Typed Assembly Language:
Type Theory for Machine Code

Karl Crary
Carnegie Mellon University

Certified code

* Goal: provide checkable evidence that a
given program is "safe”.
+ Key issues in design of a certified code
architecture:
* What do we mean by safety?

* What constitutes evidence of safety?

* What limitations must we impose on programs
for certification to work?

- How do we construct such evidence?

Familiar theme in PL

"Well-typed programs cannot go wrong."
— Milner's adage

Type safety theorem:

* Progress

From any well-typed (nonterminal) expression,
one can take an execution step.

+ Subject reduction

From a well-typed expression, an execution
step results in another well-typed expression.

» Corollary
No well-typed expression can become "stuck”.

Why is this safety?

» Design the operational semantics to
exclude any "bad" operations.

+ Example: operational semantics provides no
facility for arbitrary jumps.

» Usually the case without any special effort.

* Thus, any program is safe so long as it
stays within the operational semantics.

* Any program that "escaped” the
semantics would formally become stuck.

P> P, » P; —» P, & bad

Typed Assembly Language

* Goals:
+ Type system for machine code.
* Prove safety of TAL programs using the
conventional PL techniques.

- Basis of a certified code architecture:
+ Type safety is the notion of safety.

» The evidence is the program itself, plus typing
annotations.

+ Type-preserving compiler constructs the
evidence.

Type-preserving compilation

Preserve type information

during compilation. code fypes

- Optimization v v
Use type information for code types
enable additional optimization. .

» Debugging
Typecheck intermediate ’ '
representations to expose code types
errors.

TAL allows us to reap the benefits of
types throughout compilation.

Outline

- Overview of TAL

» Focusing on similarities to conventional type
theories

» Unique challenges facing low-level type
system design

» Payoffs to using type theory

Example

Naive exponential function:

fun exp (n:int) =
If n =0 then
1
el se
2 * exp(n-1)

Continuation-passing style

Pass control with jumps, rather than
function calls.

fun exp (n:int,k:int -0) =
If n = 0 then
k(1)
el se
let X = n-1
I N
exp(X,
AYy. let z = 2%y
| N

k(z))

Closed code blocks

fun exp[a](s:a,n:int,k:(a*int) -0) =
If n = 0 then

k(s, 1)
el se
let X = n-1
and s’ = (k,s)
In
exp[((a*int) -0)* a]
(s', X,
A(Sy). let z = 2%y
and k= m(s’)
and s = T,(S')
in

K(s,z))

TAL

Register-passing style (single argument
functions) and assembly language notation.

exp: code[p]{sp:p,rl:int,r2:{sp:p,rl:int} -0}.
bz r1, basecase|...]
sub rl1,r1,1 , X =n-1
push r2 , s’ =(k,s)
mov r2,contf]
jmp exp[{sp: p,rl:int} -0 p]
cont: code[pl{sp:({sp: p,rl:int} - 0:: p),rl:int}.
Imul r1,r1,2 , Z = 2%y
pop r2 k= T, (S"), S = TL,(S")

jmp r2

TAL's functional core

The heart of TAL is a lambda calculus
constrained by:

+ Continuation-passing style

* Closed code blocks

* Register-passing style

Of course, the devil is in the details . . .

Challenges

"Language design in an uncooperative
environment.”
* In user-level language design, you want high-
level abstractions that accomplish a lot.
- Convenient for programmers.
- Leads to nice type systems!
* For machine code, that's exactly what you do
not want.
* Machine code does not have large atomic operations.

» Safety of machine code can depend on very
complicated invariants.

Basic strategy

» Address the requirements of low-level
code with sophisticated type systems.
* Need not be programmer usable.
» But must be automatically checkable.

» Sacrifice some expressive power and
limit how instructions may be used.
+ Ultimate fallback: atomic instruction sequences.

Art: designing tractable type systems
that allow more expressive power.
* (Nothing very sophisticated in this talk.)

Typical problem: typing memory

* Need to know the type of contents of
any memory location you can read.

* Due to unknown aliasing, this is very
difficult to track.

» Can be unsound if you don't:

, suppose rl: <{...}-0,int>

mv r2,r1l o r2: <{...}-0,int>

st r1(0),12 ; rl1: <int,int> r2unchanged
ld r3,r2(0) ; r3: {...} -0 butcontains 12
jmp r3 . BAD

Fallback solution

Borrow solution from ML references:
+ Reference cells have a single, fixed type.
0 Aliases are unimportant, can't change the type.

0 To establish the invariant, need an atomic
allocate/initialize sequence.
- Reduce expressiveness, impede optimization.

mal l oc r1l, 2 :
st ri1(0), 12 atomic code
st ri(1), 15 sequence

conclude ril:<int,int>

Initialization flags [TOPLAS 99]

Separate allocation from initialization.
* Memory cells have a single, fixed type.

» Initialization flags track whether they are
filled yet.

+ Aliases may have inaccurate initialization
information, but only conservatively.

- Allocation is still atomic.

malloc rl,<int,int> : rl: <int9int%
st r1(0), 12 rl: <intl int%
st r1(1), 15 rl: <intl intil>

Beyond initialization flags

+ Allow the type of a memory cell to be
changed.

- Stacks [TIC98]
- Re-use stack slots.

+ Alias types [Smith, Walker, Morrisett 2000]

* Track aliased pointers and allow modification when all
aliases are known.

+ Allow explicit freeing of memory.

» Capabilities [POPL99]

* When memory is freed, revoke the capability to
access it.

* Challenge: typecheck a garbage collector.

Soapbox

* You get nice payoffs from using type
theory.
* When you live right, good things happen.

+ Key example: parametricity [Reynolds 83]

* Prototypical instance:
In the polymorphic lambda calculus, any function
with type Oa.a - a must be the identity.

- Provides the foundation for data abstraction.

» Can use parametricity to establish important
properties of TAL programs.
» With no special design to obtain those properties!

Callee-saves registers

» Can specify that r 1 is callee-save with
the type:

Ja.{rl:a,r2:{rl:a} -0} -0

In out

* Naive reading allows the function to
return a different value of type a.

* Parametricity says that the function
must returns the same value.
- Callee-saves is enforced, at no cost.

Problems in type system design

+ Expressiveness
(allow more correct code)

* Memory flexibility
» Sophisticated invariants
(e.g.,r1:if Pthent, else 1,)
- Security
(disallow more incorrect code)
+ Resource bounds [POPLOO]

* More complex safety policies [Walker 2000]
(e.g., no network send after disk read)

» Correctness properties
» Certified compilation

Moral

» Can do certified code using standard
type-theoretic techniques.

» Although the type systems can be novel,
the means of thinking about them are
well-understood.

+ Get the usual type-theoretic payoffs
(e.g., parametricity).

» Evidence is just the program plus type
annotations.

For more information

* Morrisett et al., 1999.
From System F to Typed Assembly
Language.

* Crary and Morrisett, 1999.

Type Structure for Low-Level Programming
Languages.

* Papers and software are available at
http://www.cs.cornell.edu/talc

