Substructural Parametricity

C. B. Aberlé =
Carnegie Mellon University, Pittsburgh, PA, USA

Karl Crary &
Carnegie Mellon University, Pittsburgh, PA, USA

Chris Martens &
Northeastern University, Boston, MA, USA

Frank Pfenning =
Carnegie Mellon University, Pittsburgh, PA, USA

—— Abstract

Ordered, linear, and other substructural type systems allow us to expose deep properties of programs

at the syntactic level of types. In this paper, we develop a family of unary logical relations that allow
us to prove consequences of parametricity for a range of substructural type systems. A key idea is to
parameterize the relation by an algebra, which we exemplify with a monoid and commutative monoid
to interpret ordered and linear type systems, respectively. We prove the fundamental theorem
of logical relations and apply it to deduce extensional properties of inhabitants of certain types.
Examples include demonstrating that the ordered types for list append and reversal are inhabited by
exactly one function, as are types of some tree traversals. Similarly, the linear type of the identity
function on lists is inhabited only by permutations of the input. Our most advanced example shows
that the ordered type of the list fold function is inhabited only by the fold function.

2012 ACM Subject Classification Theory of computation — Type structures

Keywords and phrases Substructural type systems, logical relations, ordered logic

Funding This material is based upon work supported by the United States Air Force Office of
Scientific Research under grant number A210038S002 (Tristan Nguyen, program manager). Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the AFOSR.

Acknowledgements The authors thank Bob Atkey and Stephanie Balzer for helpful comments

regarding related work.

1 Introduction

Substructural type systems and parametric polymorphism are two mechanisms for capturing
precise behavioral properties of programs at the type level, enabling powerful static reasoning.
The goal of this paper is to give a theoretical account of these mechanisms in combination.

Substructural type systems have been investigated since the advent of linear logic,
starting with the seminal paper by Girard and Lafont [18]. Among other applications, with
substructural type systems one can avoid garbage collection, update memory in place [27, 28],
make message-passing [16, 12] or shared memory concurrency [17, 35] safe, model quantum
computation [15], or reason efficiently about imperative programs [26]. Substructural type
systems have thus been incorporated into languages that seek to offer such guarantees, such
as Rust, Koka, Haskell, Oxidized OCaml, and ProtoQuipper.

Parametricity, originally introduced for System F [42], enables the idea that programs
whose types involve universal quantification over type parameters have certain strong semantic
properties. This idea supports powerful program reasoning principles such as representation

© C. B. Aberlé, Karl Crary, Chris Martens, and Frank Pfenning;

oY licensed under Creative Commons License CC-BY 4.0
10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025).
Editor: Maribel Fernandez; Article No. 4; pp.4:1-4:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:caberle@andrew.cmu.edu
https://orcid.org/0009-0006-6271-2718
mailto:crary@cs.cmu.edu
https://orcid.org/0000-0002-1556-2183
mailto:c.martens@northeastern.edu
https://orcid.org/0000-0002-7026-0348
mailto:fp@cs.cmu.edu
https://orcid.org/0000-0002-8279-5817
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

4:2

Substructural Parametricity

independence across abstraction boundaries [30] and “theorems for free” that can be derived
about all inhabitants of certain types, for example that every inhabitant of Va. @ — « is
equivalent to the identity function [46].

The theory of substructural logics and type systems is now relatively well understood,
including several ways to integrate substructural and structural type systems [9, 38, 19]. It
is therefore somewhat surprising that we do not yet know much about how parametricity
and its applications interact with them. The main foray into substructural parametricity is a
paper by Zhao et al. [47] that accounts for a polymorphic dual-intuitionistic linear logic. They
point out that logical relations on closed terms are problematic because substitution obscures
linearity. Their solution was to construct a logical relation on open terms, necessitating the
introduction of “semantic typing” judgments that mirror the syntactic type system, which
complicates their definition and application.

In this paper, we follow an approach using constructive resource semantics in the style
of Reed et al. [39, 41, 40] to construct logical relations on closed terms. We start with
an ordered type system [37, 36, 24], which may be considered the least permissive among
substructural type systems and therefore admits a pleasantly minimal definition. However,
the construction is generic with respect to certain properties of the resource algebra, which
allows us to extend it also to linear and unrestricted types. Consequences of our development
include that certain polymorphic types are only inhabited by the polymorphic append and
reverse functions on lists. Similarly, certain types are only inhabited by functions that swap
or maintain the order of pairs. The most advanced application shows that the ordered type
of fold over lists is inhabited only by the fold function.

We conjecture that the three substructural modes we investigate — ordered, linear, and
unrestricted — can also be combined in an adjoint framework [9, 19] but leave this to future
work. Similarly, we simplify our presentation by defining only a unary logical relation since
it is sufficient to demonstrate proof-of-concept, but nothing stands in the way of a more
general definition (for example, to support representation-independence results).

2 A Minimalist Fragment

We start with a small fragment of the Lambek Calculus [25, 29], extended with parametric
polymorphism [43]. This fragment is sufficient to illustrate the main ideas behind our
constructions. For the sake of simplicity we choose a Curry-style formulation of typing,
concentrating on properties of untyped terms rather than intrinsically typed terms. This
allows the same terms to inhabit ordered, linear, and unrestricted types and thereby focus
on semantic rather than syntactic issues.

Types A,B = «a|l|AeB|A— B|A— B|Va. A
Terms e =z
| ()] matche(() = ¢) 1)
| (e1,e2) | matche ((z,y) = ¢€') (Ae B)
| Az.e|eres (A— B,A— B)

In this fragment, we have A e B (read “A fuse B”) which, logically, is a noncommutative
conjunction. We have two forms of implication: A — B (read: “A under B”, originally
written as A\ B) which is true if from the hypothesis A placed at the left end of the antecedents
we can deduce B, and A — B (read: “B over A”, originally written as B / A) which is true
if from the hypothesis A placed at the right end of the antecedents we can prove B. Lambek’s
original notation was suitable for the sequent calculus and its applications in linguistics, but
is less readable for natural deduction and functional programming.

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

Our basic typing judgment has the form A | Q F e : A where A consists of hypotheses
a type, and Q is an ordered context (xq : Ay)...(zy, : An). We make the standard presuppo-
sitions that A+ A type and A F A; type for every x; : A; in €2, and that both type variables
and term variables are pairwise distinct. The rules are show in Figure 1.

————— hyp
Alz:AFz: A

AlQFe:1l A|QLQrbFe€:C

— 1/ 1E
Al-F():1 A|QLOOQr Fmatche (()=¢€): A
A|Q(z:A)tkre:B A|lQFer:A—»B A|Qater: A

1 —E
A|lQFXt.e:A—- B A|QQaterer: B
Al(z:A)QFe: B A|lQFer:A— B A|Qater: A
— T —F
A|QFXz.e:A— B A|QaQFerex: B
A|Qater:A A|Qplex:B A|QFe:AeB A|Qr(z:A)(y:B)Qrbe:C
o/ o
A|QaQpF (e1,e2): Ae B A QL QQrF matche ((z,y) =€) : C
A atype | QFe: A A|QFe:Va.A(a) Al Btype
vI VE
A|lQFe:Va. A A|QFe: AB)

Figure 1 Ordered Natural Deduction.

Here are a few example judgments that hold or fail. We elide the context A =
(atype, Btype, v type).

F dz.z:a—«

F Az.z:a—a

Vodz. dy.z:a— (8 —) (no weakening)

VoAz. (z,z) :a— (o) (no contraction)

FoAx Ay (z,y) :a— (B — (e f))

Fode Ay (z,y) :a— (80— (ae) (no exchange)
i8> (a—v) F XXy (fy)z:a— (8—>7) (“associativity”)
gra—(B—>7) F My Ar(gz)y:f—>(a—7)
g:(@eB) > F Ardyg(e.y) o (5) (currying)
fia—>(8—7v) F Ap.matchp ((z,y)= fzy): (0¢e) —» 7 (uncurrying)

The strictures of the typing judgment imply that certain types may be uninhabited,
or may be inhabited by terms that are extensionally equivalent (i.e., that yield the same
outputs for all closed inputs) to a small number of possibilities. To count the number of
linear functions, translate (A - B)" = (A — B)' = A" — B" and (Ae B): = A" ® B" and
similarly for unrestricted functions.

4:3

FSCD 2025

4:4

Substructural Parametricity

Types Ordered Linear Unrestricted
a— 1 1 1
a—» (a—a) 0 0 2
a—»(a— (aea)) 1 2 4
a— (a— (aea)) 1 2 4
a— (B> (Beaq)) 0 1 1
a—» (8 (xef)) 1 1 1

Because our intended application language based on adjoint natural deduction [19] is
call-by-value, we can give a straightforward big-step operational semantics [22] relating a
term to its final value. Because this evaluation does not directly interact with or benefit
from substructural properties, we show it without further comment in Figure 2. It has the
property of preservation that if - e : A and e — v then - - v : A. Jang et al. give an
account [19] that exploits linearity and other substructural properties, although not the lack
of exchange.

e=() €<=

)= () match e (() = ¢/) < v

e1 > AT. €] ey vy [ua/zle] =

Ax.e = Ax. e e1ey — v
€1 — V1 ez < V2 € — (Ul,Ug) [vl/x,vg/y]e’ — '
(e1,e2) < (v1,v2) match e ((z,y) =€) = v/

Figure 2 Big-Step Operational Semantics.

3 An Algebraic Logical Predicate

Because of our particular setting, we define two mutually dependent logical predicates: [A]
for closed terms and [A] for closed values. In addition, the relation is parameterized by
elements from an algebraic domain which may have various properties. For the ordered
case, it should be a monoid, for the linear case a commutative monoid. However, the rules
themselves do not require this for the pure sets of terms. We use m-n for the binary operation
on the monoid, and € for its unit.

Ignoring polymorphism for now, we write m I e € [A] and m IF v € [A], which is
defined by

m ke € [4] J.e=svAml-ve A
m v e [1] m=eAv=_)
mlkv € [Ae B Imq, me. m=mq - mao Av = (v1,02)

A my Il—vle[A]/\mg ”"UQG[B]
Vi klFrwe[Al = m-klFvw € [B]
Vi klFwe Al = k-mlFvw € [B]

ml-v e [A— B
ml-v € [A— B]

1 111

We can see how the algebraic structure of the monoid tracks information about order if its
operation is not commutative.

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

The key step, as usual in logical predicates of this nature, is the case for universal
quantification and type variables. We map type variables « to relations Rp between monoid
elements and values in [B] where B is a closed type. We use S to denote this mapping from
type variables to sets of values and write it as a superscript on IF.

m - v € [a] — mS(a)v
mlI-% v € Va. A(a)] <= VB,Rp.mIF5*>8s ¢ € [A(a)]

The mapping S is just passed through identically in the cases of the relation defined above.

We can already verify some interesting properties. As a first example we show that the
logical predicates are nonempty.

» Example 1.
el Az Ay. (z,y) € [Va.a — (a — (aea))]

Proof. Because the A-term is a value, we need to check
elb Az Ay. (z,y) € Va.a —» (o —» (a o q))]

By definition, this is true if for an arbitrary A and relation m R4 v we have
elFe7Ra xa My (z,y) € [a — (a — (a o))

Using the definition of the logical predicate for right implication twice and one intermediate
step of evaluation, this holds iff

m-kIF7 B Ay, (v,9) w € [aea]

for all m, k with m IF*? B4 ¢ and k IF*7 B4 . By evaluation, this is true iff
m -k IF7RA (v w) € [a el

Now we can apply the definition of [A e B], splitting m - k into m and k and reducing it to
m IFBa g € [a] Ak IFRA 4 € [a]

Both of these hold because, by assumption, m R4 v and k R4 w. |
More interesting, perhaps, is the reverse.

» Example 2. If
elbeeVa.a— (a— (aea))]

then e is extensionally equal to Az. Ay. (x,y), in that for any closed type A and closed terms
v,w : A, it must be the case that evw < (v, w). In particular, it can not be Az. \y. (y, x).

Proof. We choose our monoid to be the free monoid over two generators a and b and we
choose an arbitrary closed type A and two elements v and w. Moreoever, we pick R4 relating
only a Ry vand b R4 w.

From the definitions (and skipping over some simple properties regarding evaluation), we
obtain

a-bIF A ey w e [aea]

4:5

FSCD 2025

4:6

Substructural Parametricity

By the clauses for [a e o, [« @ a] and « we conclude that
evw = (uy,us)

for some values u; and us with a R4 u; and b Ra us. Because the only value related to a is
v and the only value related to b is w, we conclude u; = v and us = w. Therefore

evw— (v,w)

Since v and w were chosen arbitrarily, we see that e is extensionally equal to Az. Ay. (x,y). <

4 The Fundamental Theorem

The fundamental theorem of logical predicates states that every well-typed term is in the
predicate. Our relations also include terms that are not well-typed, which can occasionally
be useful when one exceeds the limits of static typing.

We need a few standard lemmas, adapted to this case. We only spell out one.

» Lemma 3 (Compositionality). Define R4 such that k Ra w iff k IF w € [A]. Then
m IS Ba g € [B(a)] iff mI-° v € [B(A)]

Proof. By induction on B(«). <

We would like to prove the fundamental theorem by induction over the structure of the
typing derivation. Since our logical relation is defined for closed terms, we need a closing
substitution 7, i.e., a substitution of closed terms into the typing context of the term e for
which we seek to prove the fundamental theorem by induction, such that the application
n(e) of n to e is a closed term. We therefore extend the definition of the logical relation to
substitutions and contexts as follows:

miF (z—v) €z Al <= mlF¥ve[4]
mlFS (mne) € [Q2] <= Imi,ma.m=m1-m2 Ami IF m € [Q] Ama IFS 2 € [Q2)
mlFS () €[] — m=c¢

Due to the associativity of the monoid operation and concatenation of contexts, this consti-
tutes a valid definition.

» Theorem 4 (Fundamental Theorem (purely ordered)). Assume A | QF e: A, a mapping S
with domain A, and closing substitution m |F5 n € [Q]. Then m I-° n(e) € [A].

Proof. By induction on the structure of the given typing derivation. We show a few cases.
Case:

————— hyp
Alz:Akz: A

Then m I n(z) € [A] by assumption and definition, and m I-° n(z) € [A] since n(z) is
a value.
Case:
AlQ(z:A)kFe:B
A|lQFX.e:A—> B ”

1

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

m IS n € [Q)

k-5 v e [A]

EIFS (x> v) € [x: A

m- kIS (n,z—v) € [Q(z: A)
m-kIFS (n,z+— v)(e) € [B]
m-kIF (n(Az.e))v € [B]

m IS n(Az.e) € [A — B]

m IS n(Az.e) € [A — BJ

Given

Assumption (1)

By definition

By definition

By ind. hyp.

By reverse evaluation, v closed
By definition, discharging (1)
By definition

Case:
A|lQFe:A—»B A|QaFer: A
—F
A|QQakeres: B
m IS n € [QQ4] Given
my IS m € [and mo IFY 1y € [Q4]
for some mq, ma, 11, and 7y with m = my - mg and n =11 72 By definition
my IF5 n1(e1) € [A — B] By ind. hyp.
ma I my(ez) € [A] By ind. hyp.
ni(e1) = v; with my IF% v, € [A — B] By definition
n2(e2) < vy with mg IF¥ vy € [A] By definition
my - ma I vy vy € [B] By definition
(m m2)(e1e2) = (m(e1)) (n2(ez2)) By properties of substitution
m -5 n(ey ez) € [B] Since m = my - mgy and = (91 12)
Case:
A atype | QFe: A
VI
A|QFe:Va. A
m IS n € Q) Given

Rp an arbitrary relation k Rp v
m IFSe= e g e [Q

m IS p(e) € [A]

m -9 n(e) € [Va. A]

Case:
A|QFe:Va.Ala) Al Btype
VE
A|Qte: A(B)
m -9 n € [Q)]

m -9 n(e) € [Va. A(a)]

Define k Rp v iff k -5 v € [B]

m =5 sy (e) € [A(a)]

m [FS9=Ee 4 ¢ [A(a)] for n(e) — v
m 1% v € [A(B)]

m -5 (e) € [A(B)]

Assumption (1)

Since « fresh

By ind. hyp.

By definition, discharging (1)

Given
By ind. hyp.

By definition
By definition

By compositionality (Lemma 3)

By definition
<

Because typing implies that the logical predicate holds, the earlier examples now apply

to well-typed terms.

4:7

FSCD 2025

4:8

Substructural Parametricity

» Theorem 5 (Example 2 revisited). If
‘Fe:Va.a— (a— (aea))

then e is extensionally equivalent to Ax. \y. (z,vy).

Proof. We just note that
elFee Va.a— (a— (aea))]

since (-) € [] and (-)e = e and the empty mapping S suffices without any free type variables.
Then we appeal to the reasoning in Example 2. |

5 Unrestricted Functions

We are interested in properties of functions such as list append or list reversal, or higher-order
functions such as fold. This requires inductive types, but the functions on them are not used
linearly. For example, append has a recursive call in the case of a nonempty list, but none
in the case of an empty list. We could introduce a general modality !A for this purpose. A
simpler alternative that is sufficient for our situation is to introduce unrestricted function
types A — B (usually coded as !A — B in linear logic or !4 — B in ordered logic). This
path has been explored previously [37] with different motivations. There, an open logical
relation was defined on the negative monomorphic fragment in order to show the existence
of canonical forms, a property that is largely independent of ordered typing.

Adding unrestricted functions is rather straightforward in typing by using two kinds of
variables: those that are ordered and those unrestricted. Then, in the logical predicate,
unrestricted variables must not use any resources, that is, they are assigned the unit element
e of the monoid during the definition.

The generalized judgment has the form A | T'; Q F e : A where T’ contains type
assignments for variables that can be used in an unrestricted (not linear and not ordered) way.
All the previous rules are augmented by propagating I" from the conclusion to all premises.
Because our term language is untyped, no extensions are needed there. Similarly, the rules
of our dynamics do not need to change.

hyp
Allz:A;-Fx: A
A|lTz:A;QFe: B A|T;QFe;:A—-B A|T; - Fe: A
—1 —E
A|T;QF A z.e: A— B A|T;QFerex: B

Figure 3 Unrestricted functions.

We extend the logical predicate using arguments not afforded any resources.
mlFveE[A— B] < VYw.ellwe[A] = mlFvw € [B]

The fundamental theorem extends in a straightforward way.

» Theorem 6 (Fundamental Theorem (mixed ordered/unrestricted)). Assume A | T ;QFe: A,

a mapping S with domain A, and two closing substitutions € -° 6 € [[] and m IF% 1 € [Q)].
Then m IF5 (0 ;m)(e) € [A].

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

Proof. By induction on the structure of the given typing derivation. |

An interesting side effect of these definitions is that if we omit ordered functions but
retain pairs we obtain the “usual” formulation of closed logical predicates, including certain
consequences of parametricity for the ordinary A-calculus.

» Theorem 7. If
‘Fe:Vaa— (a— (aeaq))

then e is extensionally equivalent to one of 4 functions: Az.\y.(z,y), A\x.\y.(y,z),
Az. Ny (z,2), or Ax. \y. (y,y).

Proof. By the fundamental theorem, we have
elbeeVa.a— (a— (aea))]

We use this for an abitrary closed type A with two arbitary values v, and w and relation R4
with € R4 v and € R4 w. Exploiting the definition, we get

elFe7Ba e cla— (a— (aea))]

Using the definition of function twice and skipping over some evaluation and reverse evaluation,
we obtain

I_ou—>RA

el evw € [aed]

This means that evw < (u1,us) with € R4 u; and € R4 uy. Because of the definition of
R4 there are 4 possibilities for (u1,us), namely (v, w), (w,v), (v,v) and (w,w). This in turn
means e is extensionally equal to one of the 4 functions shown. <

6 Sums, Twist, and Recursive Types

At this point, we are at a crossroads. Because we would like to prove theorems regarding more
complex data structures such as lists, trees, or streams, we could extend the development
with general inductive and coinductive types and their recursors. We conjecture that this
is possible and leave it to future work. The other path is to work with purely positive
types, including recursive ones whose values can be directly observed. In this approach, the
definition of the logical predicate is quite easy to extend. It becomes a nested inductive
definition: either the type becomes smaller or, once we encounter a purely positive type and
recursion is possible, from then on the terms become strictly smaller. In this paper we take
the latter approach, which excludes coinductive types such as streams from consideration,
but still yields many interesting and intuitive consequences.

We take the opportunity to also round out our language with sums and twist (the
symmetric counterpart of fuse). We use a signature defining equirecursive type names that
may be arbitrarily mutually recursive. Because such type definitions are otherwise closed,
they constitute metavariables in the sense of contextual modal type theory [31]. Each type
definition F[A] = AT (for A a context of type variables as in previous sections) must be
contractive, that is, its definiens cannot be be another type name. Moreover, AT must be
purely positive, which is interpreted inductively.

Types A w= ...|AoB|®{l: Av}ecr

Purely Positive Types A™, BT At e BT |ATo Bt | 1| ®{l: A }ier | F[0]
Type Definitions by FIA]=AT| (1)] 21,2

Type Substitutions 0 a— AT ()] 6,02

4:9

FSCD 2025

4:10 Substructural Parametricity

The language of terms does not change much because type names are equirecursive.

Term e == ...
| k(e) | match e {€(xy) = €' }oer (B{0: Ap})

We add the type Ao B (“twist”), symmetric to A e B, since encoding it as B e A requires
rewriting terms, flipping the order of pairs. For A o B it is merely the typechecking that
changes. This allows more types to be assigned to the same term. We allow silent unfolding
of type definitions, so there are no explicit rules for F[0].

A|T;QakFe:A A|T;QpFes: B
A|T;Q04+F (e1,e2): Ao B

A|T;QFe:AoB A|T;QL(y:B)(z: A)Qrte:C
A|T;QLQ0r Fmatche ((z,y) =€) :C

oF

(kel) A|T;QFe: A
A|T;QFE(e): &{€: Ar}ecr

@I

A|T;QFe:®{l: Astier (AT Qn(xe: A))Qrbep: Ay) (VL EL)
A|T;QLQ0r Fmatch e {{(xp) = er}ier : C

oF

Figure 4 Ordered Natural Deduction, Extended.

e s e = k(v) [v/zileg — v

k(e) — k(v) match e {{(z¢) = eptoer — V'

Figure 5 Big-Step Operational Semantics, Extended.

The logical predicate is also extended in a straightforward manner. We assume the
signature X is fixed and therefore do not carry it explicitly through the definitions.

m - v € [Ao B] < dmy,ma.m=ma-m3 Av = (v1,02)
Amy IF vy € [A] Amg IF9 vy € [B]

m-S k(v) € [@{0: Arer] <= miFSve A AkeL

m -5 v € [F[0]] < mlFS v e f(At) where F[A] = AT €%

Because we have equirecursive type definitions, the last clause is usually applied silently.
The definition of the logical predicate is no longer straightforwardly inductive on the structure
of the type. However, we see that for purely positive types (the only ones involved in recursion),
the wvalue in the definition becomes strictly smaller in each clause if type definitions are
contractive. In other words, we now have a nested inductive definition of the logical predicate,
first on the type, and when the type is purely positive, on the structure of the value.

We can also add recursion to our term language with the key proviso that we either restrict
ourselves to certain patterns of recursion (for example, primitive recursion), or termination
is guaranteed by other external means (for example, an analysis using sized types [2]). This
assumption allows us to maintain the structure of the logical predicate, even if it is no longer
a means to prove termination (which we are not interested in for this paper).

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

» Lemma 8 (Compositionality (including purely positive equirecursive types)). Define R4 such
that k Ra w iff k Ik w € [A]. Then m IF5*2Ra 4 € [B(a)] iff m IF¥ v € [B(A)].

Proof. By nested induction on the definition of the logical predicate for B(«), first on the
structure of B and second on the structure of the value when a purely positive type F'[6] has
been reached. <

» Theorem 9 (Fundamental Theorem (including purely positive recursive types)). Assume
A|T;QFe: A, amapping S with domain A, and two closing substitutions € I-° 0 € [T
and m |5 1 € [Q]. Then m -5 (0 ;1)(e) € [A].

Proof. By induction on the structure of the given typing derivation. When reasoning about
functions and recursion, we need the assumption of termination. |

7 Free Theorems for Ordered Lists

We start with some theorems about ordered lists, not unlike those analyzed by Wadler [46],
but much sharper due to substructural typing. We define two versions of ordered lists, one
that is ordered left-to-right and one that is ordered right-to-left. Both of these use exactly
the same representation; just their typing is different.

llist « = @{nil : 1, cons : v ® llist o}
rlist o = @{nil : 1,cons : « o rlist o}

The following will be a useful lemma about ordered lists.
» Lemma 10 (Ordered Lists).

ml- v € [llista] <= m=eAv=nil()
V Imy, me.m = my - ma Av = cons (v, v3)
Amy S(a) v Amg - vy € [llist]

mlI-S v € [rlista] <= m=eAv=nil()
V Imy, mg.m = mg - my Av = cons (v1,vs)
Amy S(a) vy Amag Ik vg € [rlist]

Proof. By unrolling the definitions of the logical predicate and the equirecursive nature of
the definition of lists. |

For the applications, we abbreviate lists, writing [v1,...,v,] for cons(vy,...,
cons(vy, nil ())).

miFeRa g [llist o] <= m =m1 - myn,v = [v1,...,v,] where m; Ra v; (for some m;, v;)

mIFeRa g ¢ [rlist] <= m =my, - -my,v = [v1,...,0,] where m; Ra v; (for some m;, v;)

Now we state a first property of lists that follows as a consequence of our parameterized
logical predicate.

» Theorem 11. If -+ f: Va.llist « — llist o then f is extensionally equal to the identity
function on lists.

4:11

FSCD 2025

4:12 Substructural Parametricity

Proof. By the fundamental theorem, we have
elb f € [Va.llist a — llist]

To construct a relation R4 we pick an arbitary closed type A. For the monoid, we pick the
one freely generated by ai,as, ... and define

mRiv<= m=a; ANv=u;

for arbitrary elements v;. By definition, we obtain, for S = o+ R4,
e lF5 f € [llist a — llist o

Again by definition, that’s the case iff
Vm,v.m IF5 v € [llist o] = e-m -5 fo € [llist o

Here, € - m = m, by the monoid laws. Therefore fv < w and
Vm,v.m IF5 v € [llist o] = m IF5 w € [llist o]

We use this for m = ay - - - a, and v = [vy,...,v,]. By our lemma about lists and the arbitrary
nature of A and v; we conclude that w = v. <

By similar reasoning we can obtain the following properties.

» Theorem 12.

1. If f : Vaurlist a« — rlist « then f is extensionally equal to the identity function.

2. If f :Vaurlist a — llist a then f is extensionally equal to the list reversal function.
3. If f :Vau.llist a — rlist o then f is extensionally equal to the list reversal function.

Proof. By very similar reasoning to the one in Theorem 11. |

But can we deduce properties of higher-order functions using ordered parametricity? We
show one primary example; others such as map follow directly from it or similarly.

Unlike the usual or even linear parametricity, the type of fold in ordered natural deduction
guarantees that it must be the fold function! (The essential difference being that in, say, linear
natural deduction, a function having the same type as fold may still apply a permutation
to its argument before performing the fold.) Note that the combining function and initial
element are unrestricted arguments (one is called for every list element, and one is called
only for the empty list), but that the combining function’s arguments are ordered.

» Theorem 13. If
FfiVa.VB. (e B —) — B — llist a — 3

then f extensionally equal to the fold function, that is,
fgblvr,ve,.. . vp] = g(vr, g(ve, ..., g(vn, b))

Proof. We use the free monoid over constructors ai, as, Furthermore, given a type A
with arbitrary elements v; we define the relation R4 by

m Ra v <= m = a; ANv = v; for some i

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

Since the type involves another quantified type 3, we need to define a second relation Rp
where

mRBd<:>m:ai1 T gy, /\d:g(viug(vizv"~ag(vikab)))

With these relations and the definition on of the logical predicate we get the following two

properties.
1. Vmq,ma,v,d.my Ry v Ama Rg d = my-ms Rp g(v,d)
2. ¢eRpyg
Since
ay - an FO7RA oy v, € [llist o]

we can use the second and iterate the first property to conclude that
a1---a, Rpw for fgblvr,...,v5] > w
By definition of Rp, this yields

fgblon,... vn] = g(vr,...g(vn, b))

in the sense that both sides evaluate to w. Because functions and values were chosen
arbitrarily, this expresses the desired extensional equality. |

8 Free Theorems Regarding Trees

Consider

lzrtree = @fleaf : 1, cons : lzrtree o ® v ® lzrtree a}
zlrtree « = @{leaf : 1, cons : (zlrtree o o) @ zlrtree o}
lratree o« = @{leaf : 1, cons : lratree v @ (v o zlrtree o) }

Here are a few free theorems regarding such trees. Further variations exist.

» Theorem 14.

1. If f : Va. lzrtree o — llist « then f t lists the elements of t following an inorder traversal.
2. If f : Va. zlrtree o — llist « then f t lists the elements of t following a preorder traversal.
3. If f : Y. lratree o — llist o then f t lists the elements of t following a postorder traversal.

Proof. Trees, like lists, are purely positive types. As such, we can prove an analogue of
Lemma 10. We only show one of them, writing ¢ for tree values.

mlFS t € [lartree o] <= m=eAt = leaf()
V 3ma, k,ma.m =mq - k- ma Av = node(t1, v, t2)
Ama IF5 1 € [lartree o] Ak S(a) v Ama IF5 o € [lartree o

9 From Ordered to Linear Types

Exploring parametricity for linear types instead of ordered ones is now a rather straightforward
change. We conflate the left and right implication into a single implication, and similarly for
conjunction.

4:13

FSCD 2025

4:14

Substructural Parametricity

ordered linear structural | values
B— A

A—B A— B Ax.e
A— B
AeB

A® B AxB (v1,v2)
AoB

1 1 1 ()
@{f : Ag} @{E : Ae} @{f : Az} E(v)

We see that in the transition from the linear to the structural case, no further connectives
collapse. That’s because we would still distinguish eager pairs (A x B) from lazy records
that we have elided from our development since they do not introduce any fundamentally
new ideas.

From the point of view of typing, the easiest change is to just permit the silent rule of
exchange

A|IT;QL(y:B)(z: A)Qrte:C
A|T;QL(z:A)(y:B)Qrte:C

exchange

The more typical change is to replace context concatenation Qy Qg with context merge
Q<1 Qg which allows arbitrary interleavings of the hypotheses.

Our definition of the logical predicates remains that same, except that we assume that the
algebraic structure parameterizing our definitions is a commutative monoid. This immediately
validates the rules of exchange and the fundamental theorem goes through as before.

The results of exploiting the fundamental theorem to obtain parametricity results are no
longer as sharp. For example:

» Theorem 15. If - Fe:Va.a — a — a® « then f is extensionally equal to A\x. \y. (x,y)
or A\x. \y. (y,x).

Proof. By the fundamental theorem, we have
elFee[Va.a—a—oa®d]

Therefore e — f and
el- feVa.a—oa—oa®a]

We use a free commutative monoid with two generators, a and b, arbitrary values v and w
such that ¢ R v and b R w. By the fundamental theorem:

elF*™ R fela—oa—oa®al

Applying this function to v and w, we obtain that fvw < p and
a-bIF7Epecla®al

This is true, again by definition, if for some m and k and p; and ps we have
m-k=a-bAp=(p1,p2) AmIF*7E p € [a] Ak IF7E py € [a]

Further applying definitions, we get that for some m, k, p1, and ps, we have

m-k=a-bAmRpi Nk R p

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

There are 4 ways that a - b could be decomposed into m - k, but the definition of R leaves
only two possibilities: m =a, k=b, py =v and ps =w or m =b, k =a, py = w and ps = v.
Summarizing: either

evw = (v,w)
or
evw = (w,v)
which expresses that e is extensionally equal to Az. Ay. (x,y) or Az. Ay. (y, z). <

» Theorem 16. If - - e: Va.list « —o list o then e is extensionally equal to a permutation of
the list elements.

Proof. As in the proof of the related ordered theorem, we apply the fundamental theorem and
then the definition for arbitrary values v; with a; R v; where a — R, and the commutative
monoid is freely generated from ai,as,

Taking analogous steps to the ordered case, we conclude that ay---a, = mi---my,
modulo commutativity (and associativity, as always) where each m; is a unique a;. |

In the unrestricted case where various algebraic elements are fixed to be €, we can only
obtain that every element of the output list must be a member of the input list, because those
elements are in € R v;. We do not write out the details of this straightforward adaptation of
foregoing proofs.

10 Related Work

The most directly related work is Zhao et al’s [47] open logical relation for parametricity
for a dual intuitionistic-linear polymorphic lambda calculus. In this work, they define an
open logical relation that includes an analog of typing contexts in the semantic model. While
our development follows a similar structure, our resource algebraic account allows us to
eliminate spurious typechecking premises in definitions and permits a more flexible range of
substructural type systems.

Ahmed, Fluet, and Morrisett [4] introduce a logical relation for substructural state via
step-indexing, followed by [5] a linear language with locations (L3) defined by a Kripke-style
logical relation to account for a language with mutable storage. However, the underlying
languages in these developments do not support parametric polymorphism. Ahmed, Dreyer,
and Rossberg later provide a logical relations account of a System F-based language supporting
imperative state update, and they demonstrate representation independence results for this
system [3]. The languages modeled in this body of work represent a specific point in the
design space with respect to imperative state update and references, as opposed to our more
general schema for substructural types in a functional setting. However, Kripke-style logical
relations that model a store as a partial commutative monoid have some parallels to our
development, and drawing out a more precise relationship between these systems represents
an interesting path of future work.

There are a few developments that start from different settings but develop semantics
with similar properties. Pérez et al. develop logical relations for linear session types [33, 34]
to establish normalization results, but there is no account of parametricity. Caires et al. [11],
Derakhshan et al. [13], and Balzer et al. [8] account for parametricity in linear session-typed
communication with the goal of reasoning abstractly over protocol implementations. Their

4:15

FSCD 2025

4:16

Substructural Parametricity

logical relations do not directly capture resource usage nor obviously admit free theorems
similar to ours, but rather form a basis for information flow reasoning as an orthogonal
application of parametricity [14, 44].

The Iris system for program reasoning via higher-order separation logic incorporates a
semantic model initially based on monoids [21], which is later extended to more general
resource algebras [20]. Their parameterization over resource algebras seems to work similarly
to ours, but towards the goal of program verification rather than type-based reasoning.
Birkedal et al. [10] demonstrate free theorems for separation logic specifications in service of
enforcing communication protocols between clients and libraries.

The use of “resource semantics” more generally to account for the semantics of substruc-
tural logics extends at least to Kamide [23] and the logic of bunched implications [32], and
similar ideas have recently gained traction in the context of graded modal type systems [45].
For instance, Atkey and Wood [6] introduce a notion of “context constrained computation”
to generalize parametricity reasoning over linear list operations to arbitrary semiring-graded
modalities. They do not directly account for polymorphism in the type system, but can
instantiate their calculus with example-specific world definitions to prove e.g. that a linear
function on lists of a generic key type must return a permutation. Abel and Bernardy [1]
extend this idea to a similar one that includes polymorphic types and presents free theorems.
The ringoid structure that generalizes the graded approach does not, however, accommodate
ordered logic.

11 Conclusion

We have provided an account of substructural parametricity including ordered, linear, and
unrestricted disciplines. The fewer structural properties are supported, the more precise
the characterization of a function’s behavior from its type. We have also implemented an
ordered type checker using a bidirectional type system with so-called additive contexts [7],
but the details are beyond the scope of this paper. Suffice it to say that all the functions
such as append, reverse, tree traversals, and fold can actually be implemented in a variety of
ways and our “free theorems” are therefore not vacuous.

The most immediate item of future work is to support general inductive and coinductive
types instead of purely positive recursive types. This would allow a new class of applications,
including (productive) stream processing and object-oriented program patterns.

We also envision an adjoint combination of different substructural type systems [19],
extended to include exchange among the explicit structural rules, with the logical predicates
given herein properly extended to account for the different modalities present in the adjoint
type system.

—— References

1 Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities in type systems.
Proceedings of the ACM on Programming Languages, 4(ICFP):1-28, 2020. doi:10.1145/
3408972.

2 Andreas Abel and Brigitte Pientka. Well-founded recursion with copatterns and sized types.
Journal of Functional Programming, 26:€2, 2016. doi:10.1017/S0956796816000022.

3 Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation inde-

pendence. In 86th Symposium on Principles of Programming Languages (POPL 2009), pages
340-353, Savannah, Georgia, USA, January 2009. ACM. doi:10.1145/1480881.1480925.

https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1145/1480881.1480925

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

10

11

12

13

14

15

16

17

18

19

Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed model of substructural
state. In 10th International Conference on Functional Programming (ICFP 2005), pages 78-91,
2005. doi:10.1145/1086365.1086376.

Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: a linear language with locations.
Fundamenta Informaticae, 77(4):397-449, 2007.

Bob Atkey and James Wood. Context constrained computation. In 3rd Workshop on Type-
Driven Development (TyDe’18), 2018.

Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and Erich
Gréadel, editors, 83rd Conference on Logic in Computer Science (LICS 2018), pages 56-65,
Oxford, UK, July 2018. ACM. doi:10.1145/3209108.3209189.

Stephanie Balzer, Farzaneh Derakhshan, Robert Harper, and Yue Yao. Logical relations

for session-typed concurrency. arXiv preprint arXiv:2309.00192, 2023. doi:10.48550/arXiv.

2309.00192.

P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Leszek
Pacholski and Jerzy Tiuryn, editors, Selected Papers from the 8th International Workshop
on Computer Science Logic (CSL’94), pages 121-135, Kazimierz, Poland, September 1994.
Springer LNCS 933. An extended version appears as Technical Report UCAM-CL-TR-352,
University of Cambridge.

Lars Birkedal, Thomas Dinsdale-Young, Armaél Guéneau, Guilhem Jaber, Kasper Svendsen,
and Nikos Tzevelekos. Theorems for free from separation logic specifications. Proceedings of
the ACM on Programming Languages, 5(1CFP):1-29, 2021. doi:10.1145/3473586.

Luis Caires, Jorge A Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral polymor-
phism and parametricity in session-based communication. In 22nd European Symposium on
Programming (ESOP 2013), pages 330-349, Rome, Italy, March 2013. Springer LNCS 7792.
d0i:10.1007/978-3-642-37036-6_19.

Luis Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
P.Gastin and F.Laroussinie, editors, 21st International Conference on Concurrency Theory
(CONCUR 2010), pages 222-236, Paris, France, August 2010. Springer LNCS 6269. doi:
10.1007/978-3-642-15375-4_16.

Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. Session logical relations for noninter-
ference. In 36th Annual Symposium on Logic in Computer Science (LICS 2021), pages 1-14.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470654.

Farzaneh Derakhshan, Stephanie Balzer, and Yue Yao. Regrading policies for flexible informa-
tion flow control in session-typed concurrency (artifact). Dagstuhl Artifacts Series, 10(2):4-1,
2024.

Peng Fu, Kohei Kishida, and Peter Selinger. Linear dependent type theory for quantum
programming languages. In 35th Symposium on Logic in Computer Science (LICS 2020),
pages 440-453, Saarbriicken, Germany, July 2020. ACM.

Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session
types. Journal of Functional Programming, 20(1):19-50, January 2010. doi:10.1017/
S0956796809990268.

Aina Linn Georges, Benjamin Peters, Laila Albeheiry, Leo White, Stephan Dolan, Richard A.
Eisenberg, Chris Casinghino, Francois Pottier, and Derek Dreyer. Data race freedom a la
mode. In Principles of Programming Languages (POPL 2025), volume 9 of Proceedings on
Programming Languages, pages 656-686. ACM, January 2025. doi:10.1145/3704859.
Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In H. Ehrig, R. Kowalski,
G. Levi, and U. Montanari, editors, Proceedings of the International Joint Conference on
Theory and Practice of Software Development, volume 2, pages 52—-66, Pisa, Italy, March 1987.
Springer-Verlag LNCS 250. doi:10.1007/BFB0014972.

Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. Adjoint natural
deduction. In Jakob Rehof, editor, 9th International Conference on Formal Structures for
Computation and Deduction (FSCD 2024), pages 15:1-15:23, Tallinn, Estonia, July 2024.
LIPIcs 299. Extended version available as https://arxiv.org/abs/2402.01428.

4:17

FSCD 2025

https://doi.org/10.1145/1086365.1086376
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.48550/arXiv.2309.00192
https://doi.org/10.48550/arXiv.2309.00192
https://doi.org/10.1145/3473586
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1109/LICS52264.2021.9470654
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1145/3704859
https://doi.org/10.1007/BFB0014972
https://arxiv.org/abs/2402.01428

4:18

Substructural Parametricity

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming, 28:€20, 2018. doi:10.1017/30956796818000151.
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In 42nd Annual Symposium on Principles of Programming Languages (POPL 2015), pages
637-650, Mumbai, India, January 2015. ACM. doi:10.1145/2676726.2676980.

Gilles Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science, pages 22—-39. Springer-Verlag LNCS 247, 1987. doi:10.1007/BFB0039592.
Norihiro Kamide. Kripke semantics for modal substructural logics. Journal of Logic, Language
and Information, 11:453-470, 2002. doi:10.1023/A:1019915908844.

Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov. A logical framework
with commutative and non-commutative subexponentials. In International Joint Conference
on Automated Reasoning (IJCAR 2018), pages 228-245. Springer LNAI 10900, 2018. doi:
10.1007/978-3-319-94205-6_16.

Joachim Lambek. The mathematics of sentence structure. The American Mathematical
Monthly, 65(3):154-170, 1958.

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon
Howell, Bryan Parno, and Chris Hawblitzel. Verus: Verifying Rust programs using linear ghost
types. In Proceedings of the ACM on Programming Languages, volume 7 (OOPSLA 2023), pages
286-315, April 2023. Extended version available as https://arxiv.org/abs/2303.05491.
Anton Lorenzen, Daan Leijen, and Wouter Swierstra. FP2: Fully in-place functional program-
ming. In International Conference on Functional Programming (ICFP 2023), Proceedings on
Programming Languages, pages 275-304. ACM, August 2023. doi:10.1145/3607840.

Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley. The functional essence of
imperative binary search trees. In Programming Language Design and Implementation (PLDI
2024), volume 8 of Proceedings on Programming Languages, pages 518-542. ACM, January
2024. doi:10.1145/3656398.

Wendy MacCaull. Relational semantics and a relational proof system for full Lambek calculus.
Journal of Symbolic Logic, 63(2):623-637, 1998. doi:10.2307/2586855.

John C Mitchell. Representation independence and data abstraction. In Proceedings of the
13th Symposium on Principles of Programming Languages (POPL 1986), pages 263-276. ACM,
1986. doi:10.1145/512644.512669.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
Transactions on Computational Logic, 9(3), 2008. doi:10.1145/1352582.1352591.

Peter W O’Hearn and David J Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215-244, 1999. doi:10.2307/421090.

Jorge A. Pérez, Luis Caires, Frank Pfenning, and Bernardo Toninho. Termination in session-
based concurrency via linear logical relations. In H. Seidl, editor, 22nd European Symposium
on Programming (ESOP 2012), pages 539-558, Tallinn, Estonia, March 2012. Springer LNCS
7211.

Jorge A. Pérez, Luis Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Information and Computation,
239:254-302, 2014. doi:10.1016/J.1C.2014.08.001.

Frank Pfenning and Klaas Pruiksma. Relating message passing and shared memory, proof-
theoretically. In S. Jongmans and A. Lopes, editors, 25th International Conference on
Coordination Models and Languages (COORDINATION 2023), pages 3-27, Lisbon, Portugal,
June 2023. Springer LNCS 13908. Notes to an invited talk. doi:10.1007/978-3-031-35361-1_
1.

Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Department of Computer
Science, Carnegie Mellon University, August 2001.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/BFB0039592
https://doi.org/10.1023/A:1019915908844
https://doi.org/10.1007/978-3-319-94205-6_16
https://doi.org/10.1007/978-3-319-94205-6_16
https://arxiv.org/abs/2303.05491
https://doi.org/10.1145/3607840
https://doi.org/10.1145/3656398
https://doi.org/10.2307/2586855
https://doi.org/10.1145/512644.512669
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.2307/421090
https://doi.org/10.1016/J.IC.2014.08.001
https://doi.org/10.1007/978-3-031-35361-1_1
https://doi.org/10.1007/978-3-031-35361-1_1

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

37

38

39

40

41
42

43

44

45

46

47

A

Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic non-commutative
linear logic. In J.-Y. Girard, editor, Proceedings of the 4th International Conference on Typed

Lambda Calculi and Applications (TLCA’99), pages 295-309, L’Aquila, Italy, April 1999.

Springer-Verlag LNCS 1581. doi:10.1007/3-540-48959-2_21.

Klaas Pruiksma, Willow Chargin, Frank Pfenning, and Jason Reed. Adjoint logic and its
concurrent operational interpretation. Unpublished manuscript, January 2018.

Jason Reed. Hybridizing a logical framework. In Proceedings of the International Workshop
on Hybrid Logic (HyLo’06), pages 135-148. Electronic Notes in Theoretical Computer Science,
v.174(6), 2007.

Jason Reed and Frank Pfenning. A constructive approach to the resource semantics of
substructural logics. Unpublished Manuscript, May 2010. URL: https://www.cs.cmu.edu/
~jcreed/papers/rp-substruct.pdf.

Jason C. Reed. A Hybrid Logical Framework. PhD thesis, Carnegie Mellon University,
September 2009. Available as Technical Report CMU-CS-09-155.

John C. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A. Mason,
editor, Information Processing 83, pages 513-523. Elsevier, September 1983.

Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13:11-49, 2000. Notes for lecture course given at the International
Summer School in Computer Programming at Copenhagen, Denmark, August 1967. doi:
10.1023/A:1010000313106.

Bas van den Heuvel, Farzaneh Derakhshan, and Stephanie Balzer. Information flow control
in cyclic process networks. In 88th European Conference on Object-Oriented Programming
(ECOOP 2024), pages 40:1-40:30. LIPIcs 313, 2024. doi:10.4230/LIPICS.ECOOP.2024.40.
Victoria Vollmer, Danielle Marshall, Harley Eades, III, and Dominic Orchard. A mixed linear
and graded logic: Proofs, terms, and models. In 33rd Conference on Computer Science Logic

(CSL 2025), pages 32:1-32:21, Amsterdam, The Netherlands, February 2025. LIPIcs 326.

doi:10.4230/LIPICS.CSL.2025.32.

Philip Wadler. Theorems for free! In J. Stoy, editor, Proceedings of the 4th International
Conference on Functional Programming Languages and Computer Architecture (FPCA’89),
pages 347-359, London, UK, September 1989. ACM. doi:10.1145/99370.99404.

Jianzhou Zhao, Qi Zhang, and Steve Zdancewic. Relational parametricity for a polymorphic
linear lambda calculus. In K. Ueda, editor, 8th Asian Symposium on Programming Languages
and Systems (APLAS 2010), pages 344-359. Springer LNCS 6461, 2010. doi:10.1007/
978-3-642-17164-2_24.

Complete definition of the Type System

Types A,B = «a|l|AeB|A— B|A— B|Va. A
‘ A—)B|AOB|@{Z:A5}56L
Purely Positive Types AT, Bt == AT eBT | At o BT
| Ll e{l: Al e | FIF)

Type Definitions ¥ == F[A] =AY | ()| 21,2,
Type Substitutions 6 == a+— AT |(:)] 60162
Terms e == =z

|) | matche (() =€) (1)

| (e1,e2) | matche ((z,y) =¢€') (AeB)

| Az.e|erer (A— B,A—» B,A— B)

| k(e) | match e {€(x¢) = €' }oer. (D{€: As})

4:19

FSCD 2025

https://doi.org/10.1007/3-540-48959-2_21
https://www.cs.cmu.edu/~jcreed/papers/rp-substruct.pdf
https://www.cs.cmu.edu/~jcreed/papers/rp-substruct.pdf
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.4230/LIPICS.ECOOP.2024.40
https://doi.org/10.4230/LIPICS.CSL.2025.32
https://doi.org/10.1145/99370.99404
https://doi.org/10.1007/978-3-642-17164-2_24
https://doi.org/10.1007/978-3-642-17164-2_24

4:20 Substructural Parametricity

Typing rules:

hyp
AT ;z:AFz: A

A|IT;QFe:1 A|T;QQpFe:C

EES— 1E
A|T;-F():1 A|T; Q00 Fmatche (()=¢): A
A|IT;Qxz:A)tFe:B A|lT;QFe;:A—»B A|T;Qabe: A
A|T;QF A z.e: A—> B A|T;Q04Fe1es: B
A|T;(z:A)QFe: B A|T;QFe:A—B A|T;Qabex: A
A|T;QF A z.e: A— B AT ;QaQFe1ex: B

A|lT;QakFer: A A|T;Qplex: B
A|T; Qa0+ (e1,e2): Ao B

A|T;QFe:AeB A|T;Qr(z:A)(y:B)Qrke:C

oF
A|T;QLQ0r F matche ((z,y) =€) : C

A atype [T ;QFe: A A|T;QFe:Va.A(a) A Btype

VI VE
A|T;QFe:Va. A A|T;QFe: A(B)

hyp
AlTz:A;-Fx: A
A|T,z: A;QFe: B A|lT;QFe:A—>B A|T;-Fe: A

—I —FE

A|T;QFXz.e: A= B A|T;QFejey: B

A|T;Qake: A A|T;QpFes: B
A|T;QQat (e1,e2): Ao B

ol

A|T;QFe:AoB A|T;QL(y:B)(x:A)Qrte:C
A|T;QQ0Qr Fmatche ((z,y) =¢):C

oF

(kel) A|T;QFe: A
ol
A|T;QFk(e): {l: Aloer

A|T;QFe:@{l: Ai}ver, (A|T;QL (z0: Ap)Qrber: Ay) (VeL)
A|T;QLQ0k Fmatch e {{(x¢) = er}eer : C

oF

C.B. Aberlé, K. Crary, C. Martens, and F. Pfenning

Operational semantics:

e=() e¢<=w

=0 match e (() = ¢/) < v

e1 o Ar. €] ea vy [va/zle] = v

AL.e = Ax. e e1 ey v
€1 <> V1 ey <> Uy e = (vi,v2) [vi/x,v2/yle’ =V
(e1,€2) <= (v1,v2) match e ((z,y) =€) — v
e s e = k(v) [v/ziler = v
k(e) — k(v) match e {{(z¢) = es}oer — v

B Complete definition of the Logical Predicate

miF¥e€[A] <= Fv.e—vAmlFdve 4]

miFSve[AeB] <= 3Imi,mo.m=mq-mgAv=(v1,00)
A my IFS vy € [A] Amg IFS vy € [B]

miSve[A— B] <= Vk kI we[d]= m- kI vw e [B]

miSve[A— B] <= VkkIFwe[Ad]=k-mI-vw e [B]

miF¥ v €la] <= mS(a)v

ml-S v € Va. A(a)] <= VB,Rp.m 52286 4 ¢ [A(a)]

mlFve[A—B] < VYw.elFwe[A] = ml-vw e [B]

mi-Sve[AoB] <= 3mi,mo.m=my-mi Av=(v1,02)
Amy -5 vy € [A] Amg IF9 vy € [B]

mlI-S k(v) € [@{0: As}ier] <= mIFSve[AJAkEL

ml-S v € [Fl0]] <= mlIF v e f(A) where F[A] = At €2

4:21

FSCD 2025

