
Trustless Grid Computing in ConCert ?

Bor-Yuh Evan Chang, Karl Crary, Margaret DeLap, Robert Harper,
Jason Liszka, Tom Murphy VII, and Frank Pfenning

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
{bechang,crary,mid,rwh,jliszka,tom7,fp}@cs.cmu.edu

Abstract. We believe that fundamental to the establishment of a grid
computing framework where all (not just large organizations) are able to
effectively tap into the resources available on the global network is the
establishment of trust between grid application developers and resource
donors. Resource donors must be able to trust that their security, safety,
and privacy policies will be respected by programs that use their systems.

In this paper, we present a novel solution based on the notion of certi-
fied code that upholds safety, security, and privacy policies by examining
intrinsic properties of code. Certified code complements authentication
and provides a foundation for a safe, secure, and efficient framework that
executes native code. We describe the implementation of such a frame-
work known as the ConCert software.

1 Introduction

In recent years, numerous organizations have been vying for donated resources
for their grid applications. Potential resource donors are inundated with worth-
while grid projects such as discovering a cure for AIDS, finding large prime
numbers, and searching for extraterrestrial intelligence. Part of the difficulty in
obtaining resources is establishing trust between the grid application developer
and the resource donors. Because resource donors often receive little or no direct
reward for their contributions, they demand assurances of safety, security, and
privacy to protect themselves from malicious as well as simply unreliable soft-
ware. In an ideal grid framework, as proposed in Legion [18], users are provided
the abstraction of a single virtual machine that automatically distributes work
and gathers results. In such a framework, this issue is even more salient because
the exchange of code happens automatically.

Most current grid frameworks, such as the Globus toolkit [13], focus on au-

thentication to provide the basis for security on computational grids. Authenti-
cation provides a means for one entity to verify the identity of another. If this
is combined with some form of access control, then resource donors are able
to control who can access their resources. In essence, this seeks to address the

?

The ConCert Project is supported by the National Science Foundation under grant ITR/SY+SI
0121633: “Language Technology for Trustless Software Dissemination”.



question “how do I identify those I trust?”; however, there seems to be a more
fundamental question: “whom can I trust?” Currently, resource donors are lim-
ited to relying on the reputation of the developer or possibly the reputation of
some quality assurance team that endorses him. While this is a reasonable solu-
tion for large well-known projects, we would like a more automated means that
would enable more people to utilize the grid.

To address this issue, the ConCert project [9] enforces safety, security, and
privacy policies by verifying intrinsic properties of code. This is realized through
the use of certifying compilers that allow software developers to produce efficient
machine code along with checkable certificates that can be easily and automati-
cally verified on behalf of code recipient. Our vision is to empower all program-
mers to utilize donated resources by establishing trust via rigorous, mathematical
proof of the intrinsic safety, security, and privacy properties of software.

Our report proceeds as follows. We compare several existing techniques for
code certification, briefly introduce the specific technologies on which our frame-
work is built, then explain the properties that can be certified. We then discuss
the design and implementation of our peer-to-peer architecture, and finally de-
scribe our first application, a grid ray tracer.

2 Certification and Security

In this section, we discuss current means of ensuring safety and security without
authentication, provide an overview of the certified code technologies we employ,
and discuss properties that can be certified.

2.1 Related Safety and Security Ideas

Mechanisms for safeguarding against faulty code produced by trusted users have
been needed in systems long before the concern over malicious mobile code. For
example, one method to safeguard memory between threads of computation is
to simply place the processes in separate address spaces, as is done in most
modern-day operating systems. This and other operating system mechanisms
provide a very coarse level of safety or fault isolation both for individual systems
and any grid framework. The problem with basing safety solely on these coarse
mechanisms is that there is very little control on what properties are enforced and
there is often a significant runtime overhead associated with these mechanisms
(e.g. frequent context switching and copying between addresses spaces). Several
technologies have been developed to lower the cost of fault isolation and provide
finer control over which safety, security, and privacy properties are ensured. This,
in essence, is also the goal of certified code. In this section, we describe a few
of these related technologies, namely virtual machine techniques and methods
that interpose between the process and the operating system, along with some
shortcomings that we believe certified code addresses.



Virtual Machine Methods. The most prominent use of a virtual machine
environment for providing a secure execution space is in the Java Development
Kit (JDK). At the core of the JDK 1.2 security model [15] is the ability to type-
check Java Virtual Machine (JVM) bytecode [21]. It is critical that untrusted
code cannot bypass the runtime checks that enforce the high-level security policy.
In addition, the JDK has authentication-based mechanisms for identifying the
origin of code and restricting access based on this information.

Several grid frameworks have been developed using Java as a secure host
for mobile code, such as IceT [17], Javelin [5], and Bayanihan [33]. The IceT
project aims at allowing processes running in the IceT environment to freely flow
among available sites. IceT code primarily consists of Java application bytecode
that is dynamically loaded into a governing environment with some optional
policy-based means to link with native code. Javelin focuses on creating a grid
framework using Java-enabled web browsers to minimize the technical expertise
needed to participate in grid computing. Code for Javelin must be in the form
of Java applets rather than Java applications. Project Bayanihan also aims to
utilize Java applets to make it easier to participate but also supports the loading
of Java applications. Further, it investigates preventing sabotage by nodes who
submit erroneous results.

At the same time, despite the additional safety and security guarantees af-
forded by a virtual machine environment for loading code, a number of grid
frameworks load native code for performance reasons. Although concerns about
the performance of interpreted Java bytecode are somewhat relieved by just-
in-time (JIT) compilers, JIT compilation to native code occurs after bytecode
verification, so errors in the JIT compiler may lead to security holes. In addition,
since the JIT compiler is run at execution time, its compilation process must be
fast, which limits the quality of code it is able to produce.

Interposition Methods. Even prior to grid computing, interposition mech-
anisms between an untrusted process and the operating system were used to
provide finer control of safety properties. Interposition gives control of execu-
tion to a watchdog whenever the untrusted process performs a possibly unsafe
operation. One interposition method is known as Software-based Fault Isolation
(SFI) [35], which is exhibited in the Omniware system for mobile code [22]. One
striking issue with interposition mechanisms is that they are limited in what
properties they ensure. For example, SFI only ensures memory safety. As with
virtual machine methods, performance of interposition methods is often also a
concern. In grid applications where we seek to make the best use of donated
resources, avoiding the overhead of these methods is desirable.

Proof-Carrying Code. Proof-carrying code (PCC) is a form of certified code
with arbitrary certification properties written as logic statements [28]. In PCC,
a certifying compiler generates a proof along with the object code, and this
proof is verified by a simple proof-checker on the code recipient’s computer.
PCC has very little runtime overhead because many properties can be verified



before the program is ever run. For instance, Necula and Lee show that PCC
handily outperforms SFI on a network packet filter application [29].

Because the certified properties are, in principle, arbitrary, PCC is highly
flexible. However, this flexibility also means that it can be difficult for program-
mers to know when the certifying compiler will be able to generate proofs. One
response to this problem is to encode desired safety properties in a type system

for the source programming language. In this sense, a type system is simply a
syntactic realization of specific properties such that a well-formed program is
guaranteed to have those properties. Verification then consists of type-checking
rather than proof-checking. A well-designed type system makes it easy for the
programmer to understand which properties are certifiable by a compiler.

Many properties can be encoded in a type system; however, all type systems
rely on the basic notion of type safety. Type safety means that the program will
not “go wrong” by violating abstraction boundaries, accessing memory outside
its address space, or branching into unsafe code. Therefore, for our first version
of a grid framework with certified code, we choose languages with just this basic
property.

2.2 Enabling Technologies

In this section, we provide some background on the enabling technologies that
allow us to develop a grid framework based on the notion of certified code. The
implementation of our grid framework builds on the TALx86 [24] realization of
the Typed Assembly Language (TAL) [26, 25] developed by Morrisett et al. A
certifying compiler for a type-safe C-like language called Popcorn that compiles
to TALx86 has also been developed as part of the TAL project. These tools
serve as a foundation for an implementation of the ConCert grid software and
applications that run on it.

An Overview of Popcorn. Popcorn is a programming language similar to
C, except that unsafe features like the unrestricted address-of operator, pointer
arithmetic, and pointer casts have been left out. At the same time, it has a num-
ber of advanced features akin to modern high-level programming languages like
Java [16] and Standard ML (SML) [23], such as exceptions, garbage collection,
tagged unions, and parametric polymorphism that mitigate the need for these
unsafe features.

The primitive types supported by Popcorn include bool, char, short, int,
float, double, string, and unsigned forms of the numeric types. Unlike C,
arrays carry their size for bounds checking, and strings are not null-terminated.
Instead, strings are treated like arrays of chars, and a special size construct
is used to extract the size of an array or string. Popcorn’s basic control flow
constructs (if, for, while, do, break, and continue) behave identically to
their C counterparts except that test expressions must have type bool.

The aggregate data structures in Popcorn are similar to ones in high-level
languages like Java and SML. First, Popcorn supports tuple types in addition to



structs and unions. Tuples (as well as structs and unions) are created using
the new construct and projected using .1, .2, ... as shown in Fig. 1A. There are
two forms of structure definitions: struct and ?struct. Values of types defined
with struct cannot be null (a primitive in Popcorn) whereas values of types
defined with ?struct may. A value of a type defined with ?struct is checked
for null upon access to a field. If it is null, the program aborts immediately.
Unions in Popcorn resemble SML datatypes more than C unions in that each
variant has a tag and an associated type. In Fig. 1B, we declare a full binary
tree with integer data at the leaves.

(A) *(int,int) p = new (0,1);
int sum = p.1 + p.2;

(B) union tree { int Leaf; *(tree,tree) Node; }
(C) int numleaves(tree t) {

switch (t) {
case Leaf(x): return 1;
case Node *(l,r): return numleaves(l) + numleaves(r);

}
}

(D) *(t2,t1) swap<t1,t2>(*(t1,t2) x) {
return new (x.2,x.1);

}

Fig. 1. Popcorn examples

Notice that union types may be recursive. We often utilize values of a type
defined with union by switching on them. For example, we can write a function
that counts the number of leaves in a binary tree (Fig. 1C).

Parametric polymorphism provides a means to write data structures or al-
gorithms where the use of values is independent of the types. The syntax of
parametric polymorphism in Popcorn resembles that of templates in C++ or
generic types in GJ [4]. In Fig. 1D, we use parametric polymorphism to write
a generic swap of the components of a pair. The symbols t1 and t2 are type
variables that represent arbitrary types.

From this overview, we see the similarity of Popcorn to Java in that it has
the look and feel of C but with strictures that enable the demonstration of safety
properties. However, Popcorn differs from Java in that the output of the Popcorn
compiler is machine code able to be run at full speed rather than bytecode that
is interpreted or that requires just-in-time compilation upon execution.

An Overview of TALx86. TALx86 is a statically-typed assembly language for
the Intel IA-32 architecture. Since it is not feasible to fully describe TALx86

here, we simply provide an overview of TALx86 in order to appreciate our grid
framework’s underlying technology. Further details about TALx86 can be found
in Morrisett et al. [24] as well as about its theoretical basis in related works [26,
25].

From the high-level source language, the Popcorn compiler (or potentially
other certifying compilers) produce .tal files that contain TALx86 assembly with
all the typing annotations for each source file along with a number of other files



Table 1. TALx86/Popcorn Files for main

File Produced By Description Shipped

main.pop developer the Popcorn source file for main
main.tal popcorn typed assembly language output
main i.tali talc main’s imports (any extern declarations)

√
main e.tali talc main’s exports (non-static types and values)

√
main.to talc binary file with the typing annotations

√
main.o talc native object file in ELF

√

that are generated by the TALx86 assembler talc. Some of these files are shipped
to the code recipient. These contain information such as the imports, exports,
and typing annotations that are used for link-time verification. A .tal file is a
realistic assembly language that is, in fact, compatible with the Microsoft Macro
Assembler (MASM). Table 1 summarizes these files for an example program
called main that is written in Popcorn.

The TALx86 assembler talc translates a .tal file into a native object file
in either COFF (for Windows) or ELF (for Unix variants) and a .to file that
contains typing annotations from the original .tal file in a binary format. The
talc assembler is actually composed of a TALx86 type-checker, a link-verifier, a
code assembler, and a code linker. Upon reading of .tal files, talc first type-
checks each file individually. This type-check should never fail provided that the
implementation of the certifying compiler is correct; however, by type-checking,
we no longer need to assume the correctness of the certifying compiler. Contrast
this with using the JVM with just-in-time compilation for ensuring type-safety
where we have to assume that the JIT compiler is implemented correctly. Before
creating the native object file, the link-verifier ensures that the multiple .tal

files are safe after being linked together by verifying that they have the same
assumptions about the values and types that they share. Technical details about
link verification can be found in Glew and Morrisett [14].

The ConCert grid software simply ships the native object, .to, i.tali, and
e.tali files. Before dynamically loading the code on the donor host, the grid

software type-checks the code using a TAL verification library on the received
files.

Certifiable Properties. Type safety is the key property that allows us to
control how a program behaves. As a baseline, a type-safe program must be
memory safe (no illegal reads or writes) and control-flow safe (no jumps to illegal
addresses). In addition, it cannot violate abstraction boundaries that could lead
to such errors. We are further able to provide the distributed code with an
arbitrary “safe” subset of the system library. It is simple, for instance, to allow
the code to modify or delete only files that it created (without run-time checks),
or to simply not allow access to any files at all. The grid volunteer can be given
a choice of several policies on these sorts of issues, each of which is enforced
by verifying that the candidate code type-checks with the supplied view of the
system library.

There are, however, other properties that we may wish to certify that cannot
be enforced this way. These properties are a subject of current research. To



express these, we enhance our type systems so that type safety implies adherence
to the property in question. For instance, one primary concern for grid computing
is the resource usage of the distributed code. Much work is in progress regarding
resource bound certification [30, 10], which allows the type system to include
bounds on how much CPU, memory, and disk resources a piece of code may use.

Finally, users may wish to give code access to private information (such
as the computer’s configuration), so long as this information does not, for in-
stance, make its way back onto the network. Such requirements are known as
information-flow properties, and work is being carried out on type systems that
certify them [19, 36, 27].

3 ConCert Architecture

A chief property of our architecture is decentralization. A decentralized grid
allows us to use idle resources while avoiding bottlenecks that could overload
hosts or networks and degrade performance—possibly even for users who are
not involved in grid computation. Another driving principle is fault tolerance;
we expect nodes in the network to fail frequently, and this has a significant
impact on our programming and scheduling model.

Our current design is entirely peer-to-peer and symmetric (each node both
serves code and runs it). Every participating node has three components: a
locator, a worker, and a conductor. The locator finds a host’s peers at runtime
as is necessitated by the decentralized architecture. The conductor component
keeps track of what work is available to be done and bundles files as necessary
to provide work to peers. The worker acquires code from a peer (perhaps itself),
verifies it using the TAL verifier, and runs it. We now provide an overview of each
of these components. Further details can be found in DeLap’s honors thesis [12].

Node Discovery. Because of the system is decentralized, participants should
find their peers dynamically. In our current implementation of the locator com-
ponent, we use a protocol similar to Gnutella’s [8] to discover nodes. Using this
protocol, hosts build tables of peers as they run. A host that wishes to partic-
ipate joins the network by sending an initial ping message to some number of
predetermined peers. If any of these peers are participating, they will forward
that message to the peers of which they are aware, and so forth within a limited
number of hops. Anyone receiving a ping message notifies the originating host
that it is alive by sending a response.

We do not share all of Gnutella’s privacy goals, so we are able to reduce
network traffic for certain exchanges. Nonetheless, since it is known that Gnutella
may have scalability issues [31], we may wish to change our method of node
discovery in the future. Components other than the locator remain unaware of
how the list of contacts is found. Therefore, it would be feasible for us to change
our entire network topology without affecting the serving and running of work
itself.



Parallelism Model. Since the grid is likely to contain slow, unreliable net-
work links and hosts, we do not support the use of either fine-grained, high-
communication threads or shared memory, both for performance reasons and
for failure tolerance. At the same time, our model of parallelism should allow
for inexpensive scheduling. We therefore base our model of parallelism on that
of Cilk-NOW [3] and, more generally, dataflow computer architectures [11]. In
our model, programs are split into segments called cords, on which we impose
certain invariants to simplify scheduling tasks.1

First, once a cord is ready to run, it is able to execute continuously to comple-
tion without waiting for data from other cords or otherwise blocking. In other
words, a cord does not communicate with other cords while executing. This
restriction simplifies scheduling greatly.

Second, any execution of a cord is, as far as the developer is concerned, “as
good as” any other. This is evident for deterministic cords. Nondeterministic or
randomized algorithms may also be acceptable, as long as a re-execution (due
to the failure of a node) still produces a valid result.

Finally, cords do not produce outside effects that other cords rely on. For
example, it would be unsound for one cord to write to a file on a participating
machine and another cord to depend upon the contents of that file. Such effects
are forms of “out-of-band” communication with other cords. As such, they would
be hidden from the scheduler; if any cords were later rescheduled, they would
almost certainly not behave correctly.

How, then, does information travel between the parts of a program? Each
cord’s I/O consists of the entire set of arguments it needs and the result it
produces. We may therefore represent a program as a graph in which nodes
denote cords and edges indicate the data flowing into them as arguments. A
cord is not ready to run until its inward edges have the necessary data available.
Fig. 2(A) gives a simple example of this model. This form of “communication”
may seem rudimentary, but by creating new cords at run-time with appropriate
dependencies we are able to implement more sophisticated forms of control flow.
For instance, with a process similar to Continuation-Passing Style [1], we are
able to implement fork-join parallelism.

To make our model more powerful, we collect sets of dependencies into groups
of and- and or-dependencies. In an and -dependency set, all of the dependencies
are required—they must all contain data before the set of dependencies is con-
sidered complete. Alternatively, in an or -dependency set, only one dependency
result is necessary. As soon as any one of the dependencies is filled, that set
is considered completed. Such sets can be chained into trees of dependencies
that are to be simplified and collapsed as dependency data (results) are filled in.
Fig. 2(B) provides a simple example of a dependency tree.

1 Adherence to these invariants is not presently certified, however, programs that do
not meet them do not pose any danger to the resource donor; the programs simply
do not work properly. It would be desirable that a grid programming language assist
the programmer in verifying these properties.



R

answer

lists

LL LR RRRL

L

= merge cord
Wait

4 OR

Done Running Ready Wait

 : cordE

DBA C
2

(A) (B)

Fig. 2. (A) A simple cord graph example. This graph represents an execution of a
program that mergesorts four sorted list segments into one sorted list. The list segments,
which are themselves results of cords, are arguments to the cords. Merged list segments
travel downward in the graph until the final result (the entire sorted list) is obtained.
(B) Dependency resolution. Here, cord A has recently terminated; its result, 4, becomes
one of the arguments to E. Cord E now awaits results from B and either C or D.
Meanwhile, cord C is ready to run, having received the result 2 from the cord on which
it depends. To summarize, the set C +D is a set of or -dependencies for E; AB(C +D)
is its overall set of and -dependencies.

Work Stealing. Whenever a participating workstation becomes idle, it may
pull work from its peers. Hosts never actively foist work on others. We choose
to use the work-stealing model for three reasons. First, the worker node knows
best when the host it is running on is idle, and when it is in need of more
work. Second, the worker is likely to know better how much work it will need
(depending on its number of processors, etc.). Third, the worker is able to send
with its request a description of its security policy. This allows the code producer
to find or generate a matching cord and send only the certification information
that the worker needs to be satisfied.

Work stealing has major implications for scheduling. In our case, it means
the conductor’s scheduler can run on demand only, that is, whenever it receives
a work request or result from a worker. Since users may wish to serve cords even
when their machines are not idle, reducing the scheduler’s use of resources is
especially advantageous.

To steal work from a conductor, a worker initiates a sequence of messages
to acquire the appropriate cord and its arguments. It then verifies and runs the
code, sending the result back to the conductor. If, on the other hand, the code
fails to verify, the worker does not run it.

Failure Tolerance and Recovery. Of course, computation will not always
proceed smoothly on a failure-prone network such as the grid. Given that grid
computing attempts to solve large problems on possibly unreliable networks and
often on non-dedicated, consumer-level hardware, tolerance of failure is critical.
In particular, we need to be able to checkpoint programs at some reasonable
granularity and to restart them with partial results, so that earlier computation
is not lost if some part of the program fails (e.g. due to a downed node). Since
cords do not communicate among themselves as they run, restarting them is
not especially difficult provided the code for the cord in question is kept. With



respect to checkpointing, results are cached on conductors so that if a cord is

rescheduled, preceding cords on which it depends do not have to be re-run.
Failure detection is also an issue. If a worker notices and notifies the corre-

sponding conductor that its cord has died or failed to match its host’s security
policy, the conductor can simply reschedule it and hand it off to any subsequent
requester. Otherwise, we need to decide if and when to reschedule apparently
failed cords. In some cases, grid programmers may wish to approximate the re-
sult of a failed cord rather than reschedule the cord itself. We expect that failure
detection will involve some form of heartbeat between cords and originating
conductors, but further work on implementation is required. Related work has
already been done on failure detection for distributed computing, including [6].

Our framework also entails a new mode of failure, where a binary does not
pass the type-checking phase once transmitted to the worker’s hosts. There are
several reasons such failure may occur. For example, it may fail because the
certificate does not match the code, due to corruption of the files, a bad copy
of the certifying compiler, malice, or similar causes. Second, it may fail because,
while correct, it does not match the host’s security policy. Presumably this would
occur only if the conductor serving the code did not check the worker’s policy
against it in advance, or if the worker host’s policy changed in the midst of the
negotiation. In those cases, however, explicit failure notices can be generated to
reduce the impact on the overall grid performance.

Grid Clients. External clients can connect to conductors on local machines to
submit work and view or interpret results. To do this, they use a socket interface
to send messages to the conductor specifying the cord and the arguments with
which to run it. If all goes well, the conductor will return a handle to that cord,
which may be used to query its status and retrieve its result through the same
socket interface. Using a socket allows for easy interaction with clients written
in various languages—we have written demonstration clients in C and Standard
ML. The ConCert protocol software is also language-independent. Note, however,
that the cords themselves must be available in the TAL-produced format of
an object file and typing annotations, and the verifier clearly must check this
format.

4 Sample Application: Ray Tracer

Because of the strong interplay between certification technology and the source
programming language, we are interested in how applications are developed for
the grid and especially in what programming issues arise. Therefore we have de-
veloped a sample application for our grid framework: a parallel ray tracer called
Lightharp. The ray tracer back-end, which does the actual tracing work (and is
distributed across the grid), is written in the Popcorn language described in sec-
tion 2.2. The front-end, which divides the scene into small chunks, submits the
tracing jobs, and displays the results, is a separate program written in Standard
ML.



Lightharp implements the specification for the ICFP 2000 Programming Con-
test [20]. Scenes to be rendered are described by a simple stack-based language
called GML. GML supports basic diffuse and specular lighting, constructive solid
geometry, and several advanced features such as procedural textures. The GML
representation of a scene is typically quite compact because it can create named
objects and duplicate them to populate the scene. Therefore, rather than create
an intermediate representation of the scene we communicate a (slightly) modified
version of the original GML code on the grid.

The back-end is a function of type string -> string, which takes a GML
program as input, and returns the rendered scene as a sequence of RGB colors.
The color of a particular pixel is computed by shooting a “ray” from the point
of view through the image plane and recursively tracing its path through the
scene using standard ray-tracing algorithms. Note that the color of each pixel
or block of pixels can be calculated independently, which is the only source of
parallelism in our implementation.

The front-end works by parsing the GML scene and modifying it to instruct
the back-end to render only a small part of the image, that is, only trace rays
through a certain range of pixels. It then submits cords into the grid to cover
the entire image, and simply waits for the results to arrive (currently by polling
the ConCert software).

For an application with such a simple parallelism model as a ray tracer, we
found that this implementation strategy was adequate. Popcorn is a powerful
enough language to implement the back-end tracing functions without much
pain. It is also relatively easy to manage the cords from the front-end and only
mildly tedious to manually marshal between strings and RGB data.

Our ray tracer application’s parallel behavior is extremely simple; for in-
stance, the back-end cords have no need to spawn other cords, nor do they have
any dependencies. Work is currently under way to tackle some more difficult
parallel computations, such as parallel game tree search in chess. We hope to
push the limits of what is possible with cords, and discover interesting research
problems in programming techniques for the grid.

5 Conclusion

We have presented a framework and technologies for grid computing in a trustless
setting based on the idea of certified code. Certification compares favorably to
similar technology; it verifies rich properties of native code with low run-time
overhead. We have also described a peer-to-peer network for fetching and running
work, and presented a sample ray-tracing application that runs on the grid.

We believe that our trustless peer-to-peer strategy is the most effective way
to lower the barriers to universal utilization of the grid, while maintaining a
secure and robust network. However, code certification can be applied to other
mobile code scenarios in grid computing. For instance, manually-installed native
code applications like used for SETI@home [34] could benefit from the improved
security and potential for automatic updates afforded by certification. Untrusted



systems based on virtual machines could use certified native code to improve
performance.

Future Work. At present, we certify only type safety (which entails memory
safety and control flow safety). In section 2.2, we discussed other properties that
might be certified. When more certification options are available, we will need
to encode policies in such a way that code can be tested against them easily and
efficiently. We also plan to provide an accessible interface for users to specify
their security policies in a transparent manner.

Our framework protects cycle donors from broken or malicious code, but it
does not protect developers from false answers. Malicious workers might, instead
of actually running the code presented, return a fabricated result. We plan to
investigate how techniques proposed elsewhere [32, 33] can be adapted to the
ConCert architecture.

So far, we have concentrated on certification of safety properties. In practice,
this should be combined with methods for peer-to-peer authentication. Here,
again, the ideas behind proof-carrying code provide novel solutions [2]. We plan
to investigate how they may be applied in the ConCert framework.

Although we have implemented a ray tracer application using the ConCert

grid software, we noted in section 4 that the parallel structure of Lightharp is
exceedingly simple. To support more sophisticated uses of parallelism, we will
need a high-level programming model for supporting some notion of starting
remote computation and gathering of results within a grid application. Conse-
quently, we will need the means to map high-level programming languages to
the simple low-level interface provided by ConCert. Although it has yet to be
demonstrated, we believe we can leverage several programming language tech-
niques to achieve this goal. Preliminary work in this direction is discussed in
Chang’s honors thesis [7].

Acknowledgments. Our implementation and protocols, especially the work-
stealing protocol and code to support TAL verification, are based largely on
Joshua Dunfield’s initial implementation of the ConCert framework. We would
also like to acknowledge the other members of the ConCert project and Guy
Blelloch for their helpful comments.

References

[1] Andrew Appel. Compiling With Continuations. Cambridge University Press,
Cambridge, 1992.

[2] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In
G. Tsudik, editor, Proceedings of the 6th Conference on Computer and Commu-
nications Security, pages 52–62, Singapore, November 1999. ACM Press.

[3] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable parallel comput-
ing on networks of workstations. In USENIX 1997 Annual Technical Conference
on UNIX and Advanced Computing Systems, pages 133–147, Anaheim, California,
1997.



[4] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making
the future safe for the past: Adding genericity to the JavaTM programming lan-
guage. In Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA), pages 183–200, Vancouver, British Columbia, October 1998.

[5] Peter Cappello, Bernd Christiansen, Mihai F. Ionescu, Michael O. Neary, Klaus E.
Schauser, and Daniel Wu. Javelin: Internet-based parallel computing using Java.
In ACM Workshop on Java for Science and Engineering Computation, Las Vegas,
Nevada, June 1997.

[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[7] Bor-Yuh Evan Chang. Iktara in ConCert: Realizing a certified grid computing
framework from a programmer’s perspective. Technical Report CMU-CS-02-150,
Carnegie Mellon University, June 2002. Undergraduate honors thesis.

[8] Clip2 Distributed Search Services. The Gnutella pro-
tocol specification v0.4, September 2000. URL:
http://www.gnutella.co.uk/library/pdf/gnutella protocol 0.4.pdf.

[9] ConCert. Certified code for grid computing, project webpage, 2001. URL:
http://www.cs.cmu.edu/˜concert.

[10] Karl Crary and Stephanie Weirich. Resource bound certification. In Twenty-
Seventh ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 184–198, Boston, Massachusetts, January 2000.

[11] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kaufmann, San Francisco,
California, 1999.

[12] Margaret DeLap. Implementing a framework for certified grid computing. Techni-
cal Report CMU-CS-02-151, Carnegie Mellon University, June 2002. Undergrad-
uate honors thesis.

[13] Ian Foster and Carl Kesselman. The Globus toolkit. In Ian Foster and Carl Kessel-
man, editors, The Grid: Blueprint for a New Computing Infrastructure, chapter 11,
pages 259–278. Morgan Kaufmann, San Francisco, California, 1999.

[14] Neal Glew and Greg Morrisett. Type-safe linking and modular assembly lan-
guage. In Twenty-Sixth ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 250–261, San Antonio, Texas, January 1999.

[15] Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. Going
beyond the sandbox: An overview of the new security architecture in the Java De-
velopment Kit 1.2. In USENIX Symposium on Internet Technologies and Systems,
Monterey, California, December 1997.

[16] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language
Specification. Addison-Wesley, second edition, 2000.

[17] Paul A. Gray and Vaidy S. Sunderam. Metacomputing with the IceT system.
International Journal of High Performance Computing Applications, 13(3):241–
252, 1999.

[18] Andrew S. Grimshaw and William A. Wulf. Legion: The next logical step toward
the world-wide virtual computer. Communications of the ACM, 40(1):39–45, Jan-
uary 1997.

[19] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy
and integrity. In Twenty-Fifth ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 365–377, San Diego, California, January
1998.

[20] ICFP. The third annual ICFP programming contest, 2000. URL:
http://www.cs.cornell.edu/icfp/.



[21] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification.
Addison-Wesley, second edition, 1999.

[22] Steven Lucco, Oliver Sharp, and Robert Wahbe. Omniware: A universal substrate
for web programming. In Fourth International World Wide Web Conference, pages
359–368, Boston, Massachusetts, December 1995.

[23] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, Cambridge, Massachusetts, 1997.

[24] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-
erick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. In 1999 ACM SIGPLAN Workshop on Com-
piler Support for System Software, pages 25–35, Atlanta, Georgia, May 1999.

[25] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. Journal of Functional Programming, 12(1):43–88, January
2002.

[26] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):527–568, May 1999.

[27] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In
Twenty-Sixth ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 228–241, San Antonio, Texas, January 1999.

[28] George C. Necula. Proof-carrying code. In Twenty-Fourth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 106–119,
Paris, France, January 1997.

[29] George C. Necula and Peter Lee. Safe kernel extensions without run-time checking.
In Second Symposium on Operating Systems Design and Implementation, pages
229–243, Seattle, Washington, October 1996.

[30] George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying code.
In Giovanni Vigna, editor, Special Issue on Mobile Agent Security, volume 1419 of
Lecture Notes in Computer Science, pages 61–91. Springer-Verlag, October 1997.

[31] Jordan Ritter. Why Gnutella can’t scale. No, really., February 2001. URL:
http://www.darkridge.com/˜jpr5/doc/gnutella.html.

[32] Luis F. G. Sarmenta. Bayanihan: Web-based volunteer computing using Java. In
Second International Conference on World-Wide Computing and its Applications,
pages 444–461, March 1998.

[33] Luis F. G. Sarmenta and Satoshi Hirano. Bayanihan: Building and studying
web-based volunteer computing systems using Java. Future Generation Computer
Systems, 15(5-6):675–686, 1999. Special Issue on Metacomputing.

[34] SETI@home. The search for extraterrestrial intelligence, 2001. URL:
http://setiathome.ssl.berkeley.edu.

[35] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Effi-
cient software-based fault isolation. In Fourteenth ACM Symposium on Operating
Systems Principles, pages 203–216, December 1993.

[36] Steve Zdancewic and Andrew C. Myers. Confidentiality and integrity with un-
trusted hosts. Technical Report 2000-1810, Cornell University, 2000.


