
Explicit Contexts in LF

Karl Crary

Carnegie Mellon University

Abstract

The standard methodology for representing deductive sys-
tems in LF identifies the object’s language’s context with the
LF context. Consequently, any variable dealt with explic-
itly by any judgement or metatheorem must be last in the
context. When the object language is dependently typed,
this can pose a problem for establishing some metatheoretic
results, since dependent hypotheses cannot be re-ordered at
will.

This paper presents a general technique that addresses
such problems, based on representing the object language’s
context as an explicit object in LF while retaining the use of
higher-order representation for the object language’s syntax.
A central result is that it is possible to convert between
explicit and implicit contexts, which makes it feasible to use
the standard methodology for most developments, but use
explicit contexts where necessary. We do not propose any
extensions to LF; the technique can be utilized in standard
LF.

1 Introduction

There are at least two different ways one may interpret the
typing judgement x:A ` M : B. One is as a hypothetical
judgement built over a context-free (2-place) typing judge-
ment. It states that if x is a term, and if one assumes that
x has the type A, then it follows that M has the type B.
Another is as a categorical judgement relating three syntac-
tic objects: a context, a term, and a type. It states that,
relative to the context x:A, M has the type B.

It is usually not difficult to prove, on paper at least, that
these two interpretations are equivalent. However, they can
look quite different when formalized in a logical framework.
In particular, the LF logical framework emphasizes higher-
order syntax and higher-order judgements, and therefore it
lends itself to the hypothetical interpretation [2]. Although
nothing in LF prevents one from employing a first-order en-
coding of syntax (including contexts) and then utilizing the
categorical interpretation, to do so would sacrifice many of
the strongest advantages of LF.

When formalizing meta-theorems in Twelf [8], the hy-
pothetical interpretation occasionally causes difficulties.
Specifically, in settings that include dependent types, the-
orems that involve a distinguished bound variable (such as
substitution or functionality) cannot be proven directly by
induction. In the next section we illustrate the difficulty
that arises.

In this paper we give a technique that makes it possible to
prove such theorems. It is based on a hybrid interpretation
that is hypothetical in regard to the variables themselves,
but categorical in regard to contexts that assign their types.
That is, the judgement x:A ` M : B states that if (hypothet-
ically) x is a variable,1 then (categorically) M has the type
B relative to the context x:A. Importantly, we can prove the
equivalence of the hypothetical and hypothetical-categorical
interpretations as a Twelf meta-theorem. Therefore, one can
utilize the standard LF strategy as a matter of course, and
resort to this paper’s technique only when necessary.

Concretely, we illustrate how to define in LF a type sys-
tem that employs an explicit context, and how to prove some
necessary properties (e.g., looking up a variable in a context
returns a unique type). When using an explicit-context for-
mulation, no problems arise when proving meta-theorems
involving a distinguished bound variable. Finally, we show
how to prove in Twelf that the explicit-context formulation
is equivalent to the standard, implicit-context formulation.
The latter result is the paper’s central technical contribu-
tion.

The remainder of this paper is structured as follows: In
Section 2 we illustrate the problem that arises from distin-
guished bound variables and dependent types. In Section 3
we formalize explicit contexts in LF and give an example of
their use. In Sections 4 and 5 we show how to convert deriva-
tions between implicit and explicit contexts. Throughout
the paper we assume the reader is familiar with LF and
with Twelf.

The Twelf code contained in this paper is available on-
line at:

www.cs.cmu.edu/~crary/papers/2008/excon.elf

2 Motivation

2.1 An Illustrative Example

Consider the simply typed lambda calculus with a single
base type o inhabited by a term b. Its encoding in LF is
given in Figure 1, and is standard except for the %block
declaration.

Twelf’s %block declarations specify fragments that can
be used to construct (implicit) LF contexts. The bind block
provides an x:exp and d:of x a, for some choice of a:tp.
(The names a, x and d are bound, and are significant only

1It will prove to be significant that we do not assume merely that
x is a term.

tp : type.
exp : type.

o : tp.
arrow : tp -> tp -> tp.

b : exp.
lam : tp -> (exp -> exp) -> exp.
app : exp -> exp -> exp.

of : exp -> tp -> type.

of/b : of b o.

of/lam : of (lam A ([x] M x)) (arrow A B)
<- ({x} of x A -> of (M x) B).

of/app : of (app M N) B
<- of M (arrow A B)
<- of N A.

%block bind
: some {a:tp}

block {x:exp} {d:of x a}.

Figure 1: Simple types in LF

within the declaration.) That is, it provides a variable bind-
ing, encoded in LF. Contexts constructed with the bind
block may contain arbitrarily many instances of that frag-
ment. Twelf’s %worlds declaration (an example appears be-
low) specifies the possible contexts in which a metatheorem
can be used, by listing the blocks from which an acceptable
context can be constructed.

Now suppose that we wish to give an inductive proof of
the substitution lemma, written in Twelf as:2

subst : of M A
-> ({x} of x A -> of (N x) B)

%%
-> of (N M) B
-> type.

%mode subst +X1 +X2 -X3.
%worlds (bind) (subst _ _ _).

It is important to note that this is an illustrative exam-
ple, not a motivating one. Since substitution is provided
primitively in LF by function application, this theorem has
a trivial non-inductive proof. Nevertheless, we prefer this
example due to its simplicity. We will briefly give some mo-
tivating examples in Section 2.2.

Note the treatment of the distinguished variable x, which
is bound in the second input but free in N x.

A typical proof on paper would proceed by strengthen-
ing the theorem to allow additional assumptions after the
assumption for x:

Lemma 2.1 (Substitution)
If Γ1 ` M : A and Γ1, x:A, Γ2 ` N : B then Γ1, Γ2 `
N [M/x] : B.

2For ease of readability, we will adopt the convention of placing
all input arguments first, followed by the output arguments, with a
blank comment line between.

- : subst
%% inputs
(Dm : of M A)
([x] [d:of x A]

of/lam
([y] [e:of y B]

Dn x d y e : of (N x y) C))
%% output
(of/lam

([y] [e:of y B] D y e)
: of (lam B ([y] N M y)) (arrow B C))

<- ({y} {e:of y B} %% NB: y is outside x
subst Dm ([x] [d] Dn x d y e)
%%
(D y e : of (N M y) C)).

Figure 2: Permuting subst proof (of/lam case)

The key case of the proof is the typing rule for lambda,
wherein the binding for the lambda-bound variable is shifted
into the context Γ2 before invoking induction on the body.

This proof strategy appears to be closed to us because
in LF, the object-language context is absorbed into the LF
context, and therefore it cannot be referenced explicitly. In
this example, the outer context Γ1 is absorbed into the sur-
rounding LF context and so it is present implicitly in subst.
(The worlds declaration gives an explicit indication that the
surrounding context is permitted to contain Γ1.) On the
other hand, the inner context Γ2 must appear after the ex-
plicit bound variable x, so there is nowhere to write it in
subst.

When proving subst in Twelf, without the benefit of
an inner context, we encounter difficulties in the lambda
case. The usual way to resolve the difficulty is to permute
variables, as shown in Figure 2.3

In this proof case, x is the substitution variable and y
is the lambda’s bound variable. The typing derivation for
the body (Dn x d y e) depends on both x and y and their
typing hypotheses. The proof proceeds by quantifying over
y and recursing, obtaining a typing derivation (D y e) for
the body’s substitution instance N M y, which is used to
reconstruct a typing derivation for the lambda.

This proof works because we are able to reverse the order
in which x and y are bound. Initially, y is within the scope
of x. However, when we recurse, we move y to the outside,
while x is still bound by the theorem itself.

Unfortunately, this strategy does not work in a depen-
dently typed setting, where it is not generally possible to
re-order variables in the context. Were the example depen-
dently typed, the function’s domain would not be B but B x,
making it impossible to move e (the typing assumption for
y, whose type would then be of y (B x)) outside of the
binding for x. The proof cannot be recovered.

2.2 Motivating Examples

The example above fails to be a motivating example because
there exists a trivial proof of substitution. Of course, this

3Since the names of theorem cases are insignificant, we save space
by naming them all “-”.

2

is a fluke of the example; most interesting theorems require
inductive proof.

In general, the problem arises for theorems with three
properties:

1. The theorem involves a distinguished bound variable.

2. We require an inductive proof.

3. The type system is dependently typed (where types can
depend on the distinguished bound variable4).

When working in a dependently typed setting, such the-
orems are not uncommon. A few examples are:

• Substitution with different judgements on the
left and right. It is often necessary for typing assump-
tions to utilize a different judgement than the primary
typing judgement. This most often happens because of
a need to treat variables specially. For example, many
module type theories ascribe special privileges to paths
(where a path is defined as a series of actions, such as
projection, acting on a variable) [3, 5, 6]. This might
be represented in LF by:

varof : exp -> tp -> type.
of : exp -> tp -> type.
path : exp -> type.

of/var : of X T
<- varof X T.

path/var : path X
<- varof X _.

%block bind
: some {a:tp}

block {x:exp} {d:varof x a}.

In such a system, the substitution lemma:

subst
: of M A

-> ({x} varof X A -> of (N x) (B x))
%%

-> of (N M) (B M)
-> type.

%mode subst +X1 +X2 -X3.
%worlds (bind) (subst _ _ _).

cannot be proven trivially. (Above, we give the depen-
dently typed formulation of substitution. Without de-
pendent types it can be proven by permuting assump-
tions.)

• Narrowing in Algorithmic F≤. A similar issue
arises in the subtyping algorithm for F≤, proposed as
part of the Poplmark challenge [1]. In the algorithm,
the reflexivity and transitivity rules are available only
for variables:

Γ ` X ≤ X

(X≤U) ∈ Γ Γ ` U ≤ T

Γ ` X ≤ T

This can be represented in LF by:

4For example, the problem does not arise in term substitution
for the polymorphic lambda calculus, even though it is dependently
typed, since types cannot depend on terms. However, it would arise
for type substitution (if not for the trivial solution, of course).

tp : type.

assm : tp -> tp -> type. %% assumption
sub : tp -> tp -> type. %% judgement

sub/refl : sub X X
<- assm X _.

sub/trans : sub X T
<- assm X U
<- sub U T.

%block tpbind
: some {u:tp}

block {x:tp} {d:assm x u}.

A key lemma needed to prove the correctness of the
F≤ algorithm is narrowing, which states that subtyping
can be applied to assumptions:

narrow : ({x} assm x Q -> sub M N)
-> sub P Q

%%
-> ({x} assm x P -> sub M N)
-> type.

%mode narrow +X1 +X2 -X3.
%worlds (tpbind) (narrow _ _ _).

This is an inductively proven theorem with a distin-
guished bound variable, and the dependencies among
subtyping bounds cause the same problems with vari-
able permutation as dependent types do.

• Functionality. Functionality is the cousin of substi-
tution where two equivalent terms are substituted into
a term to obtain equivalent substitution instances:

of : exp -> tp -> type.
equiv : exp -> exp -> tp -> type.

funct : equiv M1 M2 A
-> ({x} of x A -> of (N x) (B x))

%%
-> equiv (N M1) (N M2) (B M1)
-> type.

%mode funct +X1 +X2 -X3.
%worlds (bind) (funct _ _ _).

Functionality exhibits the same problem as substitu-
tion, but does not enjoy a trivial solution.

• Hereditary substitution. When defining LF and
similar logical frameworks, it can be convenient to
adopt a canonical formulation, in which only canoni-
cal forms are well-formed. A complication arises from
substitution, since substitution instances of canonical
forms are not necessarily canonical. To resolve this,
one can define hereditary substitution, which reduces
any redices resulting from substitution [12].

The top-level judgement defining hereditary substitu-
tion looks like:

atom : type.
term : type.

sub : (atom -> term)
-> term -> term -> type.

3

tp : type.
exp : type.

o : tp.
p : exp -> tp.
pi : tp -> (exp -> tp) -> tp.

b : exp.
lam : tp -> (exp -> exp) -> exp.
app : exp -> exp -> exp.

of : exp -> tp -> type.

of/b : of b o.

of/lam : of (lam A ([x] M x)) (pi A B)
<- ({x} of x A -> of (M x) (B x)).

of/app : of (app M N) (B N)
<- of M (pi A B)
<- of N A.

%block bind
: some {a:tp}

block {x:exp} {d:of x a}.

Figure 3: Simple dependent types in LF

where “sub ([x] N x) M O” is read “hereditarily sub-
stituting M for x in N x yields O.” In the dependently
typed case, a similar judgement is required to substi-
tute a term into a type.

Since hereditary substitution is a defined notion, its
substitution lemma does not admit a trivial proof. (In
fact, in the dependently typed case it is rather involved,
even on paper.)

The explicit context method developed in this paper pro-
vides a principled, uniform, and dependable method to over-
come these difficulties. For the first two examples, ad hoc
workarounds are also known to exist. (As of this writing,
we know of none that are published.) Also, for the narrow-
ing example, Pientka [9] has shown that the difficulty can
be circumvented by formulating the LF encoding differently.
For the latter two, the explicit context method is the only
known technique.

3 Explicit Contexts

We will illustrate the explicit context method using a variant
of the simply typed lambda calculus from Section 2.1. We
will call this variant the simple dependently typed lambda
calculus. It is obtained from the simply typed language
by adding an additional type contructor p that depends on
terms, and generalizing the arrow type to a dependent pi
type. The syntax and static semantics are given in Figure 3.

A useful application would also add some formation re-
quirements and interesting structure to the p type, but we
will not, since our interest here is in the technique, not the
language itself.5 The method generalizes smoothly from

5In fact, the determining factor for Twelf as to whether the lan-

nat : type.

0 : nat.
s : nat -> nat.

lt : nat -> nat -> type.

lt/z : lt 0 (s _).
lt/s : lt (s N1) (s N2)

<- lt N1 N2.

nat-eq : nat -> nat -> type.

nat-eq/i : nat-eq N N.

Figure 4: Natural numbers

the simple dependently typed lambda calculus to other lan-
guages of interest, such as LF.

Turning now to explicit contexts, the first important
observation is that the encoding of syntax need not be
changed at all. This is important because it means that
explicit-context developments can co-exist with conventional
implicit-context developments. Thus, the syntax of terms
and types remains exactly that given in Figure 3.

3.1 Contexts

Of central interest in the method, of course, are contexts.
A context is represented as a list of pairs associating types
with term variables:

ctx : type.

nil : ctx.
cons : ctx -> exp -> tp -> ctx.

Thus, the context x:o, y:o→ o is represented:

cons (cons nil x o) y (arrow o o)

The intention is that the terms appearing within the con-
text are always variables. However, nothing in the syntax
enforces this. Instead, the task of enforcing that property is
left to a context formation judgement.

The context formation judgement checks another impor-
tant property as well. We need to enforce the property that
each variable appearing in the context is distinct. (This is
important, for example, for establishing that looking up a
variable in the context returns a unique type.)

These properties are tricky, because a priori we have no
way in LF to say that a term is a variable, much less that
two variables are distinct. We resolve both issues using the
judgement isvar. For every variable x, we assume isvar x
I, for some natural number6 I:

guage is dependently typed is whether exp is subordinate to tp [11];
that is, whether or not Twelf permits terms of type exp to appear
within terms of type tp. Twelf infers the subordination relation from
the signature, and either the p or pi declaration is sufficient to add
the desired edge. The explicit context method would work similarly
for any other formulation of dependent types that induced that edge.

6The definition of natural numbers is given in Figure 4.

4

precedes : exp -> exp -> type.

precedes/i : precedes X Y
<- isvar X I
<- isvar Y J
<- lt I J.

bounded : ctx -> exp -> type.
ordered : ctx -> type.

bounded/nil : bounded nil X
<- isvar X _.

bounded/cons : bounded (cons G Y _) X
<- precedes Y X
<- bounded G Y.

ordered/nil : ordered nil.

ordered/cons : ordered (cons G X _)
<- bounded G X.

Figure 5: Context formation

isvar : exp -> nat -> type.

%block ovar
: some {i:nat}

block
{x:exp}
{d:isvar x i}.

The invariant that each variable has an isvar assump-
tion is specified by the ovar block. (We will revise the ovar
block in Section 3.3 to add a case for the lemma isvar-fun.)

In the assumption isvar x I, we call I the order stamp
for x. We use order stamps to impose a strict partial order
on variables (x < y if the order stamp of x is less than that
of y). We may then enforce that variables in a context are
distinct by requiring them to be strictly increasing. (This
is no limitation because we can choose the order stamps
as desired.) Note that if x < y, it follows that x and y
are variables, so the variables-only property follows directly
from the strictly-increasing property.

These definitions are summarized in Figure 5. We con-
sider a context G to be well-formed if ordered G. The auxil-
iary judgement bounded G x indicates that G is ordered and
all its variables are strictly less than x.

Two other important judgements are lookup and append;
their definitions are given in Figure 6. Note that lookup is
crafted so that variables can be looked up only from well-
formed (i.e., ordered) contexts. Hence lookup is a function.

3.2 Typing

To type a term relative to an explicit context, we use the
ofe judgement:

ofe : ctx -> exp -> tp -> type.

The judgement ofe G M A is read “in context G, M has the
type A.” (That is, G ` M : A.)

If looking up the variable X in the context yields A then
X has the type A:

lookup : ctx -> exp -> tp -> type.

lookup/hit : lookup (cons G X A) X A
<- bounded G X.

lookup/miss : lookup (cons G Y _) X A
<- bounded G Y
<- lookup G X A.

append : ctx -> ctx -> ctx -> type.

append/nil : append G nil G.

append/cons : append G1 (cons G2 X A)
(cons G X A)
<- append G1 G2 G.

Figure 6: Lookup and append

ofe/var : ofe G X A
<- lookup G X A.

In a lambda abstraction, we hypothetically assume a new
variable x, then place it in the explicit context when checking
the body:

ofe/lam
: ofe G (lam A ([x] M x)) (pi A B)

<- ({x} isvar x I
-> ofe (cons G x A) (M x) (B x))

Note that the order stamp is arbitrary. This rule expresses
the essence of the hypothetical-categorical hybrid interpre-
tation. We take x as a hypothetical variable — thereby al-
lowing the use of higher-order abstract syntax — but treat
x’s type assignment categorically: M x has type B in a con-
text including x : A.

The application rule is standard:

ofe/app : ofe G (app M N) (B N)
<- ofe G M (pi A B)
<- ofe G N A.

Finally, we have one more rule for terms that are closed
with respect to the explicit context:

ofe/closed : ofe G M A
<- of M A
<- ordered G.

This rule states that if M has type A independently of the
explicit context (that is, using only the implicit context) and
G is well-formed, then M has type A in G.

It is convenient to use this rule for typing b, since it
happens to be closed. More importantly, we use it for im-
porting assumptions from the implicit-context setting into
this explicit-context setting. This is essential because we
wish to be able to shift into the explicit-context method at
any point in a proof, not just when the implicit context is
empty. Formally this is reflected in the worlds declaration
for our lemmas allowing bind blocks as well as ovar blocks.

5

3.3 Lemmas

We require several lemmas about the management of con-
texts:

• The order stamp of a variable is unique:

isvar-fun : isvar X I
-> isvar X J

%%
-> nat-eq I J
-> type.

%mode isvar-fun +X1 +X2 -X3.
%worlds (ovar | bind | obind)

(isvar-fun _ _ _).

Since the context contains assumptions of type isvar,
we need to place cases for the proof of isvar-fun in
with those assumptions. (Indeed, since isvar-fun has
no constants, the proof cases with those assumptions
constitute the entire proof.) Hence, we revise the defi-
nition of ovar to:

%block ovar
: some {i:nat}

block
{x:exp}
{d:isvar x i}
{thm:isvar-fun d d nat-eq/i}.

As noted above, isvar-fun (and the lemmas that fol-
low) works within a context consisting of either ovar or
bind blocks, so the explicit-context method can be used
within a larger implicit-context development. They
also work with the obind block, which we discuss in
Section 5.1.

• As a corollary, precedes is a strict partial order:

precedes-irreflex : precedes X X
%%

-> false
-> type.

%mode precedes-irreflex +X1 -X2.
%worlds (ovar | bind | obind)

(precedes-irreflex _ _).

precedes-trans : precedes X Y
-> precedes Y Z

%%
-> precedes X Z
-> type.

%mode precedes-trans +X1 +X2 -X3.
%worlds (ovar | bind | obind)

(precedes-trans _ _ _).

• A well-formed context can be extended. More precisely,
for any well-formed context G, there exists an order
stamp I such that a fresh variable given that stamp
will bound G:

extend-context
: ordered G

%%
-> ({x} isvar x I -> bounded G x)
-> type.

%mode extend-context +X1 -X2.
%worlds (ovar | bind | obind)

(extend-context _ _).

• If G has the form G1, x:A, G2 and looking up x returns
B x, then A and B x are equal:

append-lookup-eq
: ({x} append (cons G1 x A) (G2 x) (G x))

-> ({x} isvar x I
-> lookup (G x) x (B x))

%%
-> ({x} tp-eq A (B x))
-> type.

%mode append-lookup-eq +X1 +X2 -X3.
%worlds (ovar | bind | obind)

(append-lookup-eq _ _ _).

• Well-formedness of contexts is preserved by the deletion
of variables:

ordered-pdv
: ({x} append (cons G1 x A) (G2 x) (G x))

-> append G1 (G2 M) G’
-> ({x} isvar x I -> ordered (G x))

%%
-> ordered G’
-> type.

%mode ordered-pdv +X1 +X2 +X3 -X4.
%worlds (ovar | bind | obind)

(ordered-pdv _ _ _ _).

• Similarly, lookup is preserved by the deletion of vari-
ables other than the one being looked up:

lookup-pdv
: ({x} append (cons G1 x A) (G2 x) (G x))

-> append G1 (G2 M) G’
-> ({x} isvar x I

-> lookup (G x) Y (B x))
%%

-> lookup G’ Y (B M)
-> type.

%mode lookup-pdv +X1 +X2 +X3 -X4.
%worlds (ovar | bind | obind)

(lookup-pdv _ _ _ _).

Note that since Twelf meta-variables are implicitly
quantified on the outside, Y cannot depend on x, and
therefore cannot be x.

• Lookup works only on well-formed contexts:

lookup-context : lookup G X A
%%

-> ordered G
-> type.

%mode lookup-context +X1 -X2.
%worlds (ovar | bind | obind)

(lookup-context _ _).

• Judgements do not depend on the choices of order
stamps. (We call these the bumping lemmas.) The
stamps can be changed at will, provided the context
remains ordered. For example, for typing:

6

bump-ofe
: ({x} isvar x I -> ofe (G x) (M x) (A x))

-> ({x} isvar x I’ -> ordered (G x))
%%

-> ({x} isvar x I’
-> ofe (G x) (M x) (A x))

-> type.
%mode bump-ofe +X1 +X2 -X3.
%worlds (ovar | bind | obind)

(bump-ofe _ _ _).

If ofe (G x) (M x) (A x) holds when x’s order stamp
is I, and G x is still ordered if x’s stamp is I’, then it
also holds when x’s stamp is I’.

The proof is interesting in the case that I’ > I and x is
last in the context. In that event, it may be necessary
recursively to bump the bound variables of M x to make
room for x’s new order stamp.

• If a term is well-typed under G1 then it is well-typed
under any well-formed G that extends G1:

weaken-ofe : append G1 G2 G
-> ordered G
-> ofe G1 M A

%%
-> ofe G M A
-> type.

%mode weaken-ofe +X1 +X2 +X3 -X4.
%worlds (ovar | bind | obind)

(weaken-ofe _ _ _ _).

3.4 Substitution Proof

With these lemmas in hand, we can prove the explicit-
context substitution lemma:

esubst : ({x} append (cons G1 x A) (G2 x) (G x))
-> append G1 (G2 M) G’
-> ofe G1 M A
-> ({x} isvar x I

-> ofe (G x) (N x) (B x))
%%

-> ofe G’ (N M) (B M)
-> type.

%mode esubst +X1 +X2 +X3 +X4 -X5.
%worlds (ovar | bind | obind)

(esubst _ _ _ _ _).

It reads: if G x = G1, x:A, (G2 x) and G′ = G1, (G2 M), and
if G1 ` M : A and G x ` N x : B x, then G’ ` N M : B M. This
is exactly the standard, on-paper formulation in Lemma 2.1
(generalized for dependent types).

In the proof, the ofe/closed case uses ordered-pdv to
show that the context is still well-formed after x is removed.
The ofe/var case for variables other than x uses lookup-pdv
similarly. The ofe/app case is a simple induction invocation.

The ofe/var case for x uses weaken-ofe to weaken ofe
G1 M A to ofe G’ M A (after using ordered-pdv to show
that G’ is well-formed).

The ofe/lam case in straightforward in the explicit-
context setting. The LF binding for y is moved outside,
as is y’s isvar assumption (which never depends on x, de-
spite the presence of dependent types). However, y’s typing
assumption is now part of the ofe judgement, so it remains

- : esubst
%% inputs
(DappendG

: {x} append (cons G1 x A) (G2 x) (G x))
(DappendG’ : append G1 (G2 M) G’)
(DofM : ofe G1 M A)
([x] [d:isvar x I]

ofe/lam
(DofN x d

: {y} isvar y J
-> ofe (cons (G x) y (B x))

(N x y) (C x y))
: ofe (G x)

(lam (B x) ([y] N x y))
(pi (B x) ([y] C x y)))

%% output
(ofe/lam DofN’

: ofe G’
(lam (B M) ([y] N M y))
(pi (B M) ([y] C M y)))

<- ({y} {e:isvar y J}
isvar-fun e e nat-eq/i
-> esubst

([x] append/cons (DappendG x))
(append/cons DappendG’)
DofM
([x] [d] DofN x d y e)
%%
(DofN’ y e

: ofe (cons G’ y (B M))
(N M y) (C M y))).

Figure 7: Explicit-context esubst proof (ofe/lam case)

within the scope of x. The complete ofe/lam case is given
in Figure 7.

This completes the explicit-context substitution proof,
but recall that our ultimate aim is to prove the result for
the original, implicit-context system. Thus, it remains to
show that we can shift from implicit to explicit form and
back.

4 Translation to Implicit Form

To convert from explicit form back to implicit form, we wish
to prove the ofe-to-of lemma:

ofe-to-of : ofe nil M A
%%

-> of M A
-> type.

%mode ofe-to-of +X1 -X2.
%worlds (ovar | bind) (ofe-to-of _ _).

This states that if a typing judgement holds with an
empty explicit context, it also hold with the context implicit.
The worlds declaration shows that it can be used with bind
blocks, that is, in the middle of a larger proof. (It also can be
used with ovar blocks — that is, within an explicit-context
proof — but in practice it would rarely if ever be used that
way.)

7

The proof relies on a technical device, a judgement called
ofi:

ofi : ctx -> exp -> tp -> type.

ofi/nil : ofi nil M A
<- of M A.

ofi/cons : ofi (cons G X A) M B
<- (of X A -> ofi G M B).

The ofi judgement is an explicit-context typing judge-
ment, like ofe, but it is based on the context rather than
the term. While ofe has a rule for each term construct, ofi
works by introducing an of assumption for each variable in
the context, and then deferring to the of judgement.

By definition, of M A follows immediately from ofi nil
M A, so it remains to show that the latter follows from ofe
nil M A:

ofe-to-ofi : ofe G M A
%%

-> ofi G M A
-> type.

%mode ofe-to-ofi +X1 -X2.
%worlds (ovar | bind) (ofe-to-ofi _ _).

We prove ofe-to-ofi by showing that each of the ofe
rules applies to ofi as well. For example, for the ofe/var
case:

ofe/var : ofe G X A
<- lookup G X A.

we prove:

ofi-lookup : lookup G X A
%%

-> ofi G X A
-> type.

%mode ofi-lookup +X1 -X2.
%worlds (ovar | bind | ofblock)

(ofi-lookup _ _).

and for the ofe/app case:

ofe/app : ofe G (app M N) (B N)
<- ofe G M (pi A B)
<- ofe G N A.

we prove:

ofi-app : ofi G M (pi A B)
-> ofi G N A

%%
-> ofi G (app M N) (B N)
-> type.

%mode ofi-app +X1 +X2 -X3.
%worlds (ovar | bind | ofblock)

(ofi-app _ _ _).

Each of these lemmas is proven by a simple induction
over the context G. Since the inductive case introduces a
“disembodied” of assumption, their worlds must include the
ofblock block:

%block ofblock : some {x:exp} {a:tp}
block {d:of x a}.

This block appears nowhere else in the proof.

5 Translation to Explicit Form

The key result of this paper is that we can convert from
implicit to explicit form. Once we have done so, we can carry
out a proof using explicit contexts (Section 3.4), and then
convert back to implicit form (Section 4), thereby obtaining
a general result with no mention of explicit contexts.

The simplest version of translation to explicit form is for
terms that are closed with respect to explicit variables:

of-to-ofe : of M A
%%

-> ofe nil M A
-> type.

%mode of-to-ofe +X1 -X2.
%worlds (bind) (of-to-ofe _ _).

This is trivial to prove, using the ofe/closed rule.
More often, however, there is at least one explicit free

variable. (As in subst, for example.) Then we require a
lemma such as:

of1-to-ofe
: ({x} of x A -> of (M x) (B x))

%%
-> ({x} isvar x 0

-> ofe (cons nil x A) (M x) (B x))
-> type.

%mode of1-to-ofe +X1 -X2.
%worlds (bind) (of1-to-ofe _ _).

Recall that the bumping lemma provides that the order
stamp (0 here) is immaterial.

5.1 Cut

The main lemma for proving of1-to-ofe (and similar re-
sults) is a cut principle that cuts a lookup judgement against
an of assumption:7

cut-of : {M} %% induction variable
({x} of x A -> of (M x) (B x))

-> ({x} isvar x I
-> lookup (G x) x A)

%%
-> ({x} isvar x I

-> ofe (G x) (M x) (B x))
-> type.

%mode cut-of +X1 +X2 +X3 -X4.
%worlds (ovar | bind | obind)

(cut-of _ _ _ _).

The first argument is just the induction variable (Twelf
requires the induction variable to be an explicit argument).
The second argument states that M x has type B x assuming
x:A in the implicit context. The third argument satisfies x:A
using an explicit context lookup in G x. The lemma then
provides that M x has type B x in the explicit context G x.

The proof proceeds by induction on the term M (not on
its typing derivation). The variable case (that is, when the
second argument is ([x] [d] d)) uses ofe/var and the prof-
fered lookup judgement. The closed case (that is, when the
second argument is ([x] [d] D), where D does not depend

7This is not quite the literal worlds declaration for cut-of, as Twelf
requires that it be presented simultaneously with the worlds declara-
tion for cut-ofe, discussed later.

8

on d) is trivial, using the ofe/closed rule. The of/app case
is a simple induction invocation.

The interesting case is of/lam, for which the Twelf code
is given in Figure 8. In that case, M x has the form lam (B
x) ([y] N x y). The typing judgement for the body has
the LF type:

{x} of x A
-> {y} of y (B x)
-> of (N x y) (C x y)

We wish to cut the lookup judgement against the of
x A assumption, but we have the of y (B x) assumption
in the way. With simple types we could move the latter
assumption outside the x, but that does not generalize to
dependent types. Consequently, we must first cut against
y’s typing assumption, before returning to x’s.

After the first cut, the typing judgement for the body
has the LF type:

{x} of x A -> isvar x I
-> {y} isvar y J
-> ofe (cons (G x) y (B x)) (N x y) (C x y)

Note that x now has both an of assumption and an isvar
assumption. The recursive call to cut-of needs both: the
former is used in the typing derivation, while the latter is
a prerequisite for lookup (cons (G x) y (B x)) y (B x).
Since both are provided to the recursive call, and both can
contribute to an ofe judgement, the resulting judgement can
depend on both. This discussion is made precise in the third
premise to the proof case in Figure 8.

Now that y’s typing assumption has been moved into the
explicit context, we can move y itself and its isvar assump-
tion outside the scope of x. It remains to cut the original
lookup assumption against x’s typing assumption and its
new isvar assumption. For this we require a second lemma,
proved simultaneously with cut-of:

cut-ofe : {M} %% induction variable
({x} of x A -> isvar x I

-> ofe (G x) (M x) (B x))
-> ({x} isvar x I

-> lookup (G x) x A)
%%

-> ({x} isvar x I
-> ofe (G x) (M x) (B x))

-> type.
%mode cut-ofe +X1 +X2 +X3 -X4.
%worlds (ovar | bind | obind)

(cut-ofe _ _ _ _).

The ofe/closed case of cut-ofe defers back to cut-of.
The remaining cases are all simple induction invocations.
This includes ofe/lam, which is simple because its body
already uses an ofe judgement, so only one recursive cut is
required.

Let us return to the of-lam case of cut-of to make two
final observations. Since the case makes two recursive calls,
where the second operates on the result of the first, it is
not possible to do this proof by induction on derivations.
Instead, we do it by induction on the term itself, which is
undisturbed by all the processing of typing derivations.

Finally, as noted above, the recursive call to cut-of is
provided both an of and an isvar assumption for the same
variable x. Thus, the worlds declaration requires a new block
that combines bind and ovar:

%block obind
: some {a:tp} {i:nat}

block
{x:exp}
{d:of x a}
{d’:isvar x i}
{thm:isvar-fun d’ d’ nat-eq/i}.

Once the cut lemma is established, the ofe1-to-ofe
lemma is an easy corollary, since a derivation of
{x} isvar x 0 -> lookup (cons nil x A) A can be con-
structed directly:

[x] [d:isvar x 0] lookup/hit (bounded/nil d)

We can deal with terms with more than one bound vari-
able in a similar manner to the of/lam case above, by cut-
ting the last variable with cut-of and all preceding variables
with cut-ofe.

6 Conclusion

The explicit context method provides a general proof tech-
nique for theorems involving dependent types and one or
more distinguished bound variables. In general, explicit con-
texts are much clumsier than LF’s ordinary usage with im-
plicit contexts. (For example, explicit weakening is more
of a bother than ordinary LF practice, where one can sim-
ply bind variables and not use them.) Therefore we do not
advocate using explicit contexts throughout a development.

Instead, we recommend carrying out developments using
LF in its conventional style, shifting into explicit form only
when necessary. For example, Lee et al. [4] use explicit con-
texts to prove functionality of type constructor substitution,
and to prove the substitution lemma for a form of hereditary
substitution arising in the metatheory of singleton kinds.

The existence of this general method applicable to con-
ventional LF formalizations means that one can begin a
Twelf formalization without worrying about being tripped
up on this sort of issue. Moreover, in contrast to contextual
modal type theory [7, 10], the method works without any
extensions to LF or Twelf, so such formalizations can be
carried out today.

References

[1] Brian E. Aydemir, Aaron Bohannon, Matthew Fair-
bairn, J. Nathan Foster, Benjamin C. Pierce, Pe-
ter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic. Mechanized
metatheory for the masses: The POPLMark challenge.
In International Conference on Theorem Proving in
Higher Order Logics, pages 50–65, 2005.

[2] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM,
40(1):143–184, January 1993.

[3] Robert Harper and Mark Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In
Twenty-First ACM Symposium on Principles of Pro-
gramming Languages, pages 123–137, Portland, Ore-
gon, January 1994.

9

- : cut-of
%% inputs
([x] lam (B x) ([y] N x y)) %% induction variable
([x] [d:of x A]

of/lam
(Dof x d : {y} of y (B x) -> of (N x y) (C x y)))

(Dlookup : {x} isvar x I -> lookup (G x) x A)
%% outputs
([x] [d’:isvar x I] ofe/lam ([y] [e’:isvar y J] Dofe’ x d’ y e’))
<- ({x} {d’:isvar x I}

isvar-fun d’ d’ nat-eq/i
-> lookup-context (Dlookup x d’)

(Dordered x d’ : ordered (G x)))
<- ({x} {d’:isvar x I}

isvar-fun d’ d’ nat-eq/i
-> extend-context (Dordered x d’)

(Dbounded x d’ : {y} isvar y J -> bounded (G x) y))
<- ({x} {d:of x A} {d’:isvar x I}

isvar-fun d’ d’ nat-eq/i
-> cut-of ([y] N x y)

([y] [e:of y (B x)] Dof x d y e)
([y] [e’:isvar y J] lookup/hit (Dbounded x d’ y e’))
%%
([y] [e’:isvar y J] Dofe x d d’ y e’ : ofe (cons (G x) y (B x)) (N x y) (C x y)))

<- ({y} {e’:isvar y J}
isvar-fun e’ e’ nat-eq/i
-> cut-ofe ([x] N x y)

([x] [d:of x A] [d’:isvar x I] Dofe x d d’ y e’)
([x] [d’:isvar x I] lookup/miss (Dlookup x d’) (Dbounded x d’ y e’))
%%
([x] [d’:isvar x I] Dofe’ x d’ y e’ : ofe (cons (G x) y (B x)) (N x y) (C x y))).

Figure 8: Cut proof (of/lam case)

[4] Daniel K. Lee, Karl Crary, and Robert Harper. Towards
a mechanized metatheory of Standard ML. In Thirty-
Fourth ACM Symposium on Principles of Programming
Languages, Nice, France, January 2007. To appear.

[5] Xavier Leroy. Manifest types, modules and separate
compilation. In Twenty-First ACM Symposium on
Principles of Programming Languages, pages 109–122,
Portland, Oregon, January 1994.

[6] Xavier Leroy. Applicative functors and fully trans-
parent higher-order modules. In Twenty-Second ACM
Symposium on Principles of Programming Languages,
San Francisco, January 1995.

[7] Aleksandar Nanevski, Frank Pfenning, and Brigitte
Pientka. A contextual modal type theory. ACM Trans-
actions on Computational Logic, 2008. To appear.

[8] Frank Pfenning and Carsten Schürmann. Twelf User’s
Guide, Version 1.4, 2002. Available electronically at
http://www.cs.cmu.edu/~twelf.

[9] Brigitte Pientka. Proof pearl: The power of higher-
order encodings in the logical framework LF. In Twen-
tieth International Conference on Theorem Proving in
Higher Order Logics, volume 4732 of Lecture Notes in
Computer Science, pages 246–261, Kaiserslautern, Ger-
many, September 2007. Springer.

[10] Brigitte Pientka. A type-theoretic foundation for pro-
gramming with higher-order abstract syntax and first-
class substitutions. In Thirty-Fifth ACM Symposium
on Principles of Programming Languages, pages 371–
382, San Francisco, California, January 2008.

[11] Roberto Virga. Higher-order superposition for depen-
dent types. In Seventh International Conference on
Rewriting Techniques and Applications, 1995.

[12] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and
David Walker. A concurrent logical framework I: Judg-
ments and properties. Technical Report CMU-CS-02-
101, Carnegie Mellon University, School of Computer
Science, 2002. Revised May 2003.

Explicit Contexts in LF, Revision 2.

10

