the
following improvements:

e M(x,h) uses M(y,h — 1) but never M(y, h — 2). Thus we use Mcur(z) to hold M(z,h) and
Mlast(y) to hold M(y,h — 1) during iteration h.

e The starting nodes, S, just changes the estimate by summing over € S instead of z € V. In
terms of implementation, this can be done by extending M cur to hold a marked bit indicating
membership in S.

e The concluding nodes change the h = 0 case. Now M(z,0) is {} if z ¢ C since it can reach
no nodes in C in zero steps. Thus nodes not in C are initially assigned a bitmask of all Os.

The ANF-0 algorithm meets all but one of the requirements set out in the introduction:
Error guarantees: each IN*(z,h,C) is provably estimated with low error with high confidence.

Fast: running time is O((n + m)d) which we expect to be fast since d is typically quite small
(verified in section 4).

Low storage requirements: only additional memory for Mcur and Mlast.

Adapts to the available memory? No! We will address this issue in the next section.



Easily parallelizable: Partition the nodes among the processors and then each processor may
independently compute Mcur for each z in its set. Synchronization is only needed after each
iteration.

Sequential scans of the edge file: Yes.
Estimates IN(z,h): Yes, with provable accuracy.

3.2 ANTF Algorithm

The ANF-0 algorithm no longer accesses the edges in random order, but we now access Mcur and
Mlast in an effectively random order. When we see the edge (z,y) we read and write M cur(z) and
read Mlast(y). If these tables are larger than the available memory, swapping will kill performance.
We propose a small amount of preprocessing, to make these accesses predictable. Our idea is to
break the large bitmasks Mcur and Mlast into b; and bs, resp., equal-sized pieces. We partition
the edges into b; X be buckets. In most cases, a one pass bucket sort can be used to partition the
edges. Given that we have partitioned the edges, we would like to run the following algorithm to
update M cur:

FOR each bucket i of Mcur DO
Load bucket ¢ of Mcur
FOR each bucket j of Mlast DO
Load bucket j of Mlast
FOR each edge (z,y) in bucket (i,7) DO
Mcur(z) = Mcur(z) OR Mlast(y)
Write bucket ¢ of Mcur

The cost of this algorithm is exactly the same cost as running ANF-0 plus the cost of the I/O
(we have simply reordered the original computation). If Mcur and Mlast are N bytes long, then
the cost of the I/O required to update the bitmasks is: 2N to load and store each bucket of Mcur
and by N to read Mlast once for each bucket of Mcur. That is, the cost of this I/O is (b; + 2)N.
Thus, we select b; and be such that b; is minimal, given that we have enough file descriptors to
efficiently perform the bucket sort in one pass.

Note that by reordering the computation to bucketize the edges, we now have very predictable
I/O. Thus, we will insert prefetching operations which allows the computation and the I/O to be
performed in parallel. The complete algorithm with prefetching appears in Figure 5.

This algorithm now meets all of our requirements.

3.3 Leading Ones Compressions (ANF-C)

ANF is an algorithm that will be dominated by the I/O costs for large data sets and by the cost of
the bit operations for smaller data sets. In both cases, we can further improve ANF by reducing
the number of bits of data that must be stored. First, observe that, as ANF runs, most of the

10



Select the number of buckets b1 and b2
Partition the edges into the buckets (sorted by bucket)
FOR each node z DO
IF z € C THEN
Mcur(z) = concatenation of k bitmasks each
with 1 bit set (P(bit i) = .5¢+1)
IF z € S THEN mark(Mcur(z))
IF current buffer is full THEN
switch buffers and perform I/0O
Flush any buffers that need to be written
FOR each distance h DO
Fetch the data for the first bucket of Mcur and Mlast
Prefetch next buckets of Mcur and Mlast
FOR each edge (z,y) DO
IF Mcur(y) is not in memory THEN
We have been flushing and prefetching it
Wait for it if necessary
Asynchronously flush modified buffer
Begin prefetching next buffer
IF Mlast(x) is not in memory THEN
We have been prefetching it
Wait for it if necessary
Begin prefetching next buffer.
Mcur(z) = (Mcur(z) OR Mlast(y))
// Copy Mcur(u) to Mlast(u) as we stream through M cur(u)
// computing the estimate
est =0
Fetch the data for the first bucket of Mcur
FOR each node z DO
IF Mcur(z) is not in memory THEN
We have been prefetching it
Wait for it to be available
Start prefetching the next buffer
Mlast(xz) = Mcur(z)
If z is the last element in its bucket of Mlast THEN
Asynchronously flush the buffer
Continue processing in the double buffer
IF marked(M cur(z)) THEN
IN*(z,h,C) = (2%)/.77351
est += INt(z,h,C)
where b is the average position of the least zero
bits in the k bitmasks
output N+ (h, S, C) = est

Figure 5: ANF: Disk based processing

11



bitmasks will gradually accumulate a relatively lengthy set of leading 1s. That is, the bitmasks are
of the form:

1111111110z zz 22T

It is wasteful to apply the bit operations and to write these leading 1s to disk. Instead, we
will compress them. Second, we can achieve even better compression by bit shuffling. We have k
parallel approximations, each of which has many leading ones. Instead of compressing each mask
individually, we interleave the bitmasks by taking the first bit of each mask, followed by the second
bit of each, etc. For example, with 2 masks:

11010,11100 = 1111011000

which gives rise to a larger number of leading ones. The ANF-C algorithm uses a counter of the
leading ones to reduce the amount of I/O and the number of bit operations. Like the mark bit,
this counter can be prepended to the bitmask. In our experiments, we will find that leading ones
compressions provide a significant speed-up, up to 23% in Figure 1.

4 Experimental Evaluation

In this section we present an experimental validation of our ANF approximation. Two alternative
approaches will be introduced and then we will describe our data sets. Next, we propose a metric for
comparing two neighbourhood functions (functions over a potentially large domain). We conduct
a sensitivity analysis of the parameter r. Then, we pick a value of r and we compare ANF to the
approximation presented in [4] for various settings of the parameter k. We then show that sampling
can provide very poor estimates and, finally, we examine the scalability of all approaches. The key
results from this section are to answer these questions:

1. Is ANF sensitive to r, the number of extra bits?
2. Is ANF faster than existing approaches?
3. Is ANF more accurate than existing approaches?

4. Does ANF really scales to very large graphs? Do the others?

4.1 Framework
4.1.1 RI approximation scheme

The RI approximation algorithm is based on the approximate counting scheme proposed in [4].
To estimate the number of distinct elements in a multi-set, assign each a random value in [0, 1]
and record the least of these values added to the set. The estimated size is the reciprocal of the
least value seen, minus 1. This approximate counting scheme was used to estimate the individual

12



Table 2: Data set characteristics

(n) (m) Degree Prac.
Name #Nodes | #Edges | Max. | Avg. | Diam. | Orient.
Cornell 844 1,647 131 | 1.95 9 Dir
Cycle 1,000 1,000 2| 2.00 500 | Undir
Grid 10,000 19,800 4| 1.98 100 | Undir
Uniform 65,378 | 199,996 20 | 3.06 8 | Undir
Cora 127,083 | 330,198 457 | 2.60 35 Dir
80-20 166,946 | 449,832 723 | 2.69 10 | Undir
Router 284,805 | 430,342 | 1,978 | 1.51 13 | Undir

neighbourhood functions with the following algorithm. We need to know for each node, u the
minimum value vy, of a node reachable from u in & hops. Then, the estimate for IN(u, h) is % —1.
An equivalent, but more efficient algorithm was presented which uses breadth-first searches. It was
shown that this improved procedure takes only O(mlogn) time (with high probability). To reduce
the variance in the estimates, the entire algorithm is repeated, averaging over the estimates.

4.1.2 Sampling

We can sample by selecting random edges, random nodes or random starting nodes for the breadth-
first search. Randomly selecting a set of nodes (and all edges for which both end-points are in this
set) and randomly selecting a set of edges is unlikely to produce a useful sample. For example,
imagine sampling a cycle — anything but a very large sample will leave disconnected arcs which
have very different properties. For completeness we verified that these approaches produced useless
estimates. The last approach is much more compelling. It is akin to the sampling done in [14].
Recall that the neighbourhood function is: N(h) =3,y IN(u, k). Rather than summing over all
nodes, u, we could sum over only a sample of the nodes while using breadth-first searches to compute
the exact IN(u,h). We call this method ezact-on-sample and it has the potential to provide great
estimates — a single sample of a cycle will provide an exact solution. However, experimentally we
find that this approach also has the potential to provide very poor estimates. Additionally, we find
that it does not scale to large graphs because of the random-like access to the edge file due to its
use of breadth-first search.

4.1.3 Experimental Data Sets

We have collected three real data sets and generated three synthetic data sets. These data sets have
a variety of properties and cover many of the potential applications of the neighbourhood function.
Some summary information is provided in Table 2. “Prac. Diam.” is the Practical Diameter which
we use informally to mean the distance which includes most of the pairs of points. We use three
real data sets:

Router: Undirected Internet routers data from ISI [19], including scans done by Lucent Bell
Laboratories [12].
Cornell: A crawl of the Cornell web site by Mark Craven.
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Figure 6: Results are not sensitive to r

Cora: The CORA project at JustResearch found research papers on the web and provided a cita-
tion graph [6].

and four synthetic data sets:

Cycle: A single simple undirected cycle (circle).
Grid: A 2D planar grid (undirected).
Uniform: Graph with random (undirected) edges.
80-20: Very skewed graph generated in an Internet like fashion with undirected edges using the
method in [17].

4.1.4 Evaluation Metric

We are approximating functions defined over d points. Let N be the true neighbourhood function
and N be the candidate approximation. To measure the error of N (h), we use the standard relative
error metric. To measure the overall error of N we use the Root Mean Square (RMS) of point-wise

relative errors. Thus, the error function, e, is:

. V 2
e(N, N) = \/ Ty eV (1))

Note that the RMS is computed beginning with h = 2. Since N(0) = |V| and N(1) = |E| we
do not require approximations for these points.

4.2 Results

4.2.1 Parameter Sensitivity

ANF has two parameters: the number of parallel approximations, k£, and the number of additional
bits, . The number of approximations, k, is a typical trade-off between time and accuracy. We
consider this in section 4.2.2 and fix £ = 64 for the time being. Additional experiments were run
with other values of £ which produced similar results. To measure the sensitivity we averaged the
RMS error over 10 trials for different values of r and the different data sets. These results appear
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in Figure 6 and we see that the accuracy is not very sensitive to the value of r. (The lines between
the points are a visual aid only.) We find » = 5 or r = 7 provide consistent results.

4.2.2 Accuracy

We now examine the accuracy of the ANF approximation. To do so, we compare our accuracy with
the RI approximation (the only existing approach). Now we fix » = 7 and consider three values of
k: 32, 64 and 128. We average the error over 10 trials of each approximation scheme. The first row
of Figure 7 shows the accuracy of each of the k values for each data set for each algorithm, while
the second row shows the corresponding running times. We see that:

e ANF’s error is independent of the data sets.

e RI approximation’s error varies significantly between data sets.

ANF achieves less than 10%, 7% and 5% errors for k = 32, k = 64 and k = 128, respectively.

RI has errors of 27%, 14% and 12% for k = 32, k = 64 and k = 128, respectively.

ANF is much faster than RI, particularly on the larger graphs, with up to 3 times savings.

Using much less time, ANF is much more accurate than RI.

Thus, even for the case of graphs the may be stored in memory, we have a significant improve-
ment.

4.2.3 Sampling

There are three problems with the described ezact-on-sample approach. First, it has heavy memory
requirements because fast breadth-first search requires that the edge file fit in memory. Second,
the quality is dependent on the graph because there are no bounds on the error. Third, it is not
possible to compute the individual neighbourhood functions. We now provide an example which
demonstrates the first two problems. Figure 8(a) helps illustrate our example graph. First, create
a chain of d — 2 nodes that start from a node r and end at a node z. Add N nodes to the center
of the graph, each of which has a directed edge to r and a directed edge from z. This graph has
diameter d and a neighbourhood function that is O(N) for each distance less than d and O(N?)
for distance d. Finally, define a set of s source nodes that have an edge to each of the N center
nodes and a set of ¢ terminal nodes that have an edge from each of the N center nodes. If N > s
and N > t, then the majority of the sampled nodes will be from the N center nodes and very
few will be from the s source nodes. This will result in an error that is a factor of around s/p for
exact-on-sample using a p% sample. We measure the error and the running time over 20 trials for
a variety of sample sizes ranging from .1% to 15% on a graph generated with N = 25,000, s = 100,
t = 100 and d = 6. Figure 8(b) shows the large errors, more than 20%, even for very large samples.

To illustrate the scalability issues for exact-on-sample, we constructed a graph with N =
250,000, s =t = 5 and d = 6. We then increase s and ¢ proportionately to generate larger
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Figure 8: Sampled breadth-first search can provide huge errors and does not scale to very large

edge files

graphs. Figure 8(c) shows that as the graph grows larger exact-on-sample scales about as well as
ANF but as soon as the edge file no longer fits in memory (approximately 27 million edges) we
see approximately a two order of magnitude increase in the running time of the exact-on-sample
approach. Thus, we conclude that exact-on-sample scales very poorly to graphs that are larger
than the available memory.
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Table 3: Wall clock running time (minutes)

Data Set | BF (Exact) | ANF | Speed-up
Uniform 92 | 0.34 270x
Cora, 6 14 4x
80-20 680 0.9 756x
Router 1,200 1.7 705x

4.2.4 Speed and Scalability

Table 3 reports wall-clock running times on an otherwise unloaded Pentium II-450 machine for
both the exact computation (Breadth-First search) and ANF with & = 64 parallel approximations.
We chose k = 64 since it provides much less than a 10% error, which should be acceptable for most
situations. The approximations are quite fast and, for the Router data set, we have reduced the
running time from approximately a day down to less than 2 minutes. This makes it possible to
run drill down tasks on much larger data sets than before. Overall, we find that ANF is up to 700
times faster than the exact computation on our data sets.

ANF also scales to much larger graphs than the alternatives. We generated random graphs
placing edges randomly between nodes. We increased the number of nodes and edges while pre-
serving an edge:node ratio of 8:1 (based on the average degree found in two large crawls of the
Web [3]). Figure 1 (in the introduction) shows the running times for the ANF variants, the RI
approximation and example-on-sample. Parameters for each alternative were chosen such that they
all had approximately the same running time for the first data point. These values are k = 32 for
the ANF variants, £ = 8 for RI and p = 0.0015 for exact-on-sample. We find that:

1. Exact-on-sample scales much worse than linearly. For a fixed sampling rate, we expect it to
scale quadratically when we increase the number of nodes and edges.

2. RI very quickly exhausts its resources due to its data structures. Because RI was not designed
to avoid the random accesses, it has horrible paging behaviour and, after about 2 million edges,
we had to stop its timing experiment.

3. ANF-0 suffers from similar swapping issues when it exhausts the memory at around 8 million
edges, and it too had to be stopped.

4. Approximate counting methods [9, 4] are not enough for disk resident graphs.

5. ANF/ANF-C scale the best, growing piece-wise linearly with the size of the graph. The break
points are: all data fits in memory (about 8 million edges), Mcur fits in memory (about 16
million edges) and neither fits in memory (the rest). This is as expected.

6. ANF-C offers up to a 23% speed-up over ANF.

Thus, ANF is the only algorithm that scales to large graphs and does so with a linear increase

in running time.
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Figure 9: ANF finds the best starting move for X

5 Data mining with our ANF Tool

With our highly-accurate and efficient approximation tool, ANF, it is now possible to answer some
of the prototypical graph mining questions that we posed in the introduction. Due to the limits of
page constraints and data availability, we will report on answers to only a representative sample
of those questions. However, all 10 questions can be answered by the same approaches that we
will now demonstrate. The approach is to compute various neighbourhood functions and then to
compare them. Our tool allows for a detailed comparison of these functions. However, comparing
neighbourhood functions requires that we compare two functions over potentially large domains (the
domain is {1,2,---,d}). Instead, in this paper we will focus on a summarized statistic derived from
the neighbourhood function, called the hop exponent. Many real graphs [8] have a neighbourhood
function that follows a power law N(h) o h™. The exponent, , has been defined as the hop
exponent (similarly, H, is the individual hop exponent for a node x).

There are three interesting observations about the hop exponent that make it an appealing
metric. First, if the power-law holds, the neighbourhood function will have a linear section with
slope H when viewed in log-log space. Second, the hop exponent is, informally, the intrinsic
dimensionality of the graph. A cycle has a hop exponent of 1 while a grid has a hop exponent of
2, which corresponds with some idea of their dimensionality. Third, if two graphs have different
hop exponents, there is no way that they could be similar. While not all neighbourhood functions
will actually follow a power-law, we have found that using the hop exponent still fairly reasonably
captures the growth of the neighbourhood function.

To compute the hop exponent, we first truncate the neighbourhood function at , the effective
diameter, then we compute the least-squares line of best fit in log-log space to extract the slope of
this line. The slope is the hop exponent of the graph and we use it as our measure of the growth
of a neighbourhood function. We define to be the least h such that it include 90% of the pairs of
nodes. We use the individual hop exponent, #,, as a measure of a node’s importance with respect
to the connectivity of a graph. We can answer some of the proposed questions.

5.1 Tic-Tac-Toe

Tic-tac-toe is a simple game in which two players, one using X and the other using 0, alternatively
place their mark on an unoccupied square in a 3x3 grid. The winner is the first player to connect
3 of their symbols in a row, column or diagonal. The best opening move for X is the center square,
the next best is any of the 4 corners and the worst moves are the 4 remaining squares. To verify
that our notion of importance has some potential use, we will use our ANF tool to discover this
same rule. Construct a graph where each node is a valid board and add an edge from board z to
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Figure 10: Movie genre clusters sorted in increasing hop exponent value

board ¥ to indicate that this is a possible move. Let C, the concluding set, be the set of all boards
in which X wins. Compute the individual neighbourhood functions for each of the 9 possible first
moves by X, which is their importance (speed at which they attain winning positions from each of
these moves). Figure 9 shows these importances along with the difference between each and the
best move. ANF determined the correct importance of each opening move. Using Figure 9(b),
we see that the center is only slightly better than a corner square which is, in turn, much better
than the remaining 4 squares. This shows both the correct ordering of the starting moves and the
relative importance of each.

5.2 Clustering movie genres

The Internet Movie Data Base (IMDB) [10] is a collection of relations about movies. We will map
a subset of the relations into graphs to illustrate questions that we can now answer thanks to our
ANF tool. First, construct the actor-movie graph by creating a node for each actor and a node
for each movie. An undirected edge is placed between an actor, a, and a movie, m, to indicate
an appearance by a in m. Let S be the nodes we created for the actors. We now employ another
relation of the IMDB. Each movie has been identified as being in one or more genres (such as
documentaries, dramas, comedies, etc). For each genre, we take the set of movies in that genre
and the set of actors which appear in one or more of those movies. We then cluster these graphs
by computing the hop exponents and forming clusters that have similar hop exponents (less than
0.1 difference). This clustering appears in Figure 10. One interesting cluster is mystery, musical,
western, war which actually corresponds to movies that are typically older. Finally, other fringe
genres such as Adult turn out to be well separated from the others.

5.3 Internet Router Data

In the networking community, a study used an early version of our ANF tool (ANF-0) to look at the
inherent robustness of the Internet. That is, the robustness that we observe from the topology itself.
Each router was a node and edges were used to indicate communication links. Here we reproduce
some of the results of this study, including Figure 11, from [16]. The goal is to determine how
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Figure 11: Effect of router failures on the Internet

robust the Internet is to router failures. As an experiment, we delete some number of routers and
then measure the total connectivity (number of pairs of routers that are still able to communicate)
and the hop exponent of the graph. The three lines differ in how the deleted routers are selected.
First, randomly selected nodes are deleted. Second, nodes are deleted in decreasing order of their
importance. Third, routers are deleted in decreasing order of their degree. Here we see some very
interesting results:

1. Random failures do not disrupt the Internet.

2. It may be possible to take a random sample of the Internet by deleting random routers and
adjacent edges. This appears possible because we found that the connectivity information
(hop exponent) is not significantly changed under random deletions.

3. Targeted failures of routers can very quickly and very dramatically disrupt the Internet.

This type of study was infeasible before our ANF tool as an exact computation would have required
over a year of computation time.

6 Conclusions

In this paper we presented 10 interesting data mining questions on graph data, proposed an efficient
and accurate approximation algorithm that gives us the tool, ANF, we needed to answer these
questions, and presented results for three of these questions on real-world data. We have found
ANF to be quite useful for these and other questions that can be addressed by studying the
neighbourhood structure of the underlying graphs (e.g., we have used ANF to study the most
important movie actors). We experimentally verified that ANF provides the following advantages:

Highly-accurate estimates: Provable bounds which we also verified experimentally, finding
less than a 7% error when using k = 64 parallel approximations (for all our synthetic and real-world
data sets).
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Is orders of magnitude faster: On the seven data sets used in this paper, our algorithm
is up to 700 times faster than the exact computation. It is also up to 3 times faster than the RI
approximation scheme.

Has low storage requirements: Given the edge file, our algorithm uses only O(n) additional
storage.

Adapts to the available memory: We presented a disk-based version of our algorithm and
experimentally verified that it scales with the graph size.

Can be parallelized: Our ANF algorithm may be parallelized with very few synchronization
points.

Employs sequential scans: Unlike prior approximations of the neighbourhood function, our
algorithm avoids random access of the edge file and performs one sequential scan of the edge file
per hop.

Individual neighbourhood functions for free: ANF computed approximations of the indi-
vidual neighbourhood functions as a byproduct of the computation. These approximations proved
to be very useful in identifying the “important” nodes in a graph.

Even for the case that graphs (and data structures) fit into memory, ANF represents a significant
improvement in speed and accuracy. When graphs get too large to be processed effectively in main
memory, ANF makes it possible to answer questions that would have been at least infeasible, if not
impossible, to answer before. In addition to its speed, we found the neighbourhood measures to be
useful for discovering the following answers to our prototypical questions:

1. We found the best opening moves to tic-tac-toe.
2. We clustered movie genres.

3. We found that the Internet is resilient to random failures while targeted failures can quickly
create disconnected components.

4. We found that sampling the Internet actually preserves some connectivity patterns while
targeted failures truly distort it.
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